Molecular Characterization of CnHd3a and Spatial Expression of Its Alternative Splicing Forms Associated with Flowering Transition and Flower Development in Coconut Palm (Cocos nucifera L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction
2.3. RNA Extraction and Reverse Transcription
2.4. The Cloning of the Full-Length Genomic DNA and cDNA of CnHd3a
2.5. Sequence Analysis and Phylogenetic Tree
2.6. Expression Analysis of Different Alternative Transcripts Using RT-PCR
2.7. Gene Expression Analysis by Quantitative RT-PCR
3. Results
3.1. Cloning and Molecular Structure of CnHd3a from Dwarf and Tall Coconuts
3.2. Molecular Function of CnHd3a and Phylogenetic Tree
3.3. Spatio-Temporal Expression Patterns of CnHd3a
3.4. The Alternative Splicing of the CnHd3a Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAM | Shoot apical meristem |
FT | Flowering locus T |
Hd3a | Heading date 3A |
References
- Food and Agriculture Organization of the United Nations. Available online: www.fao.org/faostat/en/ (accessed on 21 April 2024).
- Perera, K.N.S.; Herath, H.M.J.C.B.; Attanayaka, D.P.; Perera, S.A.C. Evaluation of Morphological Diversity of Conserved Tall Coconut (Cocos nucifera L.) germplasm in Sri Lanka. Trop. Agric. Res. 2016, 27, 350. [Google Scholar] [CrossRef]
- Kritchevsky, D.; Tepper, S.A.; Kim, H.K.; Story, J.A.; Vesselinovitch, D.; Wissler, R.W. Experimental atherosclerosis in rabbits fed cholesterol-free diets: 5. Comparison of Peanut, Corn, Butter, and Coconut Oils. Exp. Mol. Pathol. 1976, 24, 375–391. [Google Scholar] [CrossRef]
- Young, S.J.; Renner, R. Ketogenicity of soybean oil, coconut oil and their respective fatty acids for the chick. J. Nutr. 1977, 107, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Agyemang-Yeboah, F. Chapter 43-Health Benefits of Coconut (Cocos nucifera Linn.) Seeds and Coconut Consumption. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2011; Volume 1, pp. 361–367. [Google Scholar]
- Goldberg, M.L.; Enig, M.G. Palmitic and lauric acids and serum cholesterol. Am. J. Clin. Nutr. 1993, 58, 244. [Google Scholar] [CrossRef]
- Ravnskov, U.; Allen, C.; Atrens, D.; Enig, M.G.; Groves, B.; Kauffman, M.; Kroneld, R.; Rosch, P.J.; Rosenman, R.; Werko, L.; et al. Studies of dietary fat and heart disease. Science 2002, 295, 1464. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Nie, T.; Chen, Y.; Yin, Z. From Floral Induction to Blooming: The Molecular Mysteries of Flowering in Woody Plants. Int. J. Mol. Sci. 2022, 23, 10959. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, P.; Fan, H.; Baudouin, L.; Xia, W.; Bocs, S.; Xu, J.; Li, Q.; Guo, A.; Zhou, L.; et al. The genome draft of coconut (Cocos nucifera). Gigascience 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Amasino, R. Seasonal and developmental timing of flowering. Plant J. 2010, 61, 1001–1013. [Google Scholar] [CrossRef]
- Fernández-Calvo, P.; Matus, J.T.; Jin, J.; Riechmann, J.L. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 2011, 23, 701–715. [Google Scholar] [CrossRef]
- Song, Y.H.; Ito, S.; Imaizumi, T. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 2013, 18, 575–583. [Google Scholar] [CrossRef]
- Wellmer, F.; Riechmann, J.L. Gene networks controlling the initiation of flower development. Trends Genet. 2010, 26, 519–527. [Google Scholar] [CrossRef]
- Bennett, T.; Dixon, L.E. Asymmetric expansions of FT and TFL1 lineages characterize differential evolution of the EuPEBP family in the major angiosperm lineages. BMC Biol. 2021, 19, 181. [Google Scholar] [CrossRef]
