Navigating the Genetic Landscape: Investigating the Opportunities and Risks of Cross-Species SNP Array Application in Catfish
Abstract
:1. Introduction
2. Literature Review Methods
3. SNP Chips and Their Importance in Genetic Research
4. Aquaculture of Catfish: SNP Genotyping in Breeding Programs
4.1. Implementation of Genetic-Based Selection of Catfish
4.2. SWOT Analysis of Genetic-Based Selection Frequency in Catfish Aquaculture
5. Similarities and Differences Among the Four Studied Catfish Species
6. SNP Arrays in Catfish and Its Application for Genetic Studies
6.1. The First High-Density 250K Catfish Array
6.2. The Axiom Catfish 690K Genotyping Array
7. Cross-Application of SNP Arrays for Genomic Analysis
7.1. Avian and Mammalian Studies from the 10 Thoroughly Reviewed Publications
7.2. Genotyping Fish Species with Medium- and High-Density Arrays
8. Discussion
8.1. Advantages and Vulnerabilities of SNP-Based Selection in Catfish
8.1.1. Strengths of Genetic-Based Selection
8.1.2. Weaknesses of SNP-Array Usage in Breeding
8.1.3. The Opportunities of Controlled Heredity
8.1.4. Threats of Genetic Breeding Methods
8.2. Catfish High-Density SNP-Arrays and Their Usage
8.3. Cross-Species SNP Array Applications on Different Levels
8.3.1. Species-Level Divergence
8.3.2. Genera-Level Divergence
8.3.3. Family-Level Divergence
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BL | Body Length |
BW | Body Weight |
CAGR | Compound Annual Growth Rate |
CNV | Copy Number Variation |
CNVR | Copy Number Variation Region |
DO | Dissolved Oxygen |
ESC | Enteric Septicemia of Catfish |
FCE | Feed Conversion Efficiency |
GMO | Genetically Modified Organism |
GS | Genomic Selection |
GWAS | Genome-Wide Association Study |
HV | Novel Herpesvirus |
MAF | Minor Allele Frequency |
MAPK | Mitogen-Activated Protein Kinase |
MAS | Marker-Assisted Selection |
NGS | Next-Generation Sequencing |
PCA | Principal Component Analysis |
QTL | Quantitative Trait Loci |
RAD-Seq | Restriction Site-Associated DNA Sequencing |
RNA-Seq | RNA Sequencing |
SNP | Single Nucleotide Polymorphism |
ssGBLUP | Single-step Genomic Best Linear Unbiased Prediction |
USDA-ARS | United States Department of Agriculture—Agricultural Research Service |
WARU | Warmwater Aquaculture Research Unit |
VEGF | Vascular Endothelial Growth Factor |
WGS | Whole-Genome Sequencing |
WOS | Web of Science |
References
- Sullivan, J.P.; Lundberg, J.G.; Hardman, M. A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol. Phylogenet. Evol. 2006, 41, 636–662. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, J.W. Global Catfish Biodiversity. Am. Fish. Soc. Symp. 2011, 77, 15–37. [Google Scholar]
- Gutiérrez-Barragán, A.; Varela-Romero, A.; García-De León, F.J.; Grijalva-Chon, J.M. A review of catfish (Siluriformes) hybridization. Rev. Fish. Biol. Fish. 2025, 35, 145–174. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024; pp. 26–225. [Google Scholar] [CrossRef]
- Dunham, R.A.; Elaswad, A. Catfish Biology and Farming. Annu. Rev. Anim. Biosci. 2018, 6, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, E.; Luz, R.K.; Fernández, I.; Pradhan, P.K.; Salhi, M.; Mozanzadeh, M.T.; Kumar, A.; Kotzamanis, Y.; Castro-Ruiz, D.; Bessonart, M.; et al. Development, nutrition, and rearing practices of relevant catfish species (Siluriformes) at early stages. Rev. Aquacult. 2022, 14, 73–105. [Google Scholar] [CrossRef]
- Abass, N.Y.; Ye, Z.; Alsaqufi, A.; Dunham, R.A. Comparison of growth performance among channel–blue hybrid catfish, ccGH transgenic channel catfish, and channel catfish in a tank culture system. Sci. Rep. 2022, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Araujo, H.A.; Duguid, W.D.P.; Withler, R.; Supernault, J.; Schulze, A.D.; Mckenzie, J.L.; Pellett, K.; Beacham, T.D.; Jonsen, K.; Gummer, A. Chinook and Coho salmon hybrids linked to habitat and climatic changes on Vancouver Island, British Columbia. Ecol. Evol. 2021, 11, 16874–16889. [Google Scholar] [CrossRef]
- Yáñez, J.M.; Naswa, S.; López, M.E.; Bassini, L.; Correa, K.; Gilbey, J.; Bernatchez, L.; Norris, A.; Neira, R.; Lhorente, J.P.; et al. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): Validation in wild and farmed American and European populations. Mol. Ecol. Resour. 2016, 16, 1002–1011. [Google Scholar] [CrossRef]
- Bosworth, B.; Waldbieser, G.; Garcia, A.; Tsuruta, S.; Lourenco, D. Heritability and response to selection for carcass weight and growth in the Delta Select strain of channel catfish, Ictalurus punctatus. Aquaculture 2020, 515, 734507. [Google Scholar] [CrossRef]
- Bernard, M.; Dehaullon, A.; Gao, G.; Paul, K.; Lagarde, H.; Charles, M.; Prchal, M.; Danon, J.; Jaffrelo, L.; Poncet, C.; et al. Development of a High-Density 665 K SNP Array for Rainbow Trout Genome-Wide Genotyping. Front. Genet. 2022, 13, 941340. [Google Scholar] [CrossRef]
