Associations of Sex Steroids and Sex Hormone-Binding Globulin with Non-Alcoholic Fatty Liver Disease: A Population-Based Study and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of the Rotterdam Study
2.1.1. Study Population
2.1.2. Assessment of Non-Alcoholic Fatty Liver Disease
2.1.3. Assessments of Sex Steroids and SHBG
2.2. Systematic Review and Meta-Analysis
2.2.1. Data Sources and Search Strategy
2.2.2. Eligibility Criteria and Study Selection
2.2.3. Data Extraction and Quality Assessment
2.2.4. Data Synthesis and Analysis
3. Results
3.1. Results of the Rotterdam Study
3.1.1. Characteristics of the Study Population
3.1.2. Association of Sex Steroids, SHBG, and NAFLD
3.2. Systematic Review and Meta-Analysis
3.2.1. Literature Search, Characteristics, and Quality of Eligible Studies
3.2.2. Pooled Analysis
3.2.3. Subgroup, Leave-One-Out, and Meta-Regression Analyses in Meta-Analysis
3.2.4. Publication Bias
4. Discussion
4.1. Estradiol
4.2. Testosterone
4.3. SHBG
4.4. DHEA and DHEAS
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younossi, Z.M. Non-alcoholic fatty liver disease—A global public health perspective. J. Hepatol. 2019, 70, 531–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018, 67, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, M.; Patel, P.; Dunn-Valadez, S.; Dao, C.; Khan, V.; Ali, H.; El-Serag, L.; Hernaez, R.; Sisson, A.; Thrift, A.P.; et al. Women Have a Lower Risk of Nonalcoholic Fatty Liver Disease but a Higher Risk of Progression vs Men: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2020, 19, 61–71.e15. [Google Scholar] [CrossRef]
- Kojima, S.-I.; Watanabe, N.; Numata, M.; Ogawa, T.; Matsuzaki, S. Increase in the prevalence of fatty liver in Japan over the past 12 years: Analysis of clinical background. J. Gastroenterol. 2003, 38, 954–961. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Lotan, R.; Shlomai, A.; Webb, M.; Harrari, G.; Buch, A.; Kaluski, D.N.; Halpern, Z.; Oren, R. Predictors for incidence and remission of NAFLD in the general population during a seven-year prospective follow-up. J. Hepatol. 2012, 56, 1145–1151. [Google Scholar] [CrossRef]
- Wong, V.W.-S.; Wong, G.L.-H.; Yeung, D.K.-W.; Lau, T.K.-T.; Chan, C.K.-M.; Chim, A.M.-L.; Abrigo, J.M.; Chan, R.S.-M.; Woo, J.; Tse, Y.-K.; et al. Incidence of non-alcoholic fatty liver disease in Hong Kong: A population study with paired proton-magnetic resonance spectroscopy. J. Hepatol. 2015, 62, 182–189. [Google Scholar] [CrossRef]
- Lonardo, A.; Carani, C.; Carulli, N.; Loria, P. ‘Endocrine NAFLD’ a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis. J. Hepatol. 2006, 44, 1196–1207. [Google Scholar] [CrossRef]
- Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv. Ther. 2017, 34, 1291–1326. [Google Scholar] [CrossRef]
- Lonardo, A.; Suzuki, A. Sexual Dimorphism of NAFLD in Adults. Focus on Clinical Aspects and Implications for Practice and Translational Research. J. Clin. Med. 2020, 9, 1278. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kwon, H.; Park, J.-H.; Cho, B.; Kim, D.; Oh, S.-W.; Lee, C.M.; Choi, H.-C. A low level of serum total testosterone is independently associated with nonalcoholic fatty liver disease. BMC Gastroenterol. 2012, 12, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazo, M.; Zeb, I.; Nasir, K.; Tracy, R.P.; Budoff, M.J.; Ouyang, P.; Vaidya, D. Association Between Endogenous Sex Hormones and Liver Fat in a Multiethnic Study of Atherosclerosis. Clin. Gastroenterol. Hepatol. 2015, 13, 1686–1693.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Zhai, H.; Zhu, C.; Li, Q.; Han, B.; Chen, Y.; Zhu, C.; Chen, Y.; Xia, F.; Lin, D.; et al. Combined Association of Vitamin D and Sex Hormone Binding Globulin with Nonalcoholic Fatty Liver Disease in Men and Postmenopausal Women: A Cross-Sectional Study. Medicine 2016, 95, e2621. