HFE Genotype, Ferritin Levels and Transferrin Saturation in Patients with Suspected Hereditary Hemochromatosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Methods
3. Results
3.1. Demographic Data and Ferritin Levels at Referral
3.2. Distribution of HFE Genotypes
3.3. Phenotypic Imprints
3.4. Ferritin ≥ 1000 µg/L and Elevated Transferrin Saturation
3.5. CRP and Ferritin Correlation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Feder, J.; Gnirke, A.; Thomas, W.; Tsuchihashi, Z.; Ruddy, D.; Basava, A.; Dormishian, F.; Domingo, R.; Ellis, M.; Fullan, A.; et al. A novel MHC class I–like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 1996, 13, 399–408. [Google Scholar] [CrossRef]
- Merryweather-Clarke, A.T.; Pointon, J.J.; Shearman, J.D.; Robson, K.J. Global prevalence of putative haemochromatosis mutations. J. Med. Genet. 1997, 34, 275–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacon, B.R.; Powell, L.W.; Adams, P.C.; Kresina, T.F.; Hoofnagle, J.H. Molecular medicine and hemochromatosis: At the crossroads. Gastroenterology 1999, 116, 193–207. [Google Scholar] [CrossRef]
- Hanson, E.H.; Imperatore, G.; Burke, W. HFE gene and hereditary hemochromatosis: A HuGE review. Human Genome Epidemiology. Am. J. Epidemiol. 2001, 154, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.J.; Gurrin, L.C.; Constantine, C.C.; Osborne, N.J.; Delatycki, M.B.; Nicoll, A.J.; McLaren, C.E.; Bahlo, M.; Nisselle, A.E.; Vulpe, C.D.; et al. Iron–overload–related disease in HFE hereditary hemochromatosis. N. Engl. J. Med. 2008, 358, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Beutler, E.; Felitti, V.J.; Koziol, J.A.; Ho, N.J.; Gelbart, T. Penetrance of 845G→A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 2002, 359, 211–218. [Google Scholar] [CrossRef]
- Åsberg, A.; Hveem, K.; Thorstensen, K.; Ellekjaer, E.; Kannelønning, K.; Fjøsne, U.; Halvorsen, T.B.; Smethurst, H.B.; Sagen, E.; Bjerve, K.S. Screening for hemochromatosis: High prevalence and low morbidity in an unselected population of 65,238 persons. Scand. J. Gastroenterol. 2001, 36, 1108–1115. [Google Scholar]
- Alexander, J.; Kowdley, K.V. HFE–associated hereditary hemochromatosis. Genet. Med. 2009, 11, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, P.C.; Barton, J.C. Haemochromatosis. Lancet 2007, 370, 1855–1860. [Google Scholar] [CrossRef]
- Adams, P.C.; Reboussin, D.M.; Barton, J.; McLaren, C.E.; Eckfeldt, J.H.; McLaren, G.D.; Dawkins, F.W.; Acton, R.T.; Harris, E.L.; Gordeuk, V.R.; et al. Hemochromatosis and iron–overload screening in a racially diverse population. N. Engl. J. Med. 2005, 352, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Knovich, M.A.; Coffman, L.G.; Torti, F.M.; Torti, S.V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta 2010, 1800, 760–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurrin, L.; Osborne, N.; Constantine, C.C.; McLaren, C.E.; English, D.; Gertig, D.M.; Delatycki, M.B.; Southey, M.C.; Hopper, J.L.; Giles, G.; et al. The natural history of serum iron indices for HFE C282Y homozygosity associated with hereditary hemochromatosis. Gastroenterology 2008, 135, 1945–1952. [Google Scholar] [CrossRef] [Green Version]