- Engle, C.R.; Hanson, T.; Kumar, G. Economic history of U.S. catfish farming: Lessons for growth and development of aquaculture. Aquac. Econ. Manag. 2022, 26, 1–35. [Google Scholar] [CrossRef]
- Vu, N.T.; Van Sang, N.; Phuc, T.H.; Vuong, N.T.; Nguyen, N.H. Genetic evaluation of a 15–year selection program for high growth in striped catfish Pangasianodon hypophthalmus. Aquaculture 2019, 509, 221–226. [Google Scholar] [CrossRef]
- Imron, I.; Iswanto, B.; Suparapto, R.; Marnis, H. Development of Genetically Improved Farmed African Catfish, Clarias gariepinus; A Review and Lessons Learned from Indonesian Fish Breeding Program. IOP Conf. Ser. Earth Environ. Sci. 2020, 593, 012032. [Google Scholar] [CrossRef]
- Guo, X.-Z.; Chen, H.-M.; Wang, A.-B.; Qian, X.-Q. Population genetic structure of the yellow catfish (Pelteobagrus fulvidraco) in China inferred from microsatellite analyses: Implications for fisheries management and breeding. J. World. Aquacult. Soc. 2022, 53, 174–191. [Google Scholar] [CrossRef]
- Zhang, L.; Su, B.; Huang, J.; Zhang, L.; Chang, Y.; Hu, G. Fine Mapping of QTLs for Alkaline Tolerance in Crucian Carp (Carassius auratus) Using Genome-Wide SNP Markers. Genes 2024, 15, 751. [Google Scholar] [CrossRef] [PubMed]
- Rasal, K.D.; Kumar, P.V.; Asgolkar, P.; Shinde, S.; Dhere, S.; Siriyappagouder, P.; Sonwane, A.; Brahmane, M.; Sundaray, J.K.; Goswami, M.; et al. Single-Nucleotide Polymorphism (SNP) array: An array of hope for genetic improvement of aquatic species and fisheries management. Blue Biotechnol. 2024, 1, 3. [Google Scholar] [CrossRef]
- Holborn, M.K.; Rochus, C.M.; Ang, K.P.; Elliott, J.A.K.; Leadbeater, S.; Powell, F.; Boulding, E.G. Family-based genome wide association analysis for salmon lice (Lepeophtheirus salmonis) resistance in North American Atlantic salmon using a 50 K SNP array. Aquaculture 2019, 511, 734215. [Google Scholar] [CrossRef]
- Harzing.com Research in International Management. Publish or Perish. Available online: https://harzing.com/resources/publish-or-perish (accessed on 18 May 2025).
- Heller, R.; Nursyifa, C.; Garcia-Erill, G.; Salmona, J.; Chikhi, L.; Meisner, J.; Korneliussen, T.S.; Albrechtsen, A. A reference-free approach to analyse RADseq data using standard next generation sequencing toolkits. Mol. Ecol. Resour. 2021, 21, 1085–1097. [Google Scholar] [CrossRef]
- Kumar, K.R.; Cowley, M.J.; Davis, R.L. Next-Generation Sequencing and Emerging Technologies. Semin. Thromb. Hemost. 2024, 50, 1026–1038. [Google Scholar] [CrossRef]
- Lisachov, A.; Nguyen, D.H.M.; Panthum, T.; Ahmad, S.F.; Singchat, W.; Ponjarat, J.; Jaisamut, K.; Srisapoome, P.; Duengkae, P.; Hatachote, S.; et al. Emerging importance of bighead catfish (Clarias macrocephalus) and north African catfish (C. gariepinus) as a bioresource and their genomic perspective. Aquaculture 2023, 573, 739585. [Google Scholar] [CrossRef]
- Mallorie, T.-L.; Julien, P.; William, P.; Alexandra, C.; Isabelle, G.; Gabriela, M.; Vicky, A.; Hernandez, C.; Vincent, B.; Joëlle, T.; et al. Validation of a 60K SNP chip for caribou (Rangifer tarandus) for use in wildlife forensics, conservation, and management. Forensic Sci. Int. Anim. Environ. 2024, 6, 100093. [Google Scholar] [CrossRef]
- Minias, P.; Dunn, P.O.; Whittingham, L.A.; Johnson, J.A.; Oyler-McCance, S.J. Evaluation of a Chicken 600K SNP genotyping array in non–model species of grouse. Sci. Rep. 2019, 9, 6407. [Google Scholar] [CrossRef]
- Ogunbawo, A.R.; Mulim, H.A.; Campos, G.S.; Schinckel, A.P.; Oliveira, H.R.D. Tailoring Genomic Selection for Bos taurus indicus: A Comprehensive Review of SNP Arrays and Reference Genomes. Genes 2024, 15, 1495. [Google Scholar] [CrossRef]
- Bixley, M.; Ward, J.; Brauning, R.; Archer, J.; Fisher, P. Building a deer SNP chip. Proc. Assoc. Advmt. Anim. Breed. Genet. 2009, 18, 300–303. [Google Scholar]
- Fountain, E.D.; Zhou, L.-C.; Karklus, A.; Liu, Q.-X.; Meyers, J.; Fontanilla, I.K.C.; Rafael, E.F.; Yu, J.-Y.; Zhang, Q.; Zhu, X.-L.; et al. Cross-Species Application of Illumina iScan Microarrays for Cost-Effective, High-Throughput SNP Discovery. Front. Ecol. Environ. 2021, 9, 629252. [Google Scholar] [CrossRef]
- Miller, J.M.; Kijas, J.W.; Heaton, M.P.; McEwan, J.C.; Coltman, D.W. Consistent divergence times and allele sharing measured from cross–species application of SNP chips developed for three domestic species. Mol. Ecol. Resour. 2012, 12, 1145–1150. [Google Scholar] [CrossRef]
- Liu, S.; Sun, L.; Li, Y.; Sun, F.; Jiang, Y.; Zhang, Y.; Zhang, J.; Feng, J.; Kaltenboeck, L.; Kucuktas, H.; et al. Development of the catfish 250K SNP array for genome–wide association studies. BMC Res. Notes 2014, 7, 135. [Google Scholar] [CrossRef]
