LMX1B Locus Associated with Low-Risk Baseline Glaucomatous Features in the POAAGG Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subject Recruitment
2.2. Genotyping
2.3. Deep Phenotyping of Cases
2.4. Statistical Analysis
3. Results
3.1. Distribution of LMX1B Variants in Study Population
3.2. Phenotypic Characteristics of Cases for LMX1B Variant rs187699205
3.3. Optic Disc Parameters of Cases for LMX1B Variant rs187699205
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weinreb, R.N.; Leung, C.K.S.; Crowston, J.G.; Medeiros, F.A.; Friedman, D.S.; Wiggs, J.L.; Martin, K.R. Primary open-angle glaucoma. Nat. Rev. Dis. Prim. 2016, 2, 1711–1720. [Google Scholar] [CrossRef]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Allingham, R.R.; Liu, Y.; Rhee, D.J. The genetics of primary open-angle glaucoma: A review. Exp. Eye Res. 2009, 88, 837–844. [Google Scholar] [CrossRef]
- Janssen, S.F.; Gorgels, T.G.M.F.; Ramdas, W.D.; Klaver, C.C.W.; van Duijn, C.M.; Jansonius, N.M.; Bergen, A.A.B. The vast complexity of primary open angle glaucoma: Disease genes, risks, molecular mechanisms and pathobiology. Prog. Retin. Eye Res. 2013, 37, 31–67. [Google Scholar] [CrossRef]
- Choquet, H.; Wiggs, J.L.; Khawaja, A.P. Clinical implications of recent advances in primary open-angle glaucoma genetics. Eye 2020, 34, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Surgucheva, I.; Surguchov, A. Expression of caveolin in trabecular meshwork cells and its possible implication in pathogenesis of primary open angle glaucoma. Mol. Vis. 2011, 17, 2878–2888. [Google Scholar]
- Wolfs, R.C.W.; Klaver, C.C.W.; Ramrattan, R.S.; Van Duijn, C.M.; Hofman, A.; De Jong, P.T.V.M. Genetic risk of primary open-angle glaucoma: Population-based familial aggregation study. Arch. Ophthalmol. 1998, 116, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Teikari, J.M. Genetic factors in open-angle (simple and capsular) glaucoma: A population-based twin study. Acta Ophthalmol. 1987, 65, 715–720. [Google Scholar] [CrossRef]
- Park, S.; Jamshidi, Y.; Vaideanu, D.; Bitner-Glindzicz, M.; Fraser, S.; Sowden, J.C. Genetic risk for primary open-angle glaucoma determined by LMX1B haplotypes. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1522–1530. [Google Scholar] [CrossRef]
- Gao, X.R.; Huang, H.; Nannini, D.R.; Fan, F.; Kim, H. Genome-wide association analyses identify new loci influencing intraocular pressure. Hum. Mol. Genet. 2018, 27, 2205–2213. [Google Scholar] [CrossRef]
- Pressman, C.L.; Chen, H.; Johnson, R.L. Lmx1b, a LIM Homeodomain Class Transcription Factor, Is Necessary for Normal Development of Multiple Tissues in the Anterior Segment of the Murine Eye. Genesis 2000, 26, 15–25. [Google Scholar] [CrossRef]