- Bacon, B.R.; Adams, P.C.; Kowdley, K.V.; Powell, L.W.; Tavill, A.S.; American Association for the Study of Liver Diseases. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 2011, 54, 328–343. [Google Scholar] [CrossRef] [Green Version]
- McLaren, C.E.; McLachlan, G.; Halliday, J.W.; Webb, S.I.; Leggett, B.; Jazwinska, E.C.; Crawford, D.H.; Gordeuk, V.R.; McLaren, G.D.; Powell, L.W. Distribution of transferrin saturation in an Australian population: Relevance to the early diagnosis of hemochromatosis. Gastroenterology 1998, 114, 543–549. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Fracanzani, A.L.; Fargion, S.; Valenti, L. Iron in fatty liver and in the metabolic syndrome: A promising therapeutic target. J. Hepatol. 2011, 55, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Sandnes, M.; Ulvik, R.J.; Vorland, M.; Reikvam, H. Hyperferritinemia—A Clinical Overview. J. Clin. Med. 2021, 10, 2008. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Gurrin, L.C.; Bertalli, N.A.; Allen, K.J. Clinical penetrance in hereditary hemochromatosis: Estimates of the cumulative incidence of severe liver disease among HFE C282Y homozygotes. Genet. Med. 2018, 20, 383–389. [Google Scholar] [CrossRef]
- Edwards, C.Q.; Kushner, J.P. Screening for hemochromatosis. N. Engl. J. Med. 1993, 328, 1616–1620. [Google Scholar]
- Beaton, M.; Guyader, D.; Deugnier, Y.; Moirand, R.; Chakrabarti, S.; Adams, P. Noninvasive prediction of cirrhosis in C282Y–linked hemochromatosis. Hepatology 2002, 36, 673–678. [Google Scholar] [CrossRef]
- Waalen, J.; Felitti, V.J.; Gelbart, T.; Beutler, E. Screening for hemochromatosis by measuring ferritin levels: A more effective approach. Blood 2008, 111, 3373–3376. [Google Scholar] [CrossRef] [Green Version]
- Kowdley, K.V.; Brown, K.E.; Ahn, J.; Sundaram, V. ACG Clinical Guideline: Hereditary Hemochromatosis. Am. J. Gastroenterol. 2019, 114, 1202–1218. [Google Scholar] [CrossRef]
- European Association For The Study Of The Liver. EASL clinical practice guidelines for HFE hemochromatosis. J. Hepatol. 2010, 53, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Thorstensen, K.; Kvitland, M.A.; Irgens, W.O.; Hveem, K.; Asberg, A. Screening for C282Y homozygosity in a Norwegian population (HUNT2): The sensitivity and specificity of transferrin saturation. Scand. J. Clin. Lab. Investig. 2010, 70, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.Q.; Griffen, L.M.; Bulaj, Z.J.; Ajioka, R.S.; Kushner, J.P. The iron phenotype of hemochromatosis heterozygotes. In Hemochromatosis: Genetics, Pathophysiology, Diagnosis and Treatment; Barton, J.C., Edwards, C.Q., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 411–418. [Google Scholar]