- Zeng, Q.; Fu, Q.; Li, Y.; Waldbieser, G.; Bosworth, B.; Liu, S.; Yang, Y.; Bao, L.; Yuan, Z.; Li, N.; et al. Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence. Sci. Rep. 2017, 7, 40347. [Google Scholar] [CrossRef]
- Minh–Thu, P.; Sang, H.M.; Thao, L.T.T.; Hieu, N.M.; Tram, D.T.T.; Ngoc, D.T.H.; Mien, P.T. A SWOT Analysis of Aquaculture for Sustainable Management in Coastal Waters of Ba Ria—Vung Tau Province, Vietnam. Asian J. Fish. Aquat. Res. 2023, 25, 127–138. [Google Scholar] [CrossRef]
- Huang, P.; Guo, W.; Wang, Y.; Xiong, Y.; Ge, S.; Gong, G.; Lin, Q.; Xu, Z.; Gui, J.-F.; Mei, J. Genome–wide association study reveals the genetic basis of growth trait in yellow catfish with sexual size dimorphism. Genomics 2022, 114, 110380. [Google Scholar] [CrossRef]
- DataIntelo. Single Nucleotide Polymorphism (SNP) Genotyping and Analysis Market. Available online: https://dataintelo.com/report/global-single-nucleotide-polymorphism-snp-genotyping-and-analysis-market (accessed on 18 May 2025).
- Ozerov, M.Y.; Flajšhans, M.; Noreikiene, K.; Vasemägi, A.; Gross, R. Draft Genome Assembly of the Freshwater Apex Predator Wels Catfish (Silurus glanis) Using Linked-Read Sequencing. G3-Genes Genom. Genet. 2020, 10, 3897–3906. [Google Scholar] [CrossRef] [PubMed]
- Global Growth Insights. Single Nucletide Polymorphism (SNP) Genotyping and Analysis Market. Available online: https://www.globalgrowthinsights.com/market-reports/single-nucleotide-polymorphism-snp-genotyping-and-analysis-market-111896 (accessed on 18 May 2025).
- Wang, H.; Su, B.; Butts, I.A.E.; Dunham, R.A.; Wang, X. Chromosome-level assembly and annotation of the blue catfish Ictalurus furcatus, an aquaculture species for hybrid catfish reproduction, epigenetics, and heterosis studies. GigaScience 2022, 11, giac070. [Google Scholar] [CrossRef] [PubMed]
- Sae-Lim, P.; Kause, A.; Mulder, H.A.; Olesen, I. Breeding and Genetics Symposium: Climate change and selective breeding in aquaculture. J. Anim. Sci. 2017, 95, 1801–1812. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, T.; Wang, X.; Yang, Y.; Wu, C.; Liu, S.; Bao, L.; Li, N.; Yuan, Z.; Jin, Y.; et al. Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish. Mol. Genet. Genom. 2018, 293, 1365–1378. [Google Scholar] [CrossRef]
- Wang, J.; Su, B.; Xing, D.; Bruce, T.J.; Li, S.; Bern, L.; Shang, M.; Johnson, A.; Simora, R.M.C.; Coogan, M.; et al. Generation of Eco-Friendly and Disease-Resistant Channel Catfish (Ictalurus punctatus) Harboring the Alligator Cathelicidin Gene via CRISPR/Cas9 Engineering. Engineering 2024, 39, 273–286. [Google Scholar] [CrossRef]
- Wunderlich, S.; Gatto, K.A. Consumer Perception of Genetically Modified Organisms and Sources of Information. Adv. Nutr. 2015, 6, 842–851. [Google Scholar] [CrossRef]
- Food Standards Agency. Consumer Perceptions of Genome Edited Food. Available online: https://www.food.gov.uk/research/behaviour-and-perception/consumer-perceptions-of-genome-edited-food (accessed on 18 May 2025).
- Garcia, A.L.S.; Bosworth, B.; Waldbieser, G.; Misztal, I.; Tsuruta, S.; Lourenco, D.A.L. Development of genomic predictions for harvest and carcass weight in channel catfish. Genet. Sel. Evol. 2018, 50, 66. [Google Scholar] [CrossRef]
- Schedel, F.D.B.; Chakona, A.; Sidlauskas, B.L.; Popoola, M.O.; Usimesa Wingi, N.; Neumann, D.; Vreven, E.J.W.M.N.; Schliewen, U.K. New phylogenetic insights into the African catfish families Mochokidae and Austroglanididae. J. Fish. Biol. 2022, 100, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- FEAP. Annual Report 2024. Available online: https://online.fliphtml5.com/msgin/cvco/ (accessed on 18 May 2025).
- Haubrock, P.J.; Copp, G.H.; Johović, I.; Balzani, P.; Inghilesi, A.F.; Nocita, A.; Tricarico, E. North American channel catfish, Ictalurus punctatus: A neglected but potentially invasive freshwater fish species? Biol. Invasions 2021, 23, 1563–1576. [Google Scholar] [CrossRef]
- Pasch, J.; Palm, H.W. Economic Analysis and Improvement Opportunities of African Catfish (Clarias gariepinus) Aquaculture in Northern Germany. Sustainability 2021, 13, 13569. [Google Scholar] [CrossRef]
- Encina, L.; Rodríguez-Ruiz, A.; Orduna, C.; Cid, J.R.; Granado-Lorencio, C. Impact of invasive European catfish (Silurus glanis) on the fish community of Torrejón reservoir (Central Spain) during an 11–year monitoring study. Biol. Invasions 2024, 26, 745–756. [Google Scholar] [CrossRef]
- Kappas, I.; Vittas, S.; Pantzartzi, C.N.; Drosopoulou, E.; Scouras, Z.G. A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes). PLoS ONE 2016, 11, e0166988. [Google Scholar] [CrossRef] [PubMed]
- CABI. Ictalurus punctatus (Channel Catfish). Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.79127 (accessed on 18 May 2025).