- Mimiwati, Z.; Mackey, D.A.; Craig, J.E.; Mackinnon, J.R.; Rait, J.L.; Liebelt, J.E.; Ayala-Lugo, R.; Vollrath, D. Nail-patella syndrome and its association with glaucoma: A review of eight families. Br. J. Ophthalmol. 2006, 90, 1505–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudiseva, H.; Verma, S.S.; Chavali, V.; Salowe, R.; Lucas, A.; Collins, D.; Rathi, S.; He, J.; Lee, R.; Merriam, S.; et al. Genome wide-association study identifies novel loci in the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study. BioRxiv 2020. (Preprint). [Google Scholar] [CrossRef]
- Danford, I.D.; Verkuil, L.D.; Choi, D.J.; Collins, D.W.; Gudiseva, H.V.; Uyhazi, K.E.; Lau, M.K.; Kanu, L.N.; Grant, G.R.; Chavali, V.R.M.; et al. Characterizing the “POAGome”: A bioinformatics-driven approach to primary open-angle glaucoma. Prog. Retin. Eye Res. 2017, 58, 89–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapetanakis, V.V.; Chan, M.P.Y.; Foster, P.J.; Cook, D.G.; Owen, C.G.; Rudnicka, A.R. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): A systematic review and meta-analysis. Br. J. Ophthalmol. 2016, 100, 86–93. [Google Scholar] [CrossRef]
- Charlson, E.S.; Sankar, P.S.; Miller-Ellis, E.; Regina, M.; Fertig, R.; Salinas, J.; Pistilli, M.; Salowe, R.J.; Rhodes, A.L.; Merritt, W.T.; et al. The primary open-angle african american glaucoma genetics study: Baseline demographics. Ophthalmology 2015, 122, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Addis, V.; Oyeniran, E.; Daniel, E.; Salowe, R.; Zorger, R.; Lee, R.; Pistilli, M.; Maguire, M.; Cui, Q.; Miller-Ellis, E.; et al. Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images. Eye 2019, 33, 838–844. [Google Scholar] [CrossRef]
- Choquet, H.; Paylakhi, S.; Kneeland, S.C.; Thai, K.K.; Hoffmann, T.J.; Yin, J.; Kvale, M.N.; Banda, Y.; Tolman, N.G.; Williams, P.A.; et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gharahkhani, P.; Burdon, K.P.; Cooke Bailey, J.N.; Hewitt, A.W.; Law, M.H.; Pasquale, L.R.; Kang, J.H.; Haines, J.L.; Souzeau, E.; Zhou, T.; et al. Analysis combining correlated glaucoma traits identifies five new risk loci for open-angle glaucoma. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Gordon, M.O.; Beiser, J.A.; Brandt, J.D.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Philip Miller, J.; Parrish, R.K.; Roy Wilson, M.; et al. The Ocular Hypertension Treatment Study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 714–720. [Google Scholar] [CrossRef]
- Keltner, J.L.; Johnson, C.A.; Anderson, D.R.; Levine, R.A.; Fan, J.; Cello, K.E.; Quigley, H.A.; Budenz, D.L.; Parrish, R.K.; Kass, M.A.; et al. The Association between Glaucomatous Visual Fields and Optic Nerve Head Features in the Ocular Hypertension Treatment Study. Ophthalmology 2006, 113, 1603–1612. [Google Scholar] [CrossRef]
- Fan, B.J.; Wang, D.Y.; Pasquale, L.R.; Haines, J.L.; Wiggs, J.L. Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a US Caucasian population. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1788–1792. [Google Scholar] [CrossRef] [PubMed]
