Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material, Phenotyping and DNA Extraction
2.2. Primer Design
2.3. PCR Amplification and HRMA Analysis
3. Results
3.1. HRMA Assay for SFBC Allele at S-Locus
3.2. HRMA Assay for MDO-m Allele at M-Locus
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrera, S.; Rodrigo, J.; Hormaza, J.I.; Lora, J. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and S-RNase Sequencing in Apricot. Int. J. Mol. Sci. 2018, 19, 3612. [Google Scholar] [CrossRef] [PubMed]
- de Nettancourt, D. Incompatibility and Incongruity in Wild and Cultivated Plants; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Ma, C.; Qu, H. Gametophytic self-incompatibility in Rosaceae fruit trees. Acta Sci. Pol. Hortorum Cultus 2019, 18, 149–156. [Google Scholar] [CrossRef]
- Sassa, H. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. Breed. Sci. 2016, 66, 116–121. [Google Scholar] [CrossRef]
- De Franceschi, P.; Dondini, L.; Sanzol, J. Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). J. Exp. Bot. 2012, 63, 4015–4032. [Google Scholar] [CrossRef]
- Zhebentyayeva, T.; Ledbetter, C.; Burgos, L.; Llácer, G. Apricots. In Fruit Breeding; Springer: Berlin/Heidelberg, Germany, 2012; pp. 415–458. [Google Scholar]
- Goldway, M.; Sapir, G.; Stern, R. Molecular Basis and Horticultural Application of the Gametophytic Self-incompatibility System in Rosaceous Tree Fruits. Plant Breed. Rev. 2007, 28, 215–237. [Google Scholar]
- Rodrigo, J.; Herrero, M.; Hormaza, J. Pistil traits and flower fate in apricot (Prunus armeniaca). Ann. Appl. Biol. 2014, 154, 365–375. [Google Scholar] [CrossRef]
- Julian, C.; Herrero, M.; Rodrigo, J. Flower bud differentiation and development in fruiting and non-fruiting shoots in relation to fruit set in apricot (Prunus armeniaca L.). Trees 2010, 24, 833–841. [Google Scholar] [CrossRef]
- Egea, J.; Burgos, L. Detecting Cross-incompatibility of Three North American Apricot Cultivars and Establishing the First Incompatibility Group in Apricot. J. Am. Soc. Hortic. Sci. 1996, 121, 1002–1005. [Google Scholar] [CrossRef]
- Romero, C.; Vilanova, S.; Burgos, L.; Martínez-Calvo, J.; Vicente, M.; Llácer, G.; Badenes, M.L. Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol. Biol. 2004, 56, 145–157. [Google Scholar] [CrossRef]
- Vilanova, S.; Romero, C.; Llácer, G.; Badenes, M.; Burgos, L. Identification of Self-(in)compatibility Alleles in Apricot by PCR and Sequence Analysis. J. Am. Soc. Hortic. Sci. 2005, 130, 893–898. [Google Scholar] [CrossRef]
- Halasz, J.; Pedryc, A.; Ercisli, S.; Yilmaz, K.; Hegedus, A. S-genotyping Supports the Genetic Relationships between Turkish and Hungarian Apricot Germplasm. J. Am. Soc. Hortic. Sci. 2010, 135, 410–417. [Google Scholar] [CrossRef]
- Herrera, S.; Lora, J.; Hormaza, J.I.; Herrero, M.; Rodrigo, J. Optimizing Production in the New Generation of Apricot Cultivars: Self-incompatibility, S-RNase Allele Identification, and Incompatibility Group Assignment. Front. Plant Sci. 2018, 9, 527. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2018.00527/full (accessed on 2 February 2021). [CrossRef] [PubMed]
- Halász, J.; Pedryc, A.; Hegedűs, A. Origin and dissemination of the pollen-part mutated SC haplotype which confers self-compatibility in apricot (Prunus armeniaca). New Phytol. 2007, 176, 792–803. [Google Scholar] [CrossRef]