- Leary, J.L. Description of San Marcos Station with Some of the Methods of Propogation in use at That Station. Trans. Am. Fish. Soc. 1908, 37, 75–81. [Google Scholar] [CrossRef]
- CABI. Ictalurus Furcatus (Blue Catfish). Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.79120 (accessed on 18 May 2025).
- Hilling, C.D.; Jiao, Y.; Bunch, A.J.; Greenlee, R.S.; Schmitt, J.D.; Orth, D.J. Growth Dynamics of Invasive Blue Catfish in Four Subestuaries of the Chesapeake Bay, USA. N. Am. J. Fish. Manag. 2021, 41, S167–S179. [Google Scholar] [CrossRef]
- Pouyaud, L.; Sudarto; Paradis, E. The phylogenetic structure of habitat shift and morphological convergence in Asian Clarias (Teleostei, Siluriformes: Clariidae). J. Zool. Syst. Evol. Res. 2009, 47, 344–356. [Google Scholar] [CrossRef]
- Mbanga, B.; van Dyk, C.; Maina, J.N. Morphometric and morphological study of the respiratory organs of the bimodally-breathing African sharptooth catfish (Clarias gariepinus): Burchell (1822). Zoology 2018, 130, 6–18. [Google Scholar] [CrossRef]
- Lisachov, A.; Panthum, T.; Dedukh, D.; Singchat, W.; Ahmad, S.F.; Wattanadilokcahtkun, P.; Thong, T.; Srikampa, P.; Noito, K.; Rasoarahona, R.; et al. Genome-wide sequence divergence of satellite DNA could underlie meiotic failure in male hybrids of bighead catfish and North African catfish (Clarias, Clariidae). Genomics 2024, 116, 110868. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Z.; Zhou, Z.; Yang, J.; Deng, Y.; Bai, Y.; Pu, F.; Zhou, T.; Xu, P. Chromosome-level assembly and gene annotation of Decapterus maruadsi genome using Nanopore and Hi-C technologies. Sci. Data 2024, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Köprücü, K.; Yonar, S.M.; Köprücü, S.; Yonar, M.E. Effect of different stocking densities on growth, oxidative stress, antioxidant enzymes, and hematological and immunological values of European catfish (Silurus glanis L.; 1758). Aquac. Int. 2024, 32, 2957–2973. [Google Scholar] [CrossRef]
- Bergström, K.; Berggren, H.; Nordahl, O.; Koch–Schmidt, P.; Tibblin, P.; Larsson, P. Seasonal and Daily Movement Patterns by Wels Catfish (Silurus glanis) at the Northern Fringe of Its Distribution Range. Fishes 2024, 9, 280. [Google Scholar] [CrossRef]
- Cucherousset, J.; Horky, P.; Slavík, O.; Ovidio, M.; Arlinghaus, R.; Boulêtreau, S.; Britton, R.; García-Berthou, E.; Santoul, F. Ecology, behaviour and management of the European catfish. Rev. Fish. Biol. Fish. 2018, 28, 177–190. [Google Scholar] [CrossRef]
- Lyach, R.; Remr, J. Changes in recreational catfish Silurus glanis harvest rates between years 1986–2017 in Central Europe. J. Appl. Ichth. 2019, 35, 1094–1104. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, Z.; Zhang, X.; Zheng, X.; Li, J.; Jiang, Y.; Kuang, Y.; Zhang, Y.; Feng, J.; Li, C.; et al. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genom. 2014, 15, 307. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, B.; Ke, Q.; Zhao, J.; Pu, F.; Wu, Y.; Chen, L.; Zhou, Z.; Bai, Y.; Pan, Y.; et al. Development and Evaluation of a High-Throughput Single-Nucleotide Polymorphism Array for Large Yellow Croaker (Larimichthys crocea). Front. Genet. 2020, 11, 571751. [Google Scholar] [CrossRef]
- Salem, M.; Al-Tobasei, R.; Ali, A.; Lourenco, D.; Gao, G.; Palti, Y.; Kenney, B.; Leeds, T.D. Genome-Wide Association Analysis with a 50K Transcribed Gene SNP-Chip Identifies QTL Affecting Muscle Yield in Rainbow Trout. Front. Genet. 2018, 9, 387. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Qin, Z.; Geng, X.; Bao, L.; Kaltenboeck, L.; Kucuktas, H.; Dunham, R.; Liu, Z. High–density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish. Anim. Genet. 2016, 47, 81–90. [Google Scholar] [CrossRef]
- Jin, Y.; Zhou, T.; Geng, X.; Liu, S.; Chen, A.; Yao, J.; Jiang, C.; Tan, S.; Su, B.; Liu, Z. A genome-wide association study of heat stress-associated SNPs in catfish. Anim. Genet. 2017, 48, 233–236. [Google Scholar] [CrossRef]
- Li, N.; Zhou, T.; Geng, X.; Jin, Y.; Wang, X.; Liu, S.; Xu, X.; Gao, D.; Li, Q.; Liu, Z. Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Mol. Genet. Genom. 2018, 293, 587–599. [Google Scholar] [CrossRef]