- Venail, J.; Da, S.S.; Paulo, H.; Manechini, J.R.; Alves, L.C.; Scarpari, M.; Falcão, T.; Romanel, E.; Brito, M.; Vicentini, R.; et al. Analysis of the PEBP gene family and identification of a novel FLOWERING LOCUS T orthologue in sugarcane. J. Exp. Bot. 2022, 73, 2035–2049. [Google Scholar] [CrossRef]
- Zhang, M.; Li, P.; Yan, X.; Wang, J.; Cheng, T.; Zhang, Q. Genome-wide characterization of PEBP family genes in nine Rosaceae tree species and their expression analysis in P. mume. BMC Ecol. Evol. 2021, 21, 32. [Google Scholar] [CrossRef]
- Karlgren, A.; Gyllenstrand, N.; Källman, T.; Sundström, J.F.; Moore, D.; Lascoux, M.; Lagercrantz, U. Evolution of the PEBP Gene Family in Plants: Functional Diversification in Seed Plant Evolution. Plant Physiol. 2011, 156, 1967–1977. [Google Scholar] [CrossRef]
- Fornara, F.; de Montaigu, A.; Coupland, G. SnapShot: Control of flowering in Arabidopsis. Cell 2010, 141, 550. [Google Scholar] [CrossRef]
- Kardailsky, I.; Shukla, V.K.; Ahn, J.H.; Dagenais, N.; Christensen, S.K.; Nguyen, J.T.; Chory, J.; Harrison, M.J.; Weigel, D. Activation tagging of the floral inducer FT. Science 1999, 286, 1962–1965. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kaya, H.; Goto, K.; Iwabuchi, M.; Araki, T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 1999, 286, 1960–1962. [Google Scholar] [CrossRef]
- Jaeger, K.E.; Wigge, P.A. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 2007, 17, 1050–1054. [Google Scholar] [CrossRef]
- Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 2005, 309, 1052–1056. [Google Scholar] [CrossRef]
- An, H.; Roussot, C.; Suárez-López, P.; Corbesier, L.; Vincent, C.; Piñeiro, M.; Hepworth, S.; Mouradov, A.; Justin, S.; Turnbull, C.; et al. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 2004, 131, 3615–3626. [Google Scholar] [CrossRef]
- Krzymuski, M.; Andrés, F.; Cagnola, J.I.; Jang, S.; Yanovsky, M.J.; Coupland, G.; Casal, J.J. The dynamics of FLOWERING LOCUS T expression encodes long-day information. Plant J. 2015, 83, 952–961. [Google Scholar] [CrossRef]
- Osnato, M.; Cota, I.; Nebhnani, P.; Cereijo, U.; Pelaz, S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. Front. Plant Sci. 2022, 12, 805635. [Google Scholar] [CrossRef]
- Zheng, R.; Meng, X.; Hu, Q.; Yang, B.; Cui, G.; Li, Y.; Zhang, S.; Zhang, Y.; Ma, X.; Song, X.; et al. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice. Plant Biotechnol. J. 2023, 21, 1343–1360. [Google Scholar] [CrossRef]
- Faure, S.; Higgins, J.; Turner, A.; Laurie, D.A. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 2007, 176, 599–609. [Google Scholar] [CrossRef]
- Dong, H.; Qi, S.; Shen, Q.; Shu, C.; Jiao, W.; Mu, W.; Xu, C.; Cui, Y.; Qian, W. Elucidation of the genetic basis of variation in flowering time in Brassica napus via genome-wide association studies and gene co-expression analysis. BMC Plant Biol. 2025, 25, 350. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Liu, Y.; Luthe, D.S.; Yuceer, C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 2006, 18, 1846–1861. [Google Scholar] [CrossRef]
- Zhang, H.; Harry, D.E.; Ma, C.; Yuceer, C.; Hsu, C.Y.; Vikram, V.; Shevchenko, O.; Etherington, E.; Strauss, S.H. Precocious flowering in trees: The FLOWERING LOCUS T gene as a research and breeding tool in Populus. J. Exp. Bot. 2010, 61, 2549–2560. [Google Scholar] [CrossRef]
- André, D.; Marcon, A.; Lee, K.C.; Goretti, D.; Zhang, B.; Delhomme, N.; Schmid, M.; Nilsson, O. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Curr. Biol. 2022, 32, 2988–2996. [Google Scholar] [CrossRef]