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Grobbee, D.E.; Tonkelaar, I.D.; Lamberts, S.W.J.; van der Schouw, Y. Endogenous Sex Hormones and Metabolic Syndrome in Aging Men. J. Clin. Endocrinol. Metab. 2005, 90, 2618–2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muka, T.; Nano, J.; Jaspers, L.; Meun, C.; Bramer, W.M.; Hofman, A.; Dehghan, A.; Kavousi, M.; Laven, J.S.; Franco, O.H. Associations of Steroid Sex Hormones and Sex Hormone–Binding Globulin with the Risk of Type 2 Diabetes in Women: A Population-Based Cohort Study and Meta-analysis. Diabetes 2016, 66, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Elgendy, R.; Giantin, M.; Montesissa, C.; Dacasto, M. The transcriptome of muscle and liver is responding differently to a combined trenbolone acetate and estradiol implant in cattle. Steroids 2016, 106, 1–8. [Google Scholar] [CrossRef]
- Nishimura, S.; Teshima, A.; Kawabata, F.; Tabata, S. Estradiol inhibits hepatic stellate cell area and collagen synthesis in the chicken liver. Anim. Sci. J. 2017, 88, 1827–1834. [Google Scholar] [CrossRef]
- Charlton, M.; Angulo, P.; Chalasani, N.; Merriman, R.; Viker, K.; Charatcharoenwitthaya, P.; Sanderson, S.; Gawrieh, S.; Krishnan, A.; Lindor, K. Low circulating levels of dehydroepiandrosterone in histologically advanced nonalcoholic fatty liver disease. Hepatology 2007, 47, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Jaruvongvanich, V.; Sanguankeo, A.; Riangwiwat, T.; Upala, S. Testosterone, Sex Hormone-Binding Globulin and Nonalcoholic Fatty Liver Disease:A Systematic Review and Meta-Analysis. Ann. Hepatol. 2017, 16, 382–394. [Google Scholar] [CrossRef]
- Ayonrinde, O.T.; Adams, L.A.; Doherty, D.A.; Mori, T.A.; Beilin, L.J.; Oddy, W.H.; Hickey, M.; Sloboda, D.M.; Olynyk, J.K.; Hart, R. Adverse metabolic phenotype of adolescent girls with non-alcoholic fatty liver disease plus polycystic ovary syndrome compared with other girls and boys. J. Gastroenterol. Hepatol. 2016, 31, 980–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flechtner-Mors, M.; Schick, A.; Oeztuerk, S.; Haenle, M.M.; Wilhelm, M.; Koenig, W.; Imhof, A.; Boehm, B.O.; Graeter, T.; Mason, R.A.; et al. Associations of Fatty Liver Disease and Other Factors Affecting Serum SHBG Concentrations: A Population Based Study on 1657 Subjects. Horm. Metab. Res. 2013, 46, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.A.; Brusselle, G.; Ghanbari, M.; Goedegebure, A.; Kavousi, M.; Kieboom, B.C.T.; Klaver, C.C.W.; De Knegt, R.J.; Luik, A.I.; Nijsten, T.E.C.; et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur. J. Epidemiol. 2020, 35, 483–517. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, M.; Kojima, T.; Itoh, Y.; Harano, Y.; Fujii, K.; Nakajima, T.; Kato, T.; Takeda, N.; Okuda, J.; Ida, K.; et al. The Severity of Ultrasonographic Findings in Nonalcoholic Fatty Liver Disease Reflects the Metabolic Syndrome and Visceral Fat Accumulation. Am. J. Gastroenterol. 2007, 102, 2708–2715. [Google Scholar] [CrossRef]
- Ding, L.; Oligschlaeger, Y.; Shiri-Sverdlov, R.; Houben, T. Nonalcoholic Fatty Liver Disease. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–37. [Google Scholar]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Muka, T.; Glisic, M.; Milic, J.; Verhoog, S.; Bohlius, J.; Bramer, W.; Chowdhury, R.; Franco, O.H. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur. J. Epidemiol. 2020, 35, 49–60. [Google Scholar] [CrossRef]
- Bramer, W.; Giustini, D.; De Jonge, G.B.; Holland, L.; Bekhuis, T. De-duplication of database search results for systematic reviews in EndNote. J. Med. Libr. Assoc. 2016, 104, 240–243. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2000. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 1 October 2021).
