Molecular Screening of Feline Glycogen Storage Disease Type II (Pompe Disease): Allele Frequencies of the GAA:c.1799G>A and c.55G>A Variants
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Preparation of the DNA Template
2.3. Real-Time PCR Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Pompe disease |
IOPD | infantile-onset Pompe disease |
LOPD | late-onset Pompe disease |
PCR | polymerase chain reaction |
RFLP | restriction fragment length polymorphism |
SIFT | sorting intolerant from tolerant |
FTA | Flinders Technology Associates |
MGB | minor groove binder |
References
- van der Ploeg, A.T.; Reuser, A.J.J. Pompe’s disease. Lancet 2008, 372, 1342–1353. [Google Scholar]
- Almodóvar-Payá, A.; Villarreal-Salazar, M.; de Luna, N.; Nogales-Gadea, G.; Alberto Real-Martínez, A.; Andreu, A.L.; Miguel Angel Martín, M.A.; Arenas, J.; Lucia, A.; Vissing, J.; et al. Preclinical research in glycogen storage diseases: A comprehensive review of current animal models. Int. J. Mol. Sci. 2020, 21, 9621. [Google Scholar]
- Meena, N.K.; Raben, N. Pompe disease: New developments in an old lysosomal storage disorder. Biomolecules 2020, 10, 1339. [Google Scholar]
- Kishnani, P.S.; Amartino, H.M.; Lindberg, C.; Miller, T.M.; Wilson, A.; Keutzer, J. Methods of diagnosis of patients with Pompe disease: Data from the Pompe registry. Mol. Genet. Metab. 2014, 113, 84–91. [Google Scholar]
- Almeida, V.; Conceição, I.; Fineza, I.; Coelho, T.; Silveira, F.; Santos, M.; Valverde, A.; Geraldo, A.; Maré, R.; Aguiar, T.C.; et al. Screening for Pompe disease in a Portuguese high risk population. Neuromuscul. Disord. 2017, 27, 777–781. [Google Scholar]
- Pillai, N.R.; Fabie, N.A.V.; Kaye, T.V.; Rosendahl, S.D.; Ahmed, A.; Hietala, A.D.; Jorgenson, A.B.; Lanpher, B.C.; Whitley, C.B. Disparities in late and lost: Pediatricians’ role in following Pompe disease identified by newborn screening. Mol. Genet. Metab. 2023, 140, 107633. [Google Scholar]
- Fukuhara, Y.; Fuji, N.; Yamazaki, N.; Hirakiyama, A.; Kamioka, T.; Seo, J.H.; Mashima, R.; Kosuga, M.; Okuyama, T. A molecular analysis of the GAA gene and clinical spectrum in 38 patients with Pompe disease in Japan. Mol. Genet. Metab. Rep. 2018, 14, 3–9. [Google Scholar]
- Thirumal Kumar, D.; Umer Niazullah, M.; Tasneem, S.; Judith, E.; Susmita, B.; George Priya Doss, C.; Selvarajan, E.; Zayed, H. A computational method to characterize the missense mutations in the catalytic domain of GAA protein causing Pompe disease. J. Cell. Biochem. 2019, 120, 3491–3505. [Google Scholar]
- Kishnani, P.S.; Beckemeyer, A.A.; Mendelsohn, N.J. The new era of Pompe disease: Advances in the detection, understanding of the phenotypic spectrum, pathophysiology, and management. Am. J. Med. Genet. C Semin. Med. Genet. 2012, 160C, 1–7. [Google Scholar]
- Chan, J.; Desai, A.K.; Kazi, Z.B.; Corey, K.; Austin, S.; Hobson-Webb, L.D.; Case, L.E.; Jones, H.N.; Kishnani, P.S. The emerging phenotype of late-onset Pompe disease: A systematic literature review. Mol. Genet. Metab. 2017, 120, 163–172. [Google Scholar]
- Smith, L.D.; Bainbridge, M.N.; Parad, R.B.; Bhattacharjee, A. Second tier molecular genetic testing in newborn screening for Pompe disease: Landscape and challenges. Int. J. Neonatal. Screen. 2020, 6, 32. [Google Scholar]
- Dasouki, M.; Jawdat, O.; Almadhoun, O.; Pasnoor, M.; McVey, A.L.; Abuzinadah, A.; Herbelin, L.; Barohn, R.J.; Dimachkie, M.M. Pompe disease: Literature review and case series. Neurol. Clin. 2014, 32, 751–776. [Google Scholar]