- Igasaki, T.; Watanabe, Y.; Nishiguchi, M.; Kotoda, N. The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in lombardy poplar. Plant Cell Physiol. 2008, 49, 291–300. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, X.; Yang, X.; Rao, P.; An, X.; Chen, Z. Identification of key flowering-related genes and their seasonal expression in Populus tomentosa reproductive buds suggests dual roles in floral development and dormancy. Ind. Crops Prod. 2021, 161, 113175. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, D.; Gao, C.; Zhao, M.; Wu, H.; Li, Y.; Shen, Y.; Han, M. Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica. Front. Physiol. 2017, 8, 253. [Google Scholar] [CrossRef]
- Chica, E.; Albrigo, G. Changes in CsFT Transcript Abundance at the Onset of Low-temperature Floral Induction in Sweet Orange. J. Am. Soc. Hortic. Sci. 2013, 138, 184–189. [Google Scholar] [CrossRef]
- Chica, E.; Albrigo, G. Expression of Flower Promoting Genes in Sweet Orange during Floral Inductive Water Deficits. J. Am. Soc. Hortic. Sci. 2013, 138, 88–94. [Google Scholar] [CrossRef]
- Endo, T.; Shimada, T.; Fujii, H.; Kobayashi, Y.; Araki, T.; Omura, M. Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res. 2005, 14, 703–712. [Google Scholar] [CrossRef]
- Wickland, D.P.; Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms. Mol. Plant 2015, 8, 983–997. [Google Scholar] [CrossRef]
- Kittikorn, M.; Okawa, K.; Ohara, H.; Kondo, S.; Kotoda, N.; Wada, M.; Yokoyama, M.; Ifuku, O.; Murata, A.; Watanabe, N. Application of an Analog of 9, 10-ketol-octadecadienoic acid (KODA), Affected Flower Bud Formation and MdTFL1 and MdFT1 Gene Expressions in Apple Buds under Heavy-crop and Shade Conditions. J. Am. Soc. Hortic. Sci. 2013, 138, 102–107. [Google Scholar] [CrossRef]
- Kotoda, N.; Hayashi, H.; Suzuki, M.; Igarashi, M.; Hatsuyama, Y.; Kidou, S.; Igasaki, T.; Nishiguchi, M.; Yano, K.; Shimizu, T.; et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.). Plant Cell Physiol. 2010, 51, 561–575. [Google Scholar] [CrossRef]
- Xia, W.; Liu, R.; Zhang, J.; Mason, A.S.; Li, Z.; Gong, S.; Zhong, Y.; Dou, Y.; Sun, X.; Fan, H.; et al. Alternative splicing of flowering time gene FT is associated with halving of time to flowering in coconut. Sci. Rep. 2020, 10, 11640. [Google Scholar] [CrossRef]
- Prasad, S.; Lavale, S.; Mathew, D. Rapid and efficient protocol for genomic DNA extraction from leaf tissues of coconut (Cocos nucifera L.). Hortic. Int. J. 2022, 6, 17–21. [Google Scholar] [CrossRef]
- Yu, H.; Goh, C.J. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol. 2000, 123, 1325–1336. [Google Scholar] [CrossRef]
- Stiekema, W.J.; Heidekamp, F.; Louwerse, J.D.; Verhoeven, H.A.; Dijkhuis, P. Introduction of foreign genes into potato cultivars Bintje and Désirée using an Agrobacterium tumefaciens binary vector. Plant Cell Rep. 1988, 7, 47–50. [Google Scholar] [CrossRef]
- Hou, C.J.; Yang, C.H. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol. 2009, 50, 1544–1557. [Google Scholar] [CrossRef]
- Huang, X.; Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 1999, 9, 868–877. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kapustin, Y.; Souvorov, A.; Tatusova, T. Splign: Algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 2008, 3, 20. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Wigge, P.A.; Kim, M.C.; Jaeger, K.E.; Busch, W.; Schmid, M.; Lohmann, J.U.; Weigel, D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 2005, 309, 1056–1059. [Google Scholar] [CrossRef]
- Fan, H.; Xiao, Y.; Yang, Y.; Xia, W.; Mason, A.S.; Xia, Z.; Qiao, F.; Zhao, S.; Tang, H. RNA-Seq analysis of Cocos nucifera: Transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. PLoS ONE 2013, 8, e59997. [Google Scholar] [CrossRef]