- Danesh, J.; Collins, R.; Appleby, P.; Peto, R. Association of Fibrinogen, C-reactive Protein, Albumin, or Leukocyte Count with Coronary Heart DiseaseMeta-analyses of Prospective Studies. JAMA 1998, 279, 1477–1482. [Google Scholar] [CrossRef]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef]
- Chowdhury, R.; Stevens, S.; Gorman, D.; Pan, A.; Warnakula, S.; Chowdhury, S.; Ward, H.; Johnson, L.; Crowe, F.; Hu, F.B.; et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: Systematic review and meta-analysis. BMJ 2012, 345, e6698. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, G. General Package for Meta-Analysis. Available online: https://cran.r-project.org/src/contrib/Archive/meta/ (accessed on 20 September 2021).
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.Y.; Kim, S.-K.; Lee, M.Y.; Kim, H.S.; Ye, B.I.; Shin, Y.G.; Baik, S.K.; Chung, C.H. Serum sex hormone-binding globulin levels are independently associated with nonalcoholic fatty liver disease in people with type 2 diabetes. Diabetes Res. Clin. Pract. 2011, 94, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.-X.; Sun, Y.; Pang, C.-J.; Tan, A.-H.; Gao, Y.; Zhang, H.-Y.; Yang, X.-B.; Li, Z.-X.; Mo, Z.-N. Oestradiol is a protective factor for non-alcoholic fatty liver disease in healthy men. Obes. Rev. 2012, 13, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Kountouras, J.; Tsatsoulis, A.; Zafeiriadou, E.; Katsiki, E.; Patsiaoura, K.; Zavos, C.; Anastasiadou, V.V.; Slavakis, A. Sex steroids and sex hormone-binding globulin in postmenopausal women with nonalcoholic fatty liver disease. Hormones 2013, 12, 405–416. [Google Scholar] [CrossRef]
- Sumida, Y. The Association of Low Free Testosterone with Histological Severity of Nonalcoholic Fatty Liver Disease in Japanese Men. Gastroenterol. Hepatol. Open Access. 2015, 2, 00052. [Google Scholar] [CrossRef] [Green Version]
- Seo, N.K.; Koo, H.S.; Haam, J.-H.; Kim, H.Y.; Kim, M.J.; Park, K.-C.; Park, K.-S.; Kim, Y.-S. Prediction of prevalent but not incident non-alcoholic fatty liver disease by levels of serum testosterone. J. Gastroenterol. Hepatol. 2015, 30, 1211–1216. [Google Scholar] [CrossRef]
- Yim, J.Y.; Kim, J.; Kim, D.; Ahmed, A. Serum testosterone and non-alcoholic fatty liver disease in men and women in the US. Liver Int. 2018, 38, 2051–2059. [Google Scholar] [CrossRef]
- Luo, J.; Chen, Q.; Shen, T.; Wang, X.; Fang, W.; Wu, X.; Yuan, Z.; Chen, G.; Ling, W.; Chen, Y. Association of sex hormone-binding globulin with nonalcoholic fatty liver disease in Chinese adults. Nutr. Metab. 2018, 15, 79. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.S.; Oh, J.; Lee, Y.-J. Serum Testosterone Level Within Normal Range Is Positively Associated with Nonalcoholic Fatty Liver Disease in Premenopausal but Not Postmenopausal Women. J. Women’s Health 2019, 28, 1077–1082. [Google Scholar] [CrossRef]