- Ravaglia, S.; De Filippi, P.; Cirio, S.; Danesino, C.; Moggio, M.; Mongini, T.; Maggi, L.; Servidei, S.; Vianello, A.; Toscano, A.; et al. Polymorphism in exercise genes and respiratory function in late-onset Pompe disease. J. Appl. Physiol. 2021, 131, 1762–1771. [Google Scholar]
- Tanaka, S.; Suzuki, R.; Koyama, H.; Machida, N.; Yabuki, A.; Yamato, O. Glycogen storage disease in a young cat with heart failure. J. Vet. Intern. Med. 2022, 36, 259–263. [Google Scholar]
- Seppälä, E.H.; Reuser, A.J.; Lohi, H. A nonsense mutation in the acid α-glucosidase gene causes Pompe disease in Finnish and Swedish Lapphunds. PLoS ONE 2013, 8, e56825. [Google Scholar]
- Manktelow, B.; Hartley, W. Generalized glycogen storage disease in sheep. J. Comp. Pathol. 1975, 85, 139–145. [Google Scholar]
- Jolly, R.; Van-de-Water, N.; Richards, R.; Dorling, P.R. Generalized glycogenosis in beef shorthorn cattle—Heterozygote detection. Aust. J. Exp. Biol. Med. Sci. 1977, 55, 141–150. [Google Scholar]
- O’sullivan, B.; Healy, P.; Fraser, I.; Nieper, R.E.; Whittle, R.J.; Sewell, C.A. Generalised glycogenosis in Brahman cattle. Aust. Vet. J. 1981, 57, 227–229. [Google Scholar]
- Matsui, T.; Kuroda, S.; Mizutani, M.; Kiuchi, K.; Suzuki, K.; Ono, T. Generalized glycogen storage disease in Japanese quail (Coturnix coturnix japonica). Vet. Pathol. 1983, 20, 312–321. [Google Scholar]
- Čítek, J.; ŘEhout, V.; Večerek, L.; Hájková, J. Genotyping glycogen storage disease type II and type V in cattle reared in the Czech Republic. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2007, 54, 257–259. [Google Scholar]
- Dennis, J.A.; Moran, C.; Healy, P.J. The bovine α-glucosidase gene: Coding region, genomic structure, and mutations that cause bovine generalized glycogenosis. Mamm. Genome 2000, 11, 206–212. [Google Scholar]
- Lyons, R.E.; Johnston, D.J.; McGowan, M.R.; Laing, A.R.; Robinson, B.; Owen, H.; Hill, B.D.; Burns, B.M. E7 (1057ΔTA) mutation of the acidic α-glucosidase gene causes Pompe’s disease in Droughtmaster cattle. Aust. Vet. J. 2017, 95, 138–142. [Google Scholar]
- Dennis, J.A.; Healy, P.J.; Reichmann, K.G. Genotyping Brahman cattle for generalised glycogenosis. Aust. Vet. J. 2002, 80, 286–291. [Google Scholar]
- Rakib, T.M.; Islam, M.S.; Tanaka, S.; Yabuki, A.; Pervin, S.; Maki, S.; Faruq, A.A.; Tacharina, M.R.; Yamato, O. Novel mutation in the feline GAA gene in a cat with glycogen storage disease type II (Pompe disease). Animals 2023, 13, 1336. [Google Scholar]
- Walvoort, H.C.; Slee, R.G.; Koster, J.F. Canine glycogen storage disease type II: A biochemical study of an acid α-glucosidase-deficient Lapland dog. Biochim. Biophys. Acta 1982, 715, 63–69. [Google Scholar]
- Skelly, B.J.; Franklin, R.J.M. Recognition and diagnosis of lysosomal storage diseases in the cat and dog. J. Vet. Intern. Med. 2002, 16, 133–141. [Google Scholar]
- Sandström, B.; Westman, J.; Öckerman, P. Glycogenosis of the central nervous system in the cat. Acta. Neuropathol. 1969, 14, 194–200. [Google Scholar]
- Chang, H.S.; Shibata, T.; Arai, S.; Zhang, C.; Yabuki, A.; Mitani, S.; Higo, T.; Sunagawa, K.; Mizukami, K.; Yamato, O. Dihydropyrimidinase deficiency: The first feline case of dihydropyrimidinuria with clinical and molecular findings. JIMD Rep. 2012, 6, 21–26. [Google Scholar]