- Torti, S.V.; Torti, F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer 2013, 13, 342–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessling-Resnick, M. Iron homeostasis and the inflammatory response. Annu. Rev. Nutr. 2010, 30, 105–122. [Google Scholar] [CrossRef] [Green Version]
- Franchini, M.; Targher, G.; Capra, F.; Montagnana, M.; Lippi, G. The effect of iron depletion on chronic hepatitis C virus infection. Hepatol. Int. 2008, 2, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perricone, C.; Bartoloni, E.; Bursi, R.; Cafaro, G.; Guidelli, G.M.; Shoenfeld, Y.; Gerli, R. COVID–19 as part of the hyperferritinemic syndromes: The role of iron depletion therapy. Immunol. Res. 2020, 68, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Milic, S.; Mikolasevic, I.; Orlic, L.; Devcic, E.; Čizmarević, N.S.; Stimac, D.; Kapovic, M.; Ristić, S. The Role of Iron and Iron Overload in Chronic Liver Disease. Med. Sci. Monit. 2016, 22, 2144–2151. [Google Scholar] [CrossRef] [Green Version]
- Harrison-Findik, D.D. Role of alcohol in the regulation of iron metabolism. World J. Gastroenterol. 2007, 13, 4925–4930. [Google Scholar] [CrossRef]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Zecca, L.; Youdim, M.B.; Riederer, P.; Connor, J.R.; Crichton, R.R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 2004, 5, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Jacolot, S.; Le Gac, G.; Scotet, V.; Quere, I.; Mura, C.; Ferec, C. HAMP as a modifier gene that increases the phenotypic expression of the HFE pC282Y homozygous genotype. Blood 2004, 103, 2835–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merryweather–Clarke, A.T.; Cadet, E.; Bomford, A.; Capron, D.; Viprakasit, V.; Miller, A.; McHugh, P.J.; Chapman, R.W.; Pointon, J.J.; Wimhurst, V.L.; et al. Digenic inheritance of mutations in HAMP and HFE results in different types of haemochromatosis. Hum. Mol. Genet. 2003, 12, 2241–2247. [Google Scholar] [CrossRef]
- Bomford, A. Genetics of haemochromatosis. Lancet 2002, 360, 1673–1681. [Google Scholar] [CrossRef]
Ref. Range † | Observations | Median | Range | p-Value | ||
---|---|---|---|---|---|---|
Age (years) | N/A | Men | 316 | 47.5 | 16.3–85.2 | ≤0.001 |
Women | 93 | 57.8 | 25.1–79.7 | |||
Hb (g/dL) | 13.4–17.0 | Men | 341 | 16.0 | 13.6–25.7 | ≤0.001 |
11.7–15.3 | Women | 97 | 14.4 | 12.7–16.9 | ||
WBC (109/L) | 3.5–11.0 | Men | 240 | 6.2 | 3.6–12.1 | 0.876 |
Women | 73 | 6.3 | 3.4–10.5 | |||
CRP (mg/L) | <5 | Men | 306 | 1.0 | 0.1–19 | ≤0.001 |
Women | 91 | 2.0 | 0.3–15 | |||
Tsat (%) | 15–45 | Men | 316 | 44.1 | 11.9–93.0 | 0.119 |
10–40 | Women | 93 | 46.7 | 24.0–89.0 | ||
Ferritin (µg/L) | 34–300 | Men | 316 | 712 | 310–2536 | ≤0.001 |
18–240 | Women | 93 | 631 | 234–4645 | ||
ALAT (U/L) | 10–70 | Men | 310 | 39.0 | 11–243 | ≤0.001 |
10–45 | Women | 93 | 29.0 | 11–126 | ||
GGT (U/L) | 10–80 (15–115 ¥) | Men | 307 | 34.0 | 9–346 | ≤0.001 |
10–45 (10–75 ¥) | Women | 93 | 27.0 | 12–403 |
Age (Years) | Men | Ferritin (µg/L) | Women | Ferritin (µg/L) | ||||