- Wang, X.; Xie, J.; Pang, J.; Zhang, H.; Chen, X.; Lin, J.; Li, Q.; Chen, Q.; Ma, J.; Xu, X.; et al. Serum SHBG Is Associated with the Development and Regression of Nonalcoholic Fatty Liver Disease: A Prospective Study. J. Clin. Endocrinol. Metab. 2019, 105, e791–e804. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Pang, J.; Lin, J.; Liu, Y.; Xu, Z.; Zhang, H.; Shen, T.; Chen, X.; Ma, J.; et al. Associations between serum total, free and bioavailable testosterone and non-alcoholic fatty liver disease in community-dwelling middle-aged and elderly women. Diabetes Metab. 2020, 47, 101199. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.; Richard, A.; Lazo, M.; Nelson, W.G.; Denmeade, S.R.; Groopman, J.; Kanarek, N.; Platz, E.A.; Rohrmann, S. The association of sex steroid hormone concentrations with non-alcoholic fatty liver disease and liver enzymes in US men. Liver Int. 2020, 41, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Sun, Y.; Zhong, Y.; Feng, W.; Huang, H.; Wang, W.; Zhang, T.; Hu, Y. Low serum sex hormone-binding globulin is associated with nonalcoholic fatty liver disease in type 2 diabetic patients. Clin. Endocrinol. 2013, 80, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; VanWagner, L.; Terry, J.G.; Carr, J.J.; Rinella, M.; Schreiner, P.J.; Lewis, C.E.; Terrault, N. For the Coronary Artery Risk Development in Young Adults (CARDIA) Cohort Sex Hormone–Binding Globulin Levels in Young Men Are Associated with Nonalcoholic Fatty Liver Disease in Midlife. Am. J. Gastroenterol. 2019, 114, 758–763. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.D.; Abdelmalek, M.; Pang, H.; Guy, C.D.; Smith, A.D.; Diehl, A.M.; Suzuki, A. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 2013, 59, 1406–1414. [Google Scholar] [CrossRef]
- Yoneda, M.; Thomas, E.; Sumida, Y.; Eguchi, Y.; Schiff, E.R. The influence of menopause on the development of hepatic fibrosis in nonobese women with nonalcoholic fatty liver disease. Hepatology 2014, 60, 1792. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Jung, Y. Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Cells 2019, 8, 1259. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K.N.; Pratis, K.; Jones, M.; Simpson, E.R. Estrogen Replacement Reverses the Hepatic Steatosis Phenotype in the Male Aromatase Knockout Mouse. Endocrinology 2004, 145, 1842–1848. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.D.Y.; Jones, E.E.M.; Prelle, K.; Simpson, E.R.; Boon, W.C. A selective estrogen receptor α agonist ameliorates hepatic steatosis in the male aromatase knockout mouse. J. Endocrinol. 2011, 210, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.; Yates, K.; Suzuki, A.; Lavine, J.; Gill, R.; Ziegler, T.; Terrault, N.; Dhindsa, S. Low Testosterone Is Associated with Nonalcoholic Steatohepatitis and Fibrosis Severity in Men. Clin. Gastroenterol. Hepatol. 2019, 19, 400–402.e2. [Google Scholar] [CrossRef] [PubMed]
- Maseroli, E.; Comeglio, P.; Corno, C.; Cellai, I.; Filippi, S.; Mello, T.; Galli, A.; Rapizzi, E.; Presenti, L.; Truglia, M.C.; et al. Testosterone treatment is associated with reduced adipose tissue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J. Endocrinol. Investig. 2020, 44, 819–842. [Google Scholar] [CrossRef] [PubMed]