- Geng, X.; Liu, S.; Yao, J.; Bao, L.; Zhang, J.; Li, C.; Wang, R.; Sha, J.; Zeng, P.; Zhi, D.; et al. A Genome–Wide Association Study Identifies Multiple Regions Associated with Head Size in Catfish. G3-Genes Genom. Genet. 2016, 6, 3389–3398. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, J.; Feng, H.; Jiang, L. GRAMMAR-Lambda Delivers Efficient Understanding of the Genetic Basis for Head Size in Catfish. Biology 2025, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Waldbieser, G.C.; Liu, S.; Yuan, Z.; Older, C.E.; Gao, D.; Shi, C.; Bosworth, B.G.; Li, N.; Bao, L.; Kirby, M.A.; et al. Reference genomes of channel catfish and blue catfish reveal multiple pericentric chromosome inversions. BMC Biol. 2023, 21, 67. [Google Scholar] [CrossRef] [PubMed]
- Pertoldi, C.; Wójcik, J.; Tokarska, M.; Kawałko, A.; Kristensen, T.; Loeschcke, V.; Gregersen, V.; Coltman, D.; Wilson, G.; Randi, E.; et al. Genome variability in European and American bison detected using the BovineSNP50 BeadChip. Conserv. Genet. 2010, 11, 627–634. [Google Scholar] [CrossRef]
- Haynes, G.D.; Latch, E.K. Identification of Novel Single Nucleotide Polymorphisms (SNPs) in Deer (Odocoileus spp.) Using the BovineSNP50 BeadChip. PLoS ONE 2012, 7, e36536. [Google Scholar] [CrossRef]
- Kharzinova, V.R.; Sermyagin, A.A.; Gladyr, E.A.; Okhlopkov, I.M.; Brem, G.; Zinovieva, N.A. A Study of Applicability of SNP Chips Developed for Bovine and Ovine Species to Whole-Genome Analysis of Reindeer Rangifer tarandus. J. Hered. 2015, 106, 758–761. [Google Scholar] [CrossRef]
- Krivoruchko, A.; Likhovid, A.; Kanibolotskaya, A.; Saprikina, T.; Safaryan, E.; Yatsyk, O. Genome-Wide Search for Associations with Meat Production Parameters in Karachaevsky Sheep Breed Using the Illumina BeadChip 600 K. Genes 2023, 14, 1288. [Google Scholar] [CrossRef]
- Lashmar, S.; Visser, C.; van Marle-Koster, E. Validation of the 50k Illumina goat SNP chip in the South African Angora goat. S. Afr. J. Anim. Sci. 2015, 45, 56–59. [Google Scholar] [CrossRef]
- Borquis, R.R.A.; Baldi, F.; de Camargo, G.M.F.; Cardoso, D.F.; Santos, D.J.A.; Lugo, N.H.; Sargolzaei, M.; Schenkel, F.S.; Albuquerque, L.G.; Tonhati, H. Water buffalo genome characterization by the Illumina BovineHD BeadChip. Genet. Mol. Res. 2014, 13, 4202–4215. [Google Scholar] [CrossRef]
- Jia, C.; Wang, H.; Li, C.; Wu, X.; Zan, L.; Ding, X.; Guo, X.; Bao, P.; Pei, J.; Chu, M.; et al. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genom. 2019, 20, 376. [Google Scholar] [CrossRef]
- Balog, K.; Mizeranschi, A.E.; Wanjala, G.; Sipos, B.; Kusza, S.; Bagi, Z. Application potential of chicken DNA chip in domestic pigeon species—Preliminary results. Saudi J. Biol. Sci. 2023, 30, 103594. [Google Scholar] [CrossRef]
- Drywa, A.; Poćwierz-Kotus, A.; Wąs, A.; Dobosz, S.; Kent, M.P.; Lien, S.; Bernaś, R.; Wenne, R. Genotyping of two populations of Southern Baltic Sea trout Salmo trutta m. Trutta using an Atlantic salmon derived SNP–array. Mar. Genom. 2013, 9, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-Y.; Zhao, Z.-X.; Xu, J.; Xu, P.; Bai, Q.-L.; Yang, S.-Y.; Jiang, L.-K.; Chen, B.-H. Population genetic analysis of aquaculture salmonid populations in China using a 57K rainbow trout SNP array. PLoS ONE 2018, 13, e0202582. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kwak, J.R.; Han, J.Y.; Park, J.B.; Kang, J.Y.; Lee, W.-J. Cross-species Application of a SNP array: Application for Analysis of Genetic Diversity in Chum Salmon (Oncorhynchus keta) Populations. Genet. Aquat. Org. 2023, 7, GA676. Available online: https://www.genaqua.org/abstract.php?lang=enandid=81 (accessed on 18 May 2025). [CrossRef]
- Peñaloza, C.; Manousaki, T.; Franch, R.; Tsakogiannis, A.; Sonesson, A.K.; Aslam, M.L.; Allal, F.; Bargelloni, L.; Houston, R.D.; Tsigenopoulos, C.S. Development and testing of a combined species SNP array for the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata). Genomics 2021, 113, 2096–2107. [Google Scholar] [CrossRef]
- FAO. Fishery and Aquaculture Statistics—Yearbook 2021. Available online: https://openknowledge.fao.org/items/707ea9ae-ed5a-4ad9-a551-ae4eb78b959d (accessed on 18 May 2025).