---|---|---|---|---|---|---|---|---|
n | % | Median | Range | n | % | Median | Range | |
<30 | 40 | 12.6 | 582 | 310–2078 | 5 | 5.4 | 644 | 234–764 |
30–39 | 60 | 19.0 | 645 | 355–1637 | 4 | 4.3 | 425 | 330–648 |
40–49 | 84 | 26.6 | 700 | 349–1734 | 18 | 19.4 | 485 | 328–4645 |
50–59 | 59 | 18.7 | 818 | 418–2000 | 22 | 23.6 | 633 | 346–1696 |
60–69 | 58 | 18.4 | 723 | 375–2536 | 28 | 30.1 | 650 | 386–1841 |
>70 | 15 | 4.7 | 853 | 446–1381 | 16 | 17.2 | 701 | 359–1153 |
Total | 316 | 100 | 712 | 310–2536 | 93 | 100 | 631 | 234–4645 |
Men | ||||||||
Ferritin (µg/L) | n | % | Age (yrs) | Hb (g/dL) | Tsat (%) | CRP (mg/L) | ALAT (U/L) | GGT (U/L) |
309–500 | 42 | 13.3 | 39.4 (16.4–70.8) | 16.0 (14.4–17.3) | 43.0 (20–80) | 1.0 (0.2–11) | 34.0 (11–103) | 26.0 (9–168) |
501–700 | 113 | 35.8 | 47.6 (19.4–76.8) | 15.8 (13.6–18.9) | 42.0 (11.9–87) | 1.0 (0.1–12) | 34.5 (13–148) | 30.0 (12–214) |
701–900 | 74 | 23.4 | 48.8 (22.1–74.1) | 16.0 (14.1–25.7) | 42.5 (22–89) | 1.0 (0.4–19) | 41.0 (14–153) | 35.0 (16–346) |
901–1000 | 32 | 10.1 | 47.0 (27.4–73.1) | 16.2 (13.6–19.1) | 48.8 (23–93) | 2.0 (0.9–13) | 42.5 (16–117) | 49.0 (11–166) |
1001–1200 | 28 | 8.9 | 48.6 (31.3–67.6) | 16.0 (13.6–17.8) | 51.0 (23–90) | 2.0 (0.5–11) | 44.0 (24–243) | 38.5 (13–233) |
1201–1500 | 12 | 3.8 | 57.1 (24.5–85.2) | 16.3 (13.8–17.6) | 67.3 (31–89) | 1.0 (0.2–11) | 46.0 (22–117) | 30.0 (20–220) |
1501–2000 | 12 | 3.8 | 53.5 (36.3–62.5) | 16.1 (14.4–17.9) | 72.4 (31.6–84) | 1.0 (0.5–5) | 43.5 (25–179) | 45.0 (15–189) |
>2000 | 3 | 0.9 | 61.6 (28.6–65.1) | 15.4 (14.8–16.8) | 59.0 (35.5–91) | 6.7 (3–10.3) | 144 (83–152) | 34.0 (20–183) |
Women | ||||||||
Ferritin (µg/L) | n | % | Age (yrs) | Hb (g/dL) | Tsat (%) | CRP (mg/L) | ALAT (U/L) | GGT (U/L) |
234–500 | 30 | 32.3 | 52.8 (26.8–74.8) | 14.8 (12.9–16.2) | 43.5 (24–89) | 2.0 (1–15) | 26.5 (11–38) | 24.0 (12–75) |
501–700 | 32 | 34.4 | 57.3 (25.1–79.6) | 14.3 (12.7–16.3) | 48.2 (25–82.9) | 2.0 (0.3–9) | 34.0 (14–95) | 32.5 (12–219) |
701–900 | 20 | 21.5 | 66.3 (28.2–79.7) | 14.5 (12.9–16.9) | 59.9 (32–86.7) | 2.0 (0.9–10) | 29.0 (14–104) | 23.0 (14–91) |
901–1000 | 5 | 5.4 | 66.1 (55.2–72.7) | 14.9 (13.5–15.7) | 43.0 (28–78) | 5.0 (1–6) | 40.0 (13–41) | 30.0 (13–327) |
1001–1200 | 2 | 2.2 | 63.7 (50.5–77.0) | 16.0 (15.5–16.4) | 66.6 (49–84.2) | 7.6 (1.2–14) | 94.5 (90–99) | 80.0 (70–90) |
1501–2000 | 3 | 3.2 | 57.1 (54.7–66.2) | 14.4 (14.1–14.4) | 46.7 (36–81.0) | 4.0 (3.6–10.1) | 81.0 (19–126) | 41.0 (23–189) |
>2000 | 1 | 1.1 | 44.8 | 14.1 | 67.6 | 8.9 | 52.0 | 403 |
Age | Tsat | Ferritin | CRP ¶ | ALAT † | GGT § | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | n | Median (yrs) | Median (%) | ≥45% | Median (µg/L) | ≥500 µg/L | Median (mg/L) | ≥5 mg/L | Median (U/L) | Elevated a | Median (U/L) | Elevated b |
Men | ||||||||||||
C282Y/C282Y | 95 | 40.0 | 70.0 | 85 (89.5%) | 855 | 87 (91.6%) | 1.0 | 6 (6.7%) | 36.0 | 8 (8.6%) | 27.0 | 3 (3.3%) |