- Muñoz-Sanz, J.V.; Zuriaga, E.; López, I.; Badenes, M.L.; Romero, C. Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M. BMC Plant Biol. 2017, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, S.; Badenes, M.L.; Burgos, L.; Martínez-Calvo, J.; Llácer, G.; Romero, C. Self-Compatibility of Two Apricot Selections Is Associated with Two Pollen-Part Mutations of Different Nature. Plant Physiol. 2006, 142, 629–641. [Google Scholar] [CrossRef]
- Zuriaga, E.; Muñoz-Sanz, J.V.; Molina, L.; Gisbert, A.D.; Badenes, M.L.; Romero, C. An S-Locus Independent Pollen Factor Confers Self-Compatibility in ‘Katy’ Apricot. PLoS ONE 2013, 8, e53947. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544744/ (accessed on 16 March 2021). [CrossRef]
- Muñoz-Sanz, J.V.; Zuriaga, E.; Badenes, M.L.; Romero, C. A disulfide bond A-like oxidoreductase is a strong candidate gene for self-incompatibility in apricot (Prunus armeniaca) pollen. J. Exp. Bot. 2017, 68, 5069–5078. [Google Scholar] [CrossRef]
- Passaro, M.; Geuna, F.; Bassi, D.; Cirilli, M. Development of a high-resolution melting approach for reliable and cost-effective genotyping of PPVres locus in apricot (P. armeniaca). Mol. Breed. 2017, 37, 74. [Google Scholar] [CrossRef]
- Simko, I. High-Resolution DNA Melting Analysis in Plant Research. Trends Plant Sci. 2016, 21, 528–537. [Google Scholar] [CrossRef]
- Muleo, R.; Colao, M.C.; Miano, D.; Cirilli, M.; Intrieri, M.C.; Baldoni, L.; Rugini, E. Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 2009, 52, 252–260. [Google Scholar] [CrossRef][Green Version]
- Cirilli, M.; Delfino, I.; Caboni, E.; Muleo, R. EpiHRMAssay, in tube and in silico combined approach for the scanning and epityping of heterogeneous DNA methylation. Biol. Methods Protoc. 2017, 2, bpw008. [Google Scholar] [CrossRef]
- Gharesheikhbayat, R. Self-Incompatibility in Apricot (Prunus armeniaca); New Achievements and Molecular Aspects of s-Locus Allele Segregation. Master Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2010. [Google Scholar] [CrossRef]
- Badenes, M.L.; Martínez-Calvo, J.; Gómez, H.; Zuriaga, E. ‘Dama Taronja’ and ‘Dama Rosa’ Apricot Cultivars that are Resistant to Sharka (Plum pox virus). HortScience 2018, 53, 1228–1229. [Google Scholar] [CrossRef]
- Martínez-Calvo, J.; Llácer, G.; Badenes, M.L. ‘Moixent’, an Apricot Resistant to Sharka. HortScience 2011, 46, 655–656. [Google Scholar] [CrossRef]
- Batnini, M.A.; Krichen, L.; Bourguiba, H.; Trifi-Farah, N.; González, D.R.; Gómez, P.M.; Rubio, M. Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm. Span. J. Agric. Res. 2016, 14, 14. [Google Scholar] [CrossRef]
- Donoso, J.M.; Aros, D.; Meneses, C.; Infante, R. Identification of S-alleles associated with self-incompatibility in apricots (Prunus armeniaca L.) using molecular markers. J. Food Agric. Environ. 2009, 7, 270–273. [Google Scholar]
- Layne, R.E.; Hunter, D.M. ‘AC Harostar’ Apricot. Hortscience 2003, 38, 140–141. [Google Scholar] [CrossRef]
- Milatović, D.; Nikolić, D. Analysis of self-(in)compatibility in apricot cultivars using fluorescence microscopy. J. Hortic. Sci. Biotechnol. 2007, 82, 170–174. [Google Scholar] [CrossRef]
- Burgos, L.; Egea, J.; Guerriero, R.; Viti, R.; Monteleone, P.; Audergon, J.M. The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. J. Hortic. Sci. 1997, 72, 147–154. [Google Scholar] [CrossRef]
- Audergon, J.M.; Blanc, A.; Gilles, F.; Gouble, B.; Grotte, M.; Reich, M.; Bureau, S.; Clauzel, G.; Pitiot, C.; Lafond, S.; et al. New Recent Selections Issued From INRA’s Apricot Breeding Program. Acta Hortic. 2009, 814, 221–226. [Google Scholar] [CrossRef]
- Russell, D. The Stonefruit Cultivar System (A Database of Worldwide Stonefruit Cultivars and Rootstocks); Department of Primary Industries: Queensland, Australia, 1998.