- Szabo, T.; Radics, F.; Borsos, A.; Urbányi, B. Comparison of the results from induced breeding of European catfish (Silurus glanis L.) broodstock reared in an intensive system or in pond conditions. Turk. J. Fish. Aquat. Sci. 2015, 15, 385–390. [Google Scholar] [CrossRef]
- Boudry, P.; Allal, F.; Aslam, M.L.; Bargelloni, L.; Bean, T.P.; Brard-Fudulea, S.; Brieuc, M.S.O.; Calboli, F.C.F.; Gilbey, J.; Haffray, P.; et al. Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries. Aquac. Rep. 2021, 20, 100700. [Google Scholar] [CrossRef]
- Wang, H.; Bruce, T.J.; Su, B.; Li, S.; Dunham, R.A.; Wang, X. Environment-Dependent Heterosis and Transgressive Gene Expression in Reciprocal Hybrids between the Channel Catfish Ictalurus punctatus and the Blue Catfish Ictalurus furcatus. Biology 2022, 11, 117. [Google Scholar] [CrossRef]
- Kriaridou, C.; Tsairidou, S.; Houston, R.D.; Robledo, D. Genomic Prediction Using Low Density Marker Panels in Aquaculture: Performance Across Species, Traits, and Genotyping Platforms. Front. Genet. 2020, 11, 124. [Google Scholar] [CrossRef]
- Song, H.; Dong, T.; Yan, X.; Wang, W.; Tian, Z.; Sun, A.; Dong, Y.; Zhu, H.; Hu, H. Genomic selection and its research progress in aquaculture breeding. Rev. Aquac. 2023, 15, 274–291. [Google Scholar] [CrossRef]
- Nguyen, N.H. Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: Achievements, lessons and challenges. Fish Fish. 2016, 17, 483–506. [Google Scholar] [CrossRef]
- Houston, R.D.; Macqueen, D.J. Atlantic salmon (Salmo salar L.) genetics in the 21st century: Taking leaps forward in aquaculture and biological understanding. Anim. Genet. 2019, 50, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Wellcome Sanger Institute. Genomics Gets Faster, Cheaper, and More Accurate. Available online: https://sangerinstitute.blog/2024/02/29/genomics-gets-faster-cheaper-and-more-accurate/ (accessed on 18 May 2025).
- Larson, W.A.; Palti, Y.; Gao, G.; Warheit, K.I.; Seeb, J.E. Rapid discovery of SNPs that differentiate hatchery steelhead trout from ESA–listed natural–origin steelhead trout using a 57K SNP array. Can. J. Fish. Aquat. Sci. 2018, 75, 1160–1168. [Google Scholar] [CrossRef]
- Wringe, B.F.; Anderson, E.C.; Jeffery, N.W.; Stanley, R.R.; Bradbury, I.R. Development and evaluation of SNP panels for the detection of hybridization between wild and escaped Atlantic salmon (Salmo salar) in the western Atlantic. Can. J. Fish. Aquat. Sci. 2019, 76, 695–704. [Google Scholar] [CrossRef]
- Tarján, Z.L.; Doszpoly, A.; Eszterbauer, E.; Benkő, M. Partial genetic characterisation of a novel alloherpesvirus detected by PCR in a farmed wels catfish (Silurus glanis). Acta Vet. Hung. 2022, 70, 321–327. [Google Scholar] [CrossRef]
- Johnston, I.A.; Kent, M.P.; Boudinot, P.; Looseley, M.; Bargelloni, L.; Faggion, S.; Merino, G.A.; Ilsley, G.R.; Bobe, J.; Tsigenopoulos, C.S.; et al. Advancing fish breeding in aquaculture through genome functional annotation. Aquaculture 2024, 583, 740589. [Google Scholar] [CrossRef]
- Kasihmuddin, S.M.; Cob, Z.C.; Noor, N.M.; Das, S.K. Effect of different temperature variations on the physiological state of catfish species: A systematic review. Fish. Physiol. Biochem. 2024, 50, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Dao Minh, H.; Duong Thuy, Y.; Pham Thanh, L.; Bui Minh, T.; Vo Nam, S.; Do Thi Thanh, H.; Bui Thi Bich, H.; Nguyen Thi Ngoc, T.; Dang Quang, H.; Kestemont, P.; et al. Selective breeding of saline–tolerant striped catfish (Pangasianodon hypophthalmus) for sustainable catfish farming in climate vulnerable Mekong Delta, Vietnam. Aquac. Rep. 2022, 25, 101263. [Google Scholar] [CrossRef]
- Berseth, V. Should we adapt nature to climate change? Weighing the risks of selective breeding in Pacific salmon. Environ. Sociol. 2023, 9, 20–30. [Google Scholar] [CrossRef]
- Sneddon, L.U.; Braithwaite, V.A.; Gentle, M.J. Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 1115–1121. [Google Scholar] [CrossRef]
- Farstad, W. Ethics in animal breeding. Reprod. Domest. Anim. 2018, 53, 4–13. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, X.; Zhou, T.; Jin, Y.; Tan, S.; Jiang, C.; Geng, X.; Li, N.; Shi, H.; Zeng, Q.; et al. Genome-Wide Association Study Reveals Multiple Novel QTL Associated with Low Oxygen Tolerance in Hybrid Catfish. Mar. Biotechnol. 2017, 19, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Hardman, M.; Schaefer, S. Phylogenetic Relationships among Bullhead Catfishes of the Genus Ameiurus (Siluriformes: Ictaluridae). Copeia 2003, 2003, 20–33. [Google Scholar] [CrossRef]