- Ramdas, W.D.; van Koolwijk, L.M.E.; Ikram, M.K.; Jansonius, N.M.; de Jong, P.T.V.M.; Bergen, A.A.B.; Isaacs, A.; Amin, N.; Aulchenko, Y.S.; Wolfs, R.C.W.; et al. A genome-wide association study of optic disc parameters. PLoS Genet. 2010, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bommakanti, N.; De Moraes, C.G.; Boland, M.V.; Myers, J.S.; Wellik, S.R.; Elze, T.; Pasquale, L.R.; Shen, L.Q.; Ritch, R.; Liebmann, J.M. Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss. J. Glaucoma 2020, 29, 31–38. [Google Scholar] [CrossRef]
- Leske, M.C.; Heijl, A.; Hussein, M.; Bengtsson, B.; Hyman, L.; Komaroff, E.; Lee, P. Factors for glaucoma progression and the effect of treatment. Evid. Based Eye Care 2003, 4, 196–197. [Google Scholar] [CrossRef]
- Fujino, Y.; Asaoka, R.; Murata, H.; Miki, A.; Tanito, M.; Mizoue, S.; Mori, K.; Suzuki, K.; Yamashita, T.; Kashiwagi, K.; et al. Evaluation of glaucoma progression in large-scale clinical data: The Japanese archive of multicentral databases in glaucoma (JAMDIG). Investig. Ophthalmol. Vis. Sci. 2016, 57, 2012–2020. [Google Scholar] [CrossRef] [Green Version]
- Sommer, A.; Pollack, I.; Maumenee, A.E. Optic Disc Parameters and Onset of Glaucomatous Field Loss: I. Methods and Progressive Changes in Disc Morphology. Arch. Ophthalmol. 1979, 97, 1444–1448. [Google Scholar] [CrossRef]
- Hitchings, R.A.; Spaeth, G.L. The optic disc in glaucoma I: Classification. Br. J. Ophthalmol. 1976, 60, 778–785. [Google Scholar] [CrossRef] [Green Version]
- Chihara, E.; Sawada, E. Atypical Nerve Fiber Layer Defects in High Myopes with High-Tension Glaucoma. Arch. Ophthalmol. 1990, 108, 228–232. [Google Scholar] [CrossRef]
- Kim, K.E.; Park, K.H. Optic disc hemorrhage in glaucoma: Pathophysiology and prognostic significance. Curr. Opin. Ophthalmol. 2017, 28, 105–112. [Google Scholar] [CrossRef]
- Lee, E.J.; Kee, H.J.; Han, J.C.; Kee, C. Evidence-based understanding of disc hemorrhage in glaucoma. Surv. Ophthalmol. 2020, 66, 412–422. [Google Scholar] [CrossRef]
- Jasty, U.; Harris, A.; Siesky, B.; Rowe, L.W.; Verticchio Vercellin, A.C.; Mathew, S.; Pasquale, L.R. Optic disc haemorrhage and primary open-angle glaucoma: A clinical review. Br. J. Ophthalmol. 2020, 104, 1488–1491. [Google Scholar] [CrossRef]
- Healey, P.R.; Mitchell, P. Presence of an optic disc notch and glaucoma. J. Glaucoma 2015, 24, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, M.J.; Mansberger, S.L.; Fortune, B.A.; Nguyen, H.; Torres, R.; Demirel, S.; Gardiner, S.K.; Johnson, C.A.; Cioffi, G.A. Features of optic disc progression in patients with ocular hypertension and early glaucoma. J. Glaucoma 2013, 22, 343–348. [Google Scholar] [CrossRef]