- Rahman, M.M.; Shoubudani, T.; Mizukami, K.; Chang, H.S.; Hossain, M.A.; Yabuki, A.; Mitani, S.; Higo, T.; Arai, T.; Yamato, O. Rapid and simple polymerase chain reaction-based diagnostic assays for GM2 gangliosidosis variant 0 (Sandhoff-like disease) in Japanese domestic cats. J. Vet. Diagn. Investig. 2011, 23, 338–342. [Google Scholar]
- Kushida, K.; Giger, U.; Tsutsui, T.; Inaba, M.; Konno, Y.; Hayashi, K.; Noguchi, K.; Yabuki, A.; Mizukami, K.; Kohyama, M.; et al. Real-time PCR genotyping assay for feline erythrocyte pyruvate kinase deficiency and mutant allele frequency in purebred cats in Japan. J. Vet. Med. Sci. 2015, 77, 743–746. [Google Scholar]
Variant | Primer/Probe | Sequence (5′ to 3′) | Reporter (5′) | Quencher (3′) | Conc. (nM) |
---|---|---|---|---|---|
c.1799G>A | Forward primer | CCAGGGCCCTGGTCAAG | NA | NA | 450 |
Reverse primer | AGTGGCCGGCGTATCG | NA | NA | 450 | |
Wild-type probe | TGATCTCCCGCTCGACC | VIC | NFQ | 100 | |
Mutant-type probe | TGATCTCCCACTCGACC | FAM | NFQ | 100 | |
c.55G>A | Forward primer | GTGGCCGCTGTGCTG | NA | NA | 450 |
Reverse primer | GGACGTGCCCCAGGAG | NA | NA | 450 | |
Wild-type probe | CTACATCCTCGTGTCCC | VIC | NFQ | 100 | |
Mutant-type probe | ACATCCTCATGTCCC | FAM | NFQ | 100 |
Breed | Number Examined | c.55G/G | c.55G/A | c.55A/A | Frequency of A Allele |
---|---|---|---|---|---|
Abyssinian | 10 | 10 | 0 | 0 | 0 |
American Curl | 3 | 3 | 0 | 0 | 0 |
American Shorthair | 16 | 12 | 3 | 1 | 0.156 |
Bengal | 3 | 2 | 1 | 0 | 0.117 |
Chartreux | 1 | 1 | 0 | 0 | 0 |
Chinchilla | 16 | 16 | 0 | 0 | 0 |
Devon Rex | 1 | 1 | 0 | 0 | 0 |
Exotic | 2 | 0 | 0 | 0 | 0 |
Himalayan | 1 | 1 | 0 | 0 | 0 |
La Perm | 4 | 3 | 1 | 0 | 0.125 |
Maine Coon | 5 | 2 | 3 | 0 | 0.3 |
Munchkin | 2 | 1 | 1 | 0 | 0.25 |
Norwegian Forest Cat | 3 | 0 | 0 | 0 | 0 |
Persian | 4 | 0 | 0 | 0 | 0 |
Ragamuffin | 1 | 0 | 0 | 0 | 0 |
Ragdoll | 2 | 0 | 0 | 0 | 0 |
Russian Blue | 3 | 0 | 0 | 0 | 0 |
Scottish Fold | 12 | 11 | 1 | 0 | 0.042 |
Somali | 8 | 8 | 0 | 0 | 0 |
Tonkinese | 2 | 0 | 0 | 2 | 1 |
Purebred (Total) | 99 | 86 | 10 | 3 | 0.081 * |
Mixed-breed | 540 | 189 | 191 | 160 | 0.473 * |
Unknown | 99 | 61 | 26 | 12 | 0.253 |
Total | 738 | 336 | 227 | 175 | 0.391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faruq, A.A.; Rakib, T.M.; Islam, M.S.; Yabuki, A.; Pervin, S.; Maki, S.; Tanaka, S.; Arakawa, N.; Yamato, O. Molecular Screening of Feline Glycogen Storage Disease Type II (Pompe Disease): Allele Frequencies of the GAA:c.1799G>A and c.55G>A Variants. Genes 2025, 16, 938. https://doi.org/10.3390/genes16080938
Faruq AA, Rakib TM, Islam MS, Yabuki A, Pervin S, Maki S, Tanaka S, Arakawa N, Yamato O. Molecular Screening of Feline Glycogen Storage Disease Type II (Pompe Disease): Allele Frequencies of the GAA:c.1799G>A and c.55G>A Variants. Genes. 2025; 16(8):938. https://doi.org/10.3390/genes16080938
Chicago/Turabian StyleFaruq, Abdullah Al, Tofazzal Md Rakib, Md Shafiqul Islam, Akira Yabuki, Shahnaj Pervin, Shinichiro Maki, Shigeki Tanaka, Nanami Arakawa, and Osamu Yamato. 2025. "Molecular Screening of Feline Glycogen Storage Disease Type II (Pompe Disease): Allele Frequencies of the GAA:c.1799G>A and c.55G>A Variants" Genes 16, no. 8: 938. https://doi.org/10.3390/genes16080938
APA StyleFaruq, A. A., Rakib, T. M., Islam, M. S., Yabuki, A., Pervin, S., Maki, S., Tanaka, S., Arakawa, N., & Yamato, O. (2025). Molecular Screening of Feline Glycogen Storage Disease Type II (Pompe Disease): Allele Frequencies of the GAA:c.1799G>A and c.55G>A Variants. Genes, 16(8), 938. https://doi.org/10.3390/genes16080938