- Tsametis, C.P.; Isidori, A.M. Testosterone replacement therapy: For whom, when and how? Metabolism 2018, 86, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef]
- Wu, J.; Yao, X.-Y.; Shi, R.-X.; Liu, S.-F.; Wang, X.-Y. A potential link between polycystic ovary syndrome and non-alcoholic fatty liver disease: An update meta-analysis. Reprod. Health 2018, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Joseph, D.R. Structure, Function, and Regulation of Androgen-Binding Protein/Sex Hormone-Binding Globulin. Vitam Horm 1994, 49, 197–280. [Google Scholar]
- Mousavinasab, F.; Tähtinen, T.; Jokelainen, J.; Koskela, P.; Vanhala, M.; Oikarinen, J.; Laakso, M.; Keinänen-Kiukaanniemi, S. The Pro12Ala Polymorphism of the PPAR Gamma 2 Gene Influences Sex Hormone–Binding Globulin Level and its Relationship to the Development of the Metabolic Syndrome in Young Finnish Men. Endocrine 2006, 30, 185–190. [Google Scholar] [CrossRef]
- Gross, B.; Pawlak, M.; Lefebvre, P.; Staels, B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 2016, 13, 36–49. [Google Scholar] [CrossRef]
- Li, L.; Yao, Y.; Zhao, J.; Cao, J.; Ma, H. Dehydroepiandrosterone protects against hepatic glycolipid metabolic disorder and insulin resistance induced by high fat via activation of AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways. Int. J. Obes. 2020, 44, 1075–1086. [Google Scholar] [CrossRef]
- Turpeinen, U.; Linko, S.; Itkonen, O.; Hämäläinen, E. Determination of testosterone in serum by liquid chromatography-tandem mass spectrometry. Scand. J. Clin. Lab. Investig. 2008, 68, 50–57. [Google Scholar] [CrossRef]
Men (n = 755) | Women (n = 1109) | |||
---|---|---|---|---|
Non-NAFLD (n = 482) | NAFLD (n = 273) | Non-NAFLD (n = 753) | NAFLD (n = 356) | |
Age, years | 56.3 ± 6.3 | 56.8 ± 5.6 | 56.3 ± 6.0 | 56.8 ± 6.2 |
BMI, kg/m2 | 26.4 ± 3.0 | 29.5 ± 3.9 *** | 26.3 ± 4.3 | 30.7 ± 5.1 *** |
Waist circumference, cm | 95.5 ± 9.3 | 105.1 ± 10.9 *** | 86.2 ± 11.5 | 98.4 ± 12.0 *** |
Ever smoking, n (%) | 79 (16.4) | 51 (18.7) | 159 (21.1) | 56 (15.7) * |
Alcohol consumption, g/day | 6.4 (1.6–8.6) | 6.4 (1.6–15.0) | 1.6 (0.5–8.6) | 1.6 (0.5–6.4) |
Hypertension, n (%) | 230 (47.7) | 160 (58.6) ** | 271 (36.0) | 220 (61.8) *** |
Type 2 diabetes, n (%) | 51 (10.6) | 74 (27.1) *** | 67 (8.9) | 50 (14.0) ** |
HDL, mmol/L | 1.2 (1.1–1.4) | 1.1 (0.9–1.3) *** | 1.6 (1.3–1.9) | 1.4 (1.2–1.6) *** |
Triglycerides, mmol/L | 1.3 (1.0–1.8) | 1.5 (1.1–2.2) *** | 1.2 (0.8–1.4) | 1.4 (1.1–2.0) *** |
Total estradiol, pmol/L | 92.8 (74.9–118.9) | 95.4 (75.8–115.6) | 30.2 (18.4–68.0) | 36.3 (18.4–71.5) |
Total testosterone, nmol/L | 17.9 (14.5–22.1) | 15.1 (12.0–18.8) *** | 0.8 (0.6–1.1) | 0.7 (0.5–1.0) *** |
SHBG, nmol/L | 43.7 (34.7–53.3) | 35.1 (27.6–45.2) *** | 66.1 (49.1–91.1) | 43.5 (31.7–61.3) *** |
DHEA, nmol/L | 13.6 (8.6–19.1) | 11.7 (7.5–16.5) ** | 13.4 (8.9–19.6) | 12.8 (8.6–19.1) * |