- Morello, R.; Zhou, G.; Dreyer, S.D.; Harvey, S.J.; Ninomiya, Y.; Thorner, P.S.; Miner, J.H.; Cole, W.; Winterpacht, A.; Zabel, B.; et al. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nat. Genet. 2001, 27, 205–208. [Google Scholar] [CrossRef]
- Huang, W.; Fan, Q.; Wang, W.; Zhou, M.; Laties, A.M.; Zhang, X. Collagen: A potential factor involved in the pathogenesis of glaucoma. Med. Sci. Monit. Basic Res. 2013, 19, 237–240. [Google Scholar] [CrossRef] [Green Version]
- La Rosa, F.A.; Lee, D.A. Collagen degradation in glaucoma: Will it gain a therapeutic value? Curr. Opin. Ophthalmol. 2000, 11, 90–93. [Google Scholar] [CrossRef]
Case/Control | ||||
---|---|---|---|---|
Chromosome Location rsID | Controls | Cases | Total | |
chr 9:129449650_C rs187699205 | GG | 3180 (97.7%) | 2510 (97.6%) | 5690 (97.7%) |
GC | 70 (2.2%) | 60 (2.3%) | 130 (2.2%) | |
CC | 4 (0.1%) | 1 (0.0%) | 5 (0.1%) | |
Total | 3254 (55.9%) | 2571 (44.1%) | 5825 |
Disease Status | ||||
---|---|---|---|---|
Chromosome Location rsID | Controls (n = 3254) | Cases (n = 2571) | Total (n = 5825) | p-Value 1 |
rs143217136 | 0.34 | |||
GG | 3188 (98.0%) | 2510 (97.6%) | 5698 (97.8%) | |
GA | 62 (1.9%) | 60 (2.3%) | 122 (2.1%) | |
AA | 4 (0.1%) | 1 (0.0%) | 5 (0.1%) | |
rs115683895 | 0.29 | |||
CC | 3188 (98.0%) | 2509 (97.6%) | 5697 (97.8%) | |
CT | 62 (1.9%) | 61 (2.4%) | 123 (2.1%) | |
TT | 4 (0.1%) | 1 (0.0%) | 5 (0.1%) | |
rs144229999 | 0.32 | |||
GG | 3197 (98.2%) | 2515 (97.8%) | 5712 (98.1%) | |
GA | 54 (1.7%) | 55 (2.1%) | 109 (1.9%) | |
AA | 3 (0.1%) | 1 (0.0%) | 4 (0.1%) | |
rs147720587 | 0.48 | |||
GG | 3181 (97.8%) | 2509 (97.6%) | 5690 (97.7%) | |
GC | 69 (2.1%) | 61 (2.4%) | 130 (2.2%) | |
CC | 4 (0.1%) | 1 (0.0%) | 5 (0.1%) | |
rs140140891 | 0.53 | |||
CC | 3180 (97.7%) | 2510 (97.6%) | 5690 (97.7%) | |
TC | 70 (2.2%) | 60 (2.3%) | 130 (2.2%) | |
TT | 4 (0.1%) | 1 (0.0%) | 5 (0.1%) |
Phenotype | GG (# Eyes) | Mean (SD) | GC (# Eyes) | Mean (SD) | Mean Difference (95% Confidence Interval) * | p-Value |
---|---|---|---|---|---|---|
CCT | 4451 | 533.22 (39.72) | 107 | 537.66 (38.19) | −4.45 (−14.17 to 5.27) | 0.37 |
CDR | 4476 | 0.71 (0.17) | 98 | 0.64 (0.18) | 0.07 (0.02 to 0.12) | 0.003 |
IOP | 4769 | 17.39 (6.12) | 111 | 16.49 (5.28) | 0.90 (−0.43 to 2.23) | 0.19 |
MD | 3781 | −8.47 (9.05) | 88 | −4.93 (6.39) | −3.54 (−5.00 to −2.08) | <0.001 |
PSD | 3784 | 5.22 (3.47) | 88 | 4.59 (3.15) | 0.63 (−0.02 to 1.29) | 0.06 |
RNFL | 3803 | 73.24 (15.03) | 92 | 75.07 (15.60) | −1.83 (−5.51 to 1.85) | 0.33 |
VA (logMAR) | 4099 | 0.39 (0.85) | 92 | 0.41 (1.00) | −0.01 (−0.23 to 0.20) | 0.90 |
GG (n = 3554 Eyes) | GC (n = 81 Eyes) | p-Value | |
---|---|---|---|
Disc Shape | 0.75 | ||
Round | 1007 (49.1%) | 18 (46.2%) | |
Oval | 1045 (50.9%) | 21 (53.8%) | |
Disc Size | <0.001 + | ||
Normal | 2036 (98.7%) | 40 (100.0%) | |
Abnormal (micro or macro) | 27 (1.3%) | 0 (0.0%) | |
Cup Shape | <0.001 + | ||