- Ahn, J.H.; Miller, D.; Winter, V.J.; Banfield, M.J.; Lee, J.H.; Yoo, S.Y.; Henz, S.R.; Brady, R.L.; Weigel, D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 2006, 25, 605–614. [Google Scholar] [CrossRef]
- Taoka, K.; Ohki, I.; Tsuji, H.; Furuita, K.; Hayashi, K.; Yanase, T.; Yamaguchi, M.; Nakashima, C.; Purwestri, Y.A.; Tamaki, S.; et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 2011, 476, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.W.; Weigel, D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 2014, 26, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Mimida, N.; Goto, K.; Kobayashi, Y.; Araki, T.; Ahn, J.H.; Weigel, D.; Murata, M.; Motoyoshi, F.; Sakamoto, W. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 2001, 6, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Khokhar, W.; Jabre, I.; Reddy, A.S.N.; Byrne, L.J.; Wilson, C.M.; Syed, N.H. Alternative Splicing and Protein Diversity: Plants Versus Animals. Front Plant Sci. 2019, 10, 708. [Google Scholar] [CrossRef]
- Mao, Y.; Sun, J.; Cao, P.; Zhang, R.; Fu, Q.; Chen, S.; Chen, F.; Jiang, J. Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium. Hortic. Res. 2016, 3, 16058. [Google Scholar] [CrossRef]
- Qin, Z.; Wu, J.; Geng, S.; Feng, N.; Chen, F.; Kong, X.; Song, G.; Chen, K.; Li, A.; Mao, L.; et al. Regulation of FT splicing by an endogenous cue in temperate grasses. Nat. Commun. 2017, 8, 14320. [Google Scholar] [CrossRef]
Primer Name | Nucleotide Sequence (5′–3′) | Tm (°C) | Ta (°C) |
---|---|---|---|
CD.F | ATGGTGGATCCNGAYGYNCCNAGYCC | 59.0 | 55–64 |
CD.R | GTGYTGAAGTTCTGRCGCCACCCNGG | 62.0 | |
5P2.F | ATGCACTCTTGGGAGGTAGGA | 61.3 | 58 |
5P2.R | AAGGGTGTAGAAGGTCCTGAGG | 64.0 | |
3P1.F | GGTCAGGAGATTGTGTGCTATGAGAGTCC | 71.9 | 64 |
3P1.R | TTAAGGTTGCATCCTTCTCCCGCC | 67.0 | |
5P3.F | GCCTAAAGTCTGTGTGCCAAG | 61.3 | 55 |
5P3.R | TGCCTCCAACCTCAACCCTAG | 63.3 | |
5P1.F | CCCCTCAGGGTGATCTACAA | 60.5 | 54 |
5P1.R | AACTCTTCAGCGGGTGCTTA | 58.4 | |
3P2.F | CGGTCGCAGCAGTCTATTTT | 58.4 | 50 |
3P2.R | TACCCGAAAAGTTCACTAATT | 53.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maneeprasert, P.; Thaisakun, S.; Thanananta, T.; Thanananta, N.; Lokkamlue, N.; Mongkolsiriwatana, C. Molecular Characterization of CnHd3a and Spatial Expression of Its Alternative Splicing Forms Associated with Flowering Transition and Flower Development in Coconut Palm (Cocos nucifera L.). Genes 2025, 16, 718. https://doi.org/10.3390/genes16060718
Maneeprasert P, Thaisakun S, Thanananta T, Thanananta N, Lokkamlue N, Mongkolsiriwatana C. Molecular Characterization of CnHd3a and Spatial Expression of Its Alternative Splicing Forms Associated with Flowering Transition and Flower Development in Coconut Palm (Cocos nucifera L.). Genes. 2025; 16(6):718. https://doi.org/10.3390/genes16060718
Chicago/Turabian StyleManeeprasert, Pariya, Siriwan Thaisakun, Theerachai Thanananta, Narumol Thanananta, Noppamart Lokkamlue, and Chareerat Mongkolsiriwatana. 2025. "Molecular Characterization of CnHd3a and Spatial Expression of Its Alternative Splicing Forms Associated with Flowering Transition and Flower Development in Coconut Palm (Cocos nucifera L.)" Genes 16, no. 6: 718. https://doi.org/10.3390/genes16060718
APA StyleManeeprasert, P., Thaisakun, S., Thanananta, T., Thanananta, N., Lokkamlue, N., & Mongkolsiriwatana, C. (2025). Molecular Characterization of CnHd3a and Spatial Expression of Its Alternative Splicing Forms Associated with Flowering Transition and Flower Development in Coconut Palm (Cocos nucifera L.). Genes, 16(6), 718. https://doi.org/10.3390/genes16060718