DHEAS, nmol/L | 3585.5 (2513.1–4919.2) | 3497.3 (2210.6–4852.8) | 2380.0 (1479.3–3451.2) | 2317.9 (1455.7–3354.7) |
Using hormone medication, n (%) | 1 (0.2) | 1 (0.4) | 57 (7.6) | 21 (5.9) |
Using lipid-lowering medication, n (%) | 100 (20.7) | 85 (31.1) ** | 136 (18.1) | 87 (24.4) * |
Postmenopausal women, n (%) | NA | NA | 407 (54.1) | 186 (52.2) |
Time since menopause, years # | NA | NA | 7.5 (4.3–12.5) | 7.7 (4.4–12.4) |
Total Estradiol | Continuous | p Trend | |||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 88 | 97 | 88 | ||
Model 1, OR (95%CI) | 1 (Reference) | 1.15 (0.77–1.72) | 0.81 (0.53–1.23) | 0.84 (0.69–1.02) | 0.09 |
Model 2, OR (95%CI) | 1 (Reference) | 1.20 (0.79–1.82) | 0.84 (0.54–1.29) | 0.87 (0.72–1.06) | 0.17 |
Total testosterone | Continuous | p trend | |||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 122 | 90 | 61 | ||
Model 1, OR (95%CI) | 1 (Reference) | 0.81 (0.54–1.20) | 0.57 (0.37–0.86) ** | 0.80 (0.65–0.99) * | 0.036 |
Model 2, OR (95%CI) | 1 (Reference) | 0.93 (0.62–1.34) | 0.72 (0.47–1.12) | 0.92 (0.74–1.13) | 0.41 |
SHBG | Continuous | p trend | |||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 132 | 80 | 61 | ||
Model 1, OR (95%CI) | 1 (Reference) | 0.51 (0.34–0.75) *** | 0.37 (0.24–0.56) *** | 0.63 (0.52–0.76) *** | 1.56 × 10−6 |
Model 2, OR (95%CI) | 1 (Reference) | 0.60 (0.40–0.90) * | 0.46 (0.30–0.71) *** | 0.72 (0.59–0.88) ** | 0.0012 |
DHEA | Continuous | p trend | |||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 106 | 92 | 75 | ||
Model 1, OR (95%CI) | 1 (Reference) | 1.05 (0.70–1.59) | 0.65 (0.42–1.00) * | 0.87 (0.76–1.00) * | 0.043 |
Model 2, OR (95%CI) | 1 (Reference) | 1.04 (0.68–1.60) | 0.72 (0.46–1.11) | 0.91 (0.79–1.04) | 0.15 |
DHEAS | Continuous | p trend | |||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 97 | 89 | 87 | ||
Model 1, OR (95%CI) | 1 (Reference) | 0.97 (0.64–1.46) | 1.08 (0.71–1.66) | 0.97 (0.89–1.05) | 0.39 |
Model 2, OR (95%CI) | 1 (Reference) | 0.95 (0.62–1.46) | 1.17 (0.76–1.81) | 0.98 (0.91–1.06) | 0.61 |
Total Estradiol | Continuous | p Trend | |||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 102 | 121 | 133 | ||
Model 1, OR (95%CI) | 1 (Reference) | 1.20 (0.84–1.70) | 1.21 (0.85–1.72) | 1.00 (0.95–1.06) | 0.82 |
Model 2, OR (95%CI) | 1 (Reference) | 1.21 (0.83–1.78) | 1.18 (0.80–1.73) | 1.01 (0.96–1.06) | 0.79 |
Total testosterone | Continuous | p trend | |||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 130 | 125 | 101 | ||
Model 1, OR (95%CI) | 1 (Reference) | 0.91 (0.65–1.28) | 0.68 (0.48–0.97) * | 0.81 (0.71–0.92) ** | 0.001 |
Model 2, OR (95%CI) | 1 (Reference) | 0.98 (0.68–1.40) | 0.76 (0.52–1.11) | 0.85 (0.76–0.96) * | 0.011 |
SHBG | Continuous | p trend | |||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 202 | 96 | 58 | ||
Model 1, OR (95%CI) | 1 (Reference) | 0.39 (0.28–0.54) *** | 0.27 (0.18–0.38) *** | 0.60 (0.54–0.68) *** | 2.23 × 10−16 |
Model 2, OR (95%CI) | 1 (Reference) | 0.50 (0.34–0.71) *** | 0.34 (0.23–0.52) *** | 0.69 (0.61–0.78) *** | 1.20 × 10−9 |