Conical | 711 (36.2%) | 12 (31.6%) | |
Cylindrical | 998 (50.8%) | 26 (68.4%) | |
Beanpot | 257 (13.1%) | 0 (0.0%) | |
Cup Depth | 0.71 | ||
Shallow | 263 (13.3%) | 5 (13.2%) | |
Moderate | 1265 (63.8%) | 27 (71.1%) | |
Severe | 454 (22.9%) | 6 (15.8%) | |
Constant Rim Plane Position? | 0.53 | ||
No | 296 (14.9%) | 4 (10.5%) | |
Yes | 1689 (85.1%) | 34 (89.5%) | |
Inferior Rim Depression? | 0.41 | ||
No | 1962 (98.8%) | 37 (97.4%) | |
Yes | 23 (1.2%) | 1 (2.6%) | |
Superior Rim Depression? | 1.00 | ||
No | 1985 (100.0%) | 38 (100.0%) | |
Yes | 0 (0.0%) | 0 (0.0%) | |
Nasal Rim Depression? | <0.001 + | ||
No | 1954 (98.4%) | 38 (100.0%) | |
Yes | 31 (1.6%) | 0 (0.0%) | |
Temporal Rim Depression? | 0.48 | ||
No | 1730 (87.2%) | 35 (92.1%) | |
Yes | 255 (12.8%) | 3 (7.9%) | |
Presence of PPA? | 1.00 | ||
No | 0 (0.0%) | 0 (0.0%) | |
Yes | 2049 (100.0%) | 39 (100.0%) | |
Borders of PPA | <0.001 + | ||
Indistinct | 229 (11.2%) | 0 (0.0%) | |
Distinct | 1817 (88.8%) | 39 (100.0%) | |
Disc Excavation? | 0.91 | ||
No | 1523 (76.5%) | 28 (75.7%) | |
Yes | 467 (23.5%) | 9 (24.3%) | |
Heavy Pigmentation | 0.16 | ||
Indistinct | 1553 (75.9%) | 34 (87.2%) | |
Distinct | 493 (24.1%) | 5 (12.8%) | |
Tilted Disc? | 0.42 | ||
No | 1936 (94.5%) | 39 (97.5%) | |
Yes | 112 (5.5%) | 1 (2.5%) | |
Disc Hemorrhage? | <0.001 + | ||
No | 2007 (97.9%) | 40 (100.0%) | |
Yes | 43 (2.1%) | 0 (0.0%) | |
Disc Notching? | <0.001 + | ||
No | 1899 (94.0%) | 39 (100.0%) | |
Yes | 121 (6.0%) | 0 (0.0%) | |
Disc Pallor? | 0.80 | ||
No | 1985 (96.8%) | 39 (97.5%) | |
Yes | 66 (3.2%) | 1 (2.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meer, E.; Qin, V.L.; Gudiseva, H.V.; McGeehan, B.; Salowe, R.; Pistilli, M.; He, J.; Daniel, E.; Ying, G.S.; Chavali, V.R.M.; et al. LMX1B Locus Associated with Low-Risk Baseline Glaucomatous Features in the POAAGG Study. Genes 2021, 12, 1252. https://doi.org/10.3390/genes12081252
Meer E, Qin VL, Gudiseva HV, McGeehan B, Salowe R, Pistilli M, He J, Daniel E, Ying GS, Chavali VRM, et al. LMX1B Locus Associated with Low-Risk Baseline Glaucomatous Features in the POAAGG Study. Genes. 2021; 12(8):1252. https://doi.org/10.3390/genes12081252
Chicago/Turabian StyleMeer, Elana, Vivian L. Qin, Harini V. Gudiseva, Brendan McGeehan, Rebecca Salowe, Maxwell Pistilli, Jie He, Ebenezer Daniel, Gui Shang Ying, Venkata R. M. Chavali, and et al. 2021. "LMX1B Locus Associated with Low-Risk Baseline Glaucomatous Features in the POAAGG Study" Genes 12, no. 8: 1252. https://doi.org/10.3390/genes12081252
APA StyleMeer, E., Qin, V. L., Gudiseva, H. V., McGeehan, B., Salowe, R., Pistilli, M., He, J., Daniel, E., Ying, G. S., Chavali, V. R. M., & O’Brien, J. M. (2021). LMX1B Locus Associated with Low-Risk Baseline Glaucomatous Features in the POAAGG Study. Genes, 12(8), 1252. https://doi.org/10.3390/genes12081252