- vonHoldt, B.M.; Pollinger, J.P.; Earl, D.A.; Parker, H.G.; Ostrander, E.A.; Wayne, R.K. Identification of recent hybridization between gray wolves and domesticated dogs by SNP genotyping. Mamm. Genome 2013, 24, 80–88. [Google Scholar] [CrossRef]
- Miller, J.M.; Poissant, J.; Kijas, J.W.; Coltman, D.W.; International Sheep Genomics Consortium. A genome–wide set of SNPs detects population substructure and long range linkage disequilibrium in wild sheep. Mol. Ecol. Resour. 2011, 11, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Ogden, R.; Baird, J.; Senn, H.; McEwing, R. The use of cross-species genome-wide arrays to discover SNP markers for conservation genetics: A case study from Arabian and scimitar-horned oryx. Conserv. Genet. Resour. 2012, 4, 471–473. [Google Scholar] [CrossRef]
- Bertolini, F.; Elbeltagy, A.; Rothschild, M. Evaluation of the application of bovine, ovine and caprine SNP chips to dromedary genotyping. Livest. Res. Rural. Dev. 2017, 29, 1–7. [Google Scholar]
- More, M.; Gutiérrez, G.; Rothschild, M.; Bertolini, F.; Ponce de León, F.A. Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip. Front. Genet. 2019, 10, 361. [Google Scholar] [CrossRef]
- McCue, M.E.; Bannasch, D.L.; Petersen, J.L.; Gurr, J.; Bailey, E.; Binns, M.M.; Distl, O.; Guérin, G.; Hasegawa, T.; Hill, E.W.; et al. A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies. PLoS Genet. 2012, 8, e1002451. [Google Scholar] [CrossRef]
- Hoffman, J.I.; Thorne, M.A.S.; McEwing, R.; Forcada, J.; Ogden, R. Cross-Amplification and Validation of SNPs Conserved over 44 Million Years between Seals and Dogs. PLoS ONE 2013, 8, e68365. [Google Scholar] [CrossRef]
- Linsky, R.; Wagner, R.; Djojoasmoro, R.; Lorenz, J.; Galdikas, B. Cross Species use of Human Microarray Genotyping Technology for Bornean Orangutan (Pongo pygmaeus) SNP Discovery. Hayati J. Biosci. 2021, 29, 62–75. [Google Scholar] [CrossRef]
- Boulêtreau, S.; Santoul, F. The end of the mythical giant catfish. Ecosphere 2016, 7, e01606. [Google Scholar] [CrossRef]
- Fishing World Records. Clarias gariepinus (Sharptooth Catfish). Available online: http://www.fishing-worldrecords.com/scientificname/Clarias%20gariepinus/show (accessed on 18 May 2025).
- IGFA. Catfish, Channel (Ictalurus Punctatus). Available online: https://igfa.org/member-services/world-record/common-name/Catfish,%20channel (accessed on 18 May 2025).
- Ozouf-Costaz, C.; Teugels, G.G.; Legendre, M. Karyological analysis of three strains of the African catfish, Clarias gariepinus (Clariidae), used in aquaculture. Aquaculture 1990, 87, 271–277. [Google Scholar] [CrossRef]
- Zheng, S.; Tao, H.; Song, Y.; Li, M.; Yang, H.; Li, J.; Yan, H.; Sheraliev, B.; Tao, W.; Peng, Z.; et al. The origin, evolution, and translocation of sex chromosomes in Silurus catfish mediated by transposons. BMC Biol. 2025, 23, 54. [Google Scholar] [CrossRef] [PubMed]
- Cronin, M.A.; MacNeil, M.D.; Vu, N.; Leesburg, V.; Blackburn, H.D.; Derr, J.N. Genetic Variation and Differentiation of Bison (Bison bison) Subspecies and Cattle (Bos taurus) Breeds and Subspecies. J. Hered. 2013, 104, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Gates, C.C.; Freese, C.H.; Gogan, P.J.P.; Kotzman, M. (Eds.) American Bison: Status Survey and Conservation Guidelines 2010; IUCN: Gland, Switzerland, 2010; pp. 1–25. [Google Scholar]
- Kloch, M.; Życzyński, A.; Olech, W.; Nowak-Życzyńska, Z. Cytogenetic study of the Bison bonasus; I: Identification of heterochromatic regions and NORs in European bison karyotype and comparison with domestic cattle (Bos taurus). Caryologia 2021, 73, 3–9. [Google Scholar] [CrossRef]
- MacEachern, S.; McEwan, J.; Goddard, M. Phylogenetic reconstruction and the identification of ancient polymorphism in the Bovini tribe (Bovidae, Bovinae). BMC Genom. 2009, 10, 177. [Google Scholar] [CrossRef]
- Oppenheimer, J.; Rosen, B.D.; Heaton, M.P.; Vander Ley, B.L.; Shafer, W.R.; Schuetze, F.T.; Stroud, B.; Kuehn, L.A.; McClure, J.C.; Barfield, J.P.; et al. A Reference Genome Assembly of American Bison, Bison bison bison. J. Hered. 2021, 112, 174–183. [Google Scholar] [CrossRef]
- Ying, K.L.; Peden, D.G. Chromosomal homology of wood bison and plains bison. Can. J. Zool. 1977, 55, 1759–1762. [Google Scholar] [CrossRef]
- NCBI—National Center for Biotechnology Information. Genome. Available online: https://www.ncbi.nlm.nih.gov/datasets/genome/ (accessed on 18 May 2025).