DHEA | Continuous | p trend | |||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 122 | 125 | 109 | ||
Model 1, OR (95%CI) | 1 (Reference) | 1.09 (0.78–1.54) | 1.02 (0.72–1.44) | 0.98 (0.89–1.08) | 0.71 |
Model 2, OR (95%CI) | 1 (Reference) | 1.12 (0.78–1.61) | 1.07 (0.73–1.56) | 1.01 (0.92–1.11) | 0.88 |
DHEAS | Continuous | p trend | |||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Case subjects | 126 | 115 | 115 | ||
Model 1, OR (95%CI) | 1 (Reference) | 1.01 (0.72–1.43) | 0.94 (0.66–1.34) | 0.99 (0.90–1.09) | 0.86 |
Model 2, OR (95%CI) | 1 (Reference) | 1.03 (0.71–1.50) | 0.98 (0.67–1.44) | 1.01 (0.92–1.10) | 0.84 |
Lead Author Publication Date | Location | Average Age/Age Range (years) | Study Design | Number of Participants | Exposure | Outcome, Measurement Method | Covariates Adjusted For | Study Quality * |
---|---|---|---|---|---|---|---|---|
Shin et al., 2011 [35] | Korea | 57.0 | Cross-sectional | Men 154 Women 125 | Testosterone and SHBG | NAFLD, Ultrasound | Age, BMI, waist circumference, hypertension, TG, ALT, γGT, CRP, HOMA-IR, estradiol, total testosterone, and antidiabetic medications | 6 |
Tian et al., 2012 [36] | China | 20–60 | Cross-sectional | Men 1882 | Estradiol | NAFLD, Ultrasound | None | 6 |
Kim et al., 2012 [12] | Korea | 54.4 | Cross-sectional | Men 495 | Testosterone | NAFLD, Ultrasound | Age, smoking, diabetes, exercise, BMI, TG, HDL cholesterol, HOMA-IR, hs-CRP, and VAT | 7 |
Polyzos et al., 2013 [37] | Greece | 55.7 | Cross-sectional | Women 40 | NAFLD and NASH, Liver biopsy | Age, BMI, and waist circumference | 7 | |
Hua et al., 2014 [46] | China | 56.8 | Case-control | Men 160, Women 80 | Total testosterone and SHBG | NAFLD, Ultrasound | Age, smoking status, alcohol use, diabetes, BMI, fasting C-peptide | 7 |
Sumida et al., 2015 [38] | Japan | 57.0 | Case-control | Men 148 | Free testosterone | NAFLD, Liver biopsy | NA | 6 |
Seo et al., 2015 [39] | Korea | 38.0–54.0 | Cohort | Men 1944 | Testosterone | NAFLD, Ultrasound | Age, smoking, exercise, history of hypertension and diabetes, systolic blood pressure, glucose, HDL cholesterol, TG, and ESR | 8 |
N. Wang et al., 2016 [14] | China | 57.0 | Cross-sectional | Men 2689, Women 1461 | Testosterone and SHBG | Mild NAFLD and moderate-severe NAFLD, Ultrasound | Age, total testosterone, abdominal obesity, diabetes, LDL cholesterol, HDL cholesterol, TG, and systolic blood pressure | 7 |
Yim et al., 2017 [40] | United States | 47.0 | Cross-sectional | Men 2352 Women 2406 | Testosterone | NAFLD, Serum alanine aminotransferase | Age, BMI, ethnicity, education level, marital status, economic status, the presence of hypertension, and total cholesterol | 8 |
Luo et al., 2018 [41] | China | 40–75 | Cross-sectional | Men 903 Women 2009 | SHBG | NAFLD, Ultrasound | Age, sex, postmenopausal status, household income, WHR, truck fact, current smoking and drinking, physical activity, hypertension, diabetes, serum glucose, HOMA-IR, TG, HDL cholesterol, ALT, UA, testosterone, and DHEAS levels | 7 |