- Doyle, J.J.; Doyle, J.L. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull 1987, 19, 11–15. [Google Scholar]
- Milatović, D.; Nikolić, D.; Krška, B. Testing of self-(in)compatibility in apricot cultivars from European breeding programmes. Hort. Sci. 2013, 40, 65–71. [Google Scholar] [CrossRef]
# | Accession | Floral Compatibility | Locus S SRNAse | Locus S SFB | Locus M ParMDO | References |
---|---|---|---|---|---|---|
1 | Yamagata | SI | S8/S- | SI/SI | M/M | [24] |
4 | Dorada * | SC | Sc/Sc | SC/SI | M/M | [1] |
5 | Dama Rosa | SC | SC/SI | m/M | [25] | |
11 | Moixent | SC | Sc/SI | M/M | [26] | |
13 | Estrella | SI | SI/SI | M/M | [27] | |
17 | Mediabell | SC | S6/Sc | SC/SI | M/M | [14] |
19 | San Castrese | SC | Sc/S- | SC/SI | M/M | [24] |
20 | Gilgat | SI | SI/SI | M/M | ||
22 | Dama Taronja | SC | SI/SI | m/M | [25] | |
24 | Toni | SC | SC/SI | M/M | [27] | |
25 | Congat | SI | SI/SI | M/M | ||
28 | Pricia * | SC | Sc/S3 | SI/SI | m/M | [14] |
31 | Pelese di Giovaniello | SC | S1/S2 | SI/SI | m/M | [28] |
38 | Mirlo Naranja * | SC | Sc/Sc | SC/SI | M/M | [14] |
42 | Harostar | SI | SI/SI | M/M | [29] | |
43 | Bella di Imola | SC | SC/SC | M/M | [30] | |
44 | Harval | SC | SC/SI | M/M | [31] | |
48 | Pieve | SC | Sc/S1 | SC/SI | M/M | [24] |
55 | Murciana * | SC | Sc/Sc | SC/SI | m/M | [1,14] |
59 | Frisson | SC | SC/SC | M/M | [32] | |
61 | Dama Vermella | SC | SC/SI | m/M | [25] | |
68 | Farfia | SC | Sc/Sc | SC/SC | m/M | [14] |
69 | Spring Blush | SI | S3/S8 | SI/SI | M/M | [14] |
71 | Pisana | SC | S2/Sc | SC/SI | M/M | [28] |
74 | Fiamma | SC | Sc/Sc | SC/SC | M/M | |
78 | Aurora | SI | S1/S17 | SI/SI | M/M | [16] |
79 | Faralia | SC | Sc/S6 | SC/SI | M/M | [14] |
85 | SEO | SI | S6/S9 | SI/SI | M/M | [16] |
86 | Goldrich | SI | S1/S2 | SI/SI | M/M | [10] |
90 | Farbaly | SC | Sc/Sc | SC/SC | m/M | [14] |
92 | Ninfa | SC | Sc/S7 | SC/SI | M/M | [16] |
93 | Amabile Vecchioni | SC | SC/SI | M/M | [31] | |
95 | Tondina di Tossignano | SC | SC/SC | M/M | ||
96 | Cegledi | SI | S8/S9 | SI/SI | M/M | [16] |
97 | Sulmona | SC | SC/SC | M/M | [30] | |
98 | Trzii Bucresti | SC | SC/SC | M/M | ||
106 | Mono | SC | SI/SI | m/M | [31] | |
109 | Tyrinthos | SC | Sc/Sc | SC/SC | M/M | [16] |
114 | Magyar Kaiszi | SC | SC/SI | M/M | [30] | |
117 | Lito | SC | Sc/S6 | SC/SI | M/M | [16] |
118 | Royal Roussillon | SC | SC/SI | M/M | [32] | |
119 | Harcot | SI | S1/S4 | SI/SI | M/M | [18] |