- Weldenegodguad, M.; Pokharel, K.; Ming, Y.; Honkatukia, M.; Peippo, J.; Reilas, T.; Røed, K.H.; Kantanen, J. Genome sequence and comparative analysis of reindeer (Rangifer tarandus) in northern Eurasia. Sci. Rep. 2020, 10, 8980. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173. [Google Scholar] [CrossRef]
- Stark, S.; Horstkotte, T.; Kumpula, J.; Olofsson, J.; Tømmervik, H.; Turunen, M. The ecosystem effects of reindeer (Rangifer tarandus) in northern Fennoscandia: Past, present and future. Perspect. Plant Ecol. Evol. Syst. 2023, 58, 125716. [Google Scholar] [CrossRef]
- Mohandesan, E.; Fitak, R.R.; Corander, J.; Yadamsuren, A.; Chuluunbat, B.; Abdelhadi, O.; Raziq, A.; Nagy, P.; Stalder, G.; Walzer, C.; et al. Mitogenome Sequencing in the Genus Camelus Reveals Evidence for Purifying Selection and Long–term Divergence between Wild and Domestic Bactrian Camels. Sci. Rep. 2017, 7, 9970. [Google Scholar] [CrossRef]
- Sun, N.; Ma, X.-Y.; Shi, G.-H.; Yang, X.-H.; Li, W.; Feng, C.-G.; Mi, D.; Li, G.-G.; Lu, J.-Q. Chromosome-level genome provides insight into the evolution and conservation of the threatened goral (Naemorhedus goral). BMC Genom. 2024, 25, 92. [Google Scholar] [CrossRef]
- Mintoo, A.A.; Zhang, H.; Chen, C.; Moniruzzaman, M.; Deng, T.; Anam, M.; Emdadul Huque, Q.M.; Guang, X.; Wang, P.; Zhong, Z.; et al. Draft genome of the river water buffalo. Ecol. Evol. 2019, 9, 3378–3388. [Google Scholar] [CrossRef]
- Claramunt, S.; Cracraft, J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci. Adv. 2015, 1, e1501005. [Google Scholar] [CrossRef]
- Mendonça, M.A.C.; Carvalho, C.R.; Clarindo, W.R. DNA amount of chicken chromosomes resolved by image cytometry. Caryologia 2016, 69, 201–206. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- Persons, N.W.; Hosner, P.A.; Meiklejohn, K.A.; Braun, E.L.; Kimball, R.T. Sorting out relationships among the grouse and ptarmigan using intron, mitochondrial, and ultra-conserved element sequences. Mol. Phylogenet. Evol. 2016, 98, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.D.; Bunch, T.D. The evolutionary implications of chromosome banding pattern homologies in the bird order Galliformes. Cytogenet. Cell. Genet. 2008, 34, 136–148. [Google Scholar] [CrossRef]
- Colihueque, N.; Iturra, P.; Estay, F.; Díaz, N.F. Diploid chromosome number variations and sex chromosome polymorphism in five cultured strains of rainbow trout (Oncorhynchus mykiss). Aquaculture 2001, 198, 63–77. [Google Scholar] [CrossRef]
- Ojima, Y.; Maeki, K.; Takayama, S.; Nogusa, S. A cytotaxonomic study on the Salmonidae. Nucleus 1963, 6, 91–98. [Google Scholar]
- Tong, G.; Xue, S.; Geng, L.; Zhou, Y.; Yin, J.; Sun, Z.; Xu, H.; Zhang, Y.; Han, Y.; Kuang, Y. First high-resolution genetic linkage map of taimen (Hucho taimen) and its application in QTL analysis of growth-related traits. Aquaculture 2020, 529, 735680. [Google Scholar] [CrossRef]
Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|
Established technological framework | Cost of implementation | Decreasing costs | Emergence of novel diseases |
Demonstrated genetic gains | Limited genomic resources | Development of species-specific SNP arrays | Environmental variability |
Increased productivity and profitability | Data analysis and interpretation | Integration with advanced technologies | Regulatory hurdles |
Research-driven innovation | Genetic diversity concerns | Increased demand for sustainability | Public perception |
Wild Catfish (n = 192) | Backcross1 (n = 192) | Backcross3 (n = 192) | Blue Catfish1 (n = 10) | Blue Catfish2 (n = 10) | Brown Bullhead Catfish (n = 10) | White Catfish (n = 10) | |
---|---|---|---|---|---|---|---|
SNPs converted | 204,437 (81.7%) | 198,583 (79.4%) | 218,440 (87.3%) | 190,867 (76.3%) | 193,039 (77.2%) | 126,076 (50.4%) | 129,716 (51.9%) |
Polymorphic SNPs | 137,459 (55.0%) | 130,685 (52.3%) | 156,357 (62.5%) | 19,549 (7.8%) | 9684 (3.9%) | 12,649 (5.1%) | 12,833 (5.1%) |
Avg. SNP call rate | 99.4% | 99.7% | 99.8% | n/a | n/a | n/a | n/a |
250K Catfish Array SNPs | 690K Catfish Array SNPs | |||
---|---|---|---|---|
Channel catfish | 182,116 | 71.6% | 581,002 | 84.10% |
Blue catfish | 31,392 | 12.6% | 44,694 | 6.47% |
Inter-specific | 39,605 | 15.8% | 64,966 | 9.40% |
Total SNPs | 250,113 | 100% | 690,662 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegedűs, B.; Bagi, Z.; Kusza, S. Navigating the Genetic Landscape: Investigating the Opportunities and Risks of Cross-Species SNP Array Application in Catfish. Genes 2025, 16, 717. https://doi.org/10.3390/genes16060717
Hegedűs B, Bagi Z, Kusza S. Navigating the Genetic Landscape: Investigating the Opportunities and Risks of Cross-Species SNP Array Application in Catfish. Genes. 2025; 16(6):717. https://doi.org/10.3390/genes16060717
Chicago/Turabian StyleHegedűs, Bettina, Zoltán Bagi, and Szilvia Kusza. 2025. "Navigating the Genetic Landscape: Investigating the Opportunities and Risks of Cross-Species SNP Array Application in Catfish" Genes 16, no. 6: 717. https://doi.org/10.3390/genes16060717
APA StyleHegedűs, B., Bagi, Z., & Kusza, S. (2025). Navigating the Genetic Landscape: Investigating the Opportunities and Risks of Cross-Species SNP Array Application in Catfish. Genes, 16(6), 717. https://doi.org/10.3390/genes16060717