Park et al., 2019 [42] | Korea | 21–75 | Cross-sectional | Women 613 | Testosterone | NAFLD, Ultrasound | Age, regular exercise, type 2 diabetes, BMI, MAP, FPG, TG, HDL cholesterol, and testosterone levels | 7 |
Sarkar et al., 2019 [47] | United States | 35.1 | Cohort | Men 837 | SHBG | NAFLD, Computed tomography | Age, race, BMI, waist circumference, LDL cholesterol, TG, and HOMA-IR | 8 |
Wang et al., 2019 [43] | China | 60.4 | Cross-sectional and cohort | Men 384, Women 888 | SHBG | NAFLD, Ultrasound | Age, gender, and postmenopausal status, BMI, WHR, trunk fat mass; physical activities; current smoking and drinking; history of hypertension and diabetes; HOMA-IR, TG, LDL cholesterol /HDL cholesterol, UA, albumin, ALP, DHEAS | 8 |
Phan et al., 2020 [45] | United States | 40.4 | Cross-sectional | Men 919 | Estradiol, testosterone, and SHBG | NAFLD, Ultrasound | Age, race, smoking, alcohol, physical activity, waist circumference | 8 |
Xu Wang et al., 2021 [44] | China | 59.83 | Cross-sectional | Women 2117 | Testosterone | NAFLD, Ultrasound | Age, postmenopausal status, body mass index, waist-to-hip ratio, physical activity, smoking, hypertension, diabetes, dyslipidemia, triglycerides, total cholesterol, CRP | 8 |
Zhang et al., Current study | Netherlands | 55.9 | Cross-sectional | Men 869, Women 1128 | Estradiol, testosterone, SHBG, DHEA, and DHEAS | NAFLD, Ultrasound | Age, sex, time difference between hormone measurement and performed ultrasound, BMI, ever smoking, alcohol consumption, hypertension, T2D, HDL, triglyceride, total cholesterol | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Mou, Y.; Aribas, E.; Amiri, M.; Nano, J.; Bramer, W.M.; Kavousi, M.; de Knegt, R.J.; Asllanaj, E.; Ghanbari, M. Associations of Sex Steroids and Sex Hormone-Binding Globulin with Non-Alcoholic Fatty Liver Disease: A Population-Based Study and Meta-Analysis. Genes 2022, 13, 966. https://doi.org/10.3390/genes13060966
Zhang X, Mou Y, Aribas E, Amiri M, Nano J, Bramer WM, Kavousi M, de Knegt RJ, Asllanaj E, Ghanbari M. Associations of Sex Steroids and Sex Hormone-Binding Globulin with Non-Alcoholic Fatty Liver Disease: A Population-Based Study and Meta-Analysis. Genes. 2022; 13(6):966. https://doi.org/10.3390/genes13060966
Chicago/Turabian StyleZhang, Xiaofang, Yuchan Mou, Elif Aribas, Masoud Amiri, Jana Nano, Wichor M. Bramer, Maryam Kavousi, Robert J. de Knegt, Eralda Asllanaj, and Mohsen Ghanbari. 2022. "Associations of Sex Steroids and Sex Hormone-Binding Globulin with Non-Alcoholic Fatty Liver Disease: A Population-Based Study and Meta-Analysis" Genes 13, no. 6: 966. https://doi.org/10.3390/genes13060966
APA StyleZhang, X., Mou, Y., Aribas, E., Amiri, M., Nano, J., Bramer, W. M., Kavousi, M., de Knegt, R. J., Asllanaj, E., & Ghanbari, M. (2022). Associations of Sex Steroids and Sex Hormone-Binding Globulin with Non-Alcoholic Fatty Liver Disease: A Population-Based Study and Meta-Analysis. Genes, 13(6), 966. https://doi.org/10.3390/genes13060966