C282Y/H63D | 67 | 47.5 | 46.0 | 37 (55.2%) | 625 | 47 (70.1%) | 1.4 | 14 (21.5%) | 35.0 | 6 (9.4%) | 38.0 | 5 (7.8%) |
H63D/H63D | 21 | 48.4 | 43.0 | 7 (33.3%) | 698 | 20 (95.2%) | 1.0 | 2 (9.5%) | 45.0 | 3 (14.3%) | 33.0 | 1 (4.8%) |
C282Y/wt | 64 | 50.5 | 38.5 | 15 (23.5%) | 649 | 57 (89.1%) | 1.0 | 6 (9.5%) | 36.0 | 6 (9.5%) | 37.5 | 4 (6.5%) |
H63D/wt | 69 | 52.8 | 33.0 | 12 (17.4%) | 711 | 63 (91.3%) | 1.7 | 2 (2.9%) | 46.0 | 18 (26.1%) | 48.0 | 8 (11.6%) |
Total | 316 | 47.4 | 44.1 | 156 (49.4%) | 712 | 274 (86.7%) | 1.0 | 31 (10.1%) | 39.0 | 41 (13.2%) | 34.0 | 20 (6.8%) |
Women | ||||||||||||
C282Y/C282Y | 44 | 54.0 | 68.3 | 39 (88.6%) | 641 | 30 (68.2%) | 2.0 | 8 (18.2%) | 25.5 | 4 (9.1%) | 21.0 | 3 (6.8%) |
C282Y/H63D | 21 | 61.3 | 40.0 | 5 (23.8%) | 587 | 13 (61.9%) | 2.0 | 4 (20%) | 31.0 | 5 (23.8%) | 28.0 | 3 (14.3%) |
H63D/H63D | 5 | 65.7 | 41.0 | 2 (40.0%) | 495 | 2 (40.0%) | 1.1 | 1 (25%) | 33.0 | 2 (40.0%) | 34.0 | 0 (0.0%) |
C282Y/wt | 7 | 64.7 | 32.0 | 2 (28.6%) | 607 | 6 (85.7%) | 3.0 | 2 (28.6%) | 36.0 | 2 (28.6%) | 35.0 | 0 (0.0%) |
H63D/wt | 16 | 62.8 | 35.5 | 3 (18.8%) | 640 | 12 (75.0%) | 2.5 | 5 (31.3%) | 35.0 | 4 (25.0%) | 34.5 | 4 (25%) |
Total | 93 | 57.9 | 46.7 | 51 (54.8%) | 631 | 63 (67.7%) | 2.0 | 20 (22.0%) | 29.0 | 17 (18.3%) | 27.0 | 10 (10.8%) |
Genotype | Tsat ≥ 70% | Ferritin ≥ 1000 µg/L | Combined Ferritin ≥ 1000 µg/L and Tsat ≥ 45% | |||
---|---|---|---|---|---|---|
n | n | n | Age (years) | % of Total | ||
C282Y/C282Y | Men | 48 | 29 | 26 | 28.6–73.2 † | 27.4 |
Women | 21 | 3 | 3 | 44.8, 54.7, 66.2 | 6.8 | |
C282Y/H63D | Men | 4 | 5 | 3 | 24.5, 59.6, 85.1 | 4.5 |
Women | 0 | 0 | 0 | − | 0 | |
H63D/H63D | Men | 1 | 2 | 1 | 55.6 | 4.8 |
Women | 1 | 1 | 1 | 50.5 | 20 | |
C282Y/wt | Men | 0 | 9 | 3 | 33.4, 54.2, 62.5 | 4.7 |
Women | 0 | 0 | 0 | − | 0 | |
H63D/wt | Men | 0 | 10 | 3 | 48.0, 59.1, 61.6 | 4.3 |
Women | 0 | 2 | 1 | 77.0 | 6.3 | |
Total | Men | 53 | 55 | 36 | 24.5–85.2 † | 11.4 |
Women | 22 | 6 | 5 | 44.8–77.0 † | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandnes, M.; Vorland, M.; Ulvik, R.J.; Reikvam, H. HFE Genotype, Ferritin Levels and Transferrin Saturation in Patients with Suspected Hereditary Hemochromatosis. Genes 2021, 12, 1162. https://doi.org/10.3390/genes12081162
Sandnes M, Vorland M, Ulvik RJ, Reikvam H. HFE Genotype, Ferritin Levels and Transferrin Saturation in Patients with Suspected Hereditary Hemochromatosis. Genes. 2021; 12(8):1162. https://doi.org/10.3390/genes12081162
Chicago/Turabian StyleSandnes, Miriam, Marta Vorland, Rune J. Ulvik, and Håkon Reikvam. 2021. "HFE Genotype, Ferritin Levels and Transferrin Saturation in Patients with Suspected Hereditary Hemochromatosis" Genes 12, no. 8: 1162. https://doi.org/10.3390/genes12081162
APA StyleSandnes, M., Vorland, M., Ulvik, R. J., & Reikvam, H. (2021). HFE Genotype, Ferritin Levels and Transferrin Saturation in Patients with Suspected Hereditary Hemochromatosis. Genes, 12(8), 1162. https://doi.org/10.3390/genes12081162