120 | Reale Imola | SC | Sc/Sc | SC/SC | M/M | [24] |
121 | Tondina di Costigliole | SC | SC/SC | M/M | ||
124 | Big Red | SI | SI/SI | M/M | ||
134 | Bebeco | SC | Sc/S6 | SC/SI | M/M | [16] |
136 | Ouardi | SI | S2/S7 | SI/SI | M/M | [16] |
140 | NJ A1 | SC | SI/SI | M/M | [30] | |
145 | Harleyne | SC | S3/S20 | SC/SI | M/M | [33] |
149 | Sarritzu 1 | SC | SC/SI | m/M | [31] | |
151 | Petra | SC | S1/S- | SI/SI | m/M | [24] |
152 | Kyoto | SC | Sc/S8 | SC/SI | M/M | [24] |
153 | Farmingdale | SC | SC/SI | M/M | [31] | |
157 | Portici 1 | SC | S2/S17 | SI/SI | m/M | [24] |
159 | Bergecot | SC | Sc/S2 | SC/SI | M/M | [14] |
168 | Lady Cot * | SC | Sc/Sc | SC/SI | M/M | [14] |
Primer | Sequence (5′ ≥ 3′) | Locus | Reference |
---|---|---|---|
AprFBC8-F | CATGGAAAAAGCTGACTTATGG | S | [13] |
AprFBC8-R | GCCTCTAATGTCATCTACTCTTAG | S | [13] |
RFBc-F | GAGGAGTGCTACAAACTAAGC | S | [17] |
RFBc-R | ACCCCTATGATGTTCCAAAG | S | [17] |
SFBins-R | TCAAGAACTTGGTTGGATTCG | S | [17] |
SFBc-F | TCGACATCCTAGTAAGACTACCTGC | S | [11] |
SFBc-R | ATTTCTTCACTGCCTGAATCG | S | [11] |
SFB-F | TGGGTTCTGCAAGAAAAACGGTGG | S | This work |
SFB-OUT-R | AATTCCTGTTTCAAGAACTTG | S | This work |
SFB-INS-F | TTTTATGAGATTTTGGGGTTGGGC | S | This work |
SFB-INS-R | GCCCAACCCCAAAATCTCATAAAA | S | This work |
SFBcj-F | GTCCTTTTATTTAGAGATATTTAGTG | S | This work |
SFBcj-R | ATAATCCGGAGGATAAATAAAAG | S | This work |
SFBj-F | GGAGTAA/GCATACCACATTATTG- | S | This work |
Locus_M_F | GGTGGTGGTCTAATGTGTTAAC | M | This work |
Locus_M_R | TCCACTAGATCATGCTGCTT | M | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlando Marchesano, B.M.; Chiozzotto, R.; Baccichet, I.; Bassi, D.; Cirilli, M. Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.). Genes 2022, 13, 548. https://doi.org/10.3390/genes13030548
Orlando Marchesano BM, Chiozzotto R, Baccichet I, Bassi D, Cirilli M. Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.). Genes. 2022; 13(3):548. https://doi.org/10.3390/genes13030548
Chicago/Turabian StyleOrlando Marchesano, Bianca Maria, Remo Chiozzotto, Irina Baccichet, Daniele Bassi, and Marco Cirilli. 2022. "Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.)" Genes 13, no. 3: 548. https://doi.org/10.3390/genes13030548
APA StyleOrlando Marchesano, B. M., Chiozzotto, R., Baccichet, I., Bassi, D., & Cirilli, M. (2022). Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.). Genes, 13(3), 548. https://doi.org/10.3390/genes13030548