Correlation of Expression Changes between Genes Controlling 5-HT Synthesis and Genes Crh and Trh in the Midbrain Raphe Nuclei of Chronically Aggressive and Defeated Male Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Induction of Opposite Types of Social Behavior in Mice by Agonistic Interactions
2.3. RNA-Seq
2.4. Validation of RNA-Seq Data
2.5. Functional Annotation of DEGs
2.6. Statistical Methods
3. Results
3.1. DEGs in the MRNs of Winners vs. Control Mice
3.2. DEGs in the MRNs of Losers vs. Controls
3.3. DEGs Shared by the Winners and Losers (Common DEGs)
3.4. Expression of DEGs Encoding Proteins Responsible for the Synthesis and Transport of Serotonin and Hormones
3.5. Expression of Neurotransmitter and Hormone Receptors
3.6. Correlation between mRNA Levels of Genes Encoding Proteins Responsible for the Synthesis and Transport of Serotonin and the Expression of Genes Coding for Hormones or Neurotransmitter or Hormone Receptors
3.7. A Comparison of Molecular Mechanisms Correlating with mRNA Expression of Genes Encoding Proteins That Govern Serotonin Synthesis in the MRNs of Mice with the Opposite Social Experiences in Daily Confrontations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRH | corticotropin-releasing hormone (corticotropin-releasing factor) |
DEGs | differentially expressed genes |
FPKM | fragments per kilobase of transcript per million mapped reads |
GO | gene ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes pathway database |
MRN | midbrain raphe nuclei |
TRH | thyrotropin-releasing hormone |
References
- Jacobs, B.L.; Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev. 1992, 72, 165–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popova, N.K. From gene to aggressive behavior: The role of brain serotonin. Neurosci. Behav. Physiol. 2008, 38, 471–475. [Google Scholar] [CrossRef]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabut, J.M.; Crane, J.D.; Green, A.E.; Keating, D.J.; Khan, W.I.; Steinberg, G.R. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr. Rev. 2019, 40, 1092–1107. [Google Scholar] [CrossRef]
- Yildirim, B.O.; Derksen, J.J. Systematic review, structural analysis, and new theoretical perspectives on the role of serotonin and associated genes in the etiology of psychopathy and sociopathy. Neurosci. Biobehav. Rev. 2013, 37, 1254–1296. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Lee, L.T.; Yang, Y.K. Serotonin and mental disorders: A concise review on molecular neuroimaging evidence. Clin. Psychopharmacol. Neurosci. 2014, 12, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Oathes, D.J.; Hilt, L.M.; Nitschke, J.B. Affective neural responses modulated by serotonin transporter genotype in clinical anxiety and depression. PLoS ONE 2015, 10, e0115820. [Google Scholar] [CrossRef]
- Dorszewska, J.; Florczak-Wyspianska, J.; Kowalska, M.; Stanski, M.; Kowalewska, A.; Kozubski, W. Serotonin in Neurological Diseases. In Serotonin—A Chemical Messenger between All Types of living Cells; Kaneez, F.S., Ed.; IntechOpen: London, UK, 2017; pp. 219–239. [Google Scholar]
- Michely, J.; Eldar, E.; Martin, I.M.; Dolan, R.J. A mechanistic account of serotonin’s impact on mood. Nat. Commun. 2020, 11, 2335. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Xu, Q.; Jiang, M.; Feng, R.; Jiang, S.; Yuan, B.; Xu, S.; Wu, T.; Wang, F.; Huang, J.H. Emotion Induced Monoamine Neuromodulator Release Affects Functional Neurological Disorders. Front. Cell Dev. Biol. 2021, 9, 633048. [Google Scholar] [CrossRef]
- Lin, C.H.; Tseng, Y.L.; Huang, C.L.; Chang, Y.C.; Tsai, G.E.; Lane, H.Y. Synergistic effects of COMT and TPH2 on social cognition. Psychiatry 2013, 76, 273–294. [Google Scholar] [CrossRef]
- Zill, P.; Baghai, T.C.; Zwanzger, P.; Schule, C.; Eser, D.; Rupprecht, R.; Moller, H.J.; Bondy, B.; Ackenheil, M. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol. Psychiatry 2004, 9, 1030–1036. [Google Scholar] [CrossRef] [Green Version]
- Dykens, E.M.; Roof, E.; Bittel, D.; Butler, M.G. TPH2 G/T polymorphism is associated with hyperphagia, IQ, and internalizing problems in Prader-Willi syndrome. J. Child Psychol. Psychiatry 2011, 52, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Kataja, E.L.; Leppanen, J.M.; Kantojarvi, K.; Pelto, J.; Haikio, T.; Korja, R.; Nolvi, S.; Karlsson, H.; Paunio, T.; Karlsson, L. The role of TPH2 variant rs4570625 in shaping infant attention to social signals. Infant Behav. Dev. 2020, 60, 101471. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Reynolds, G.P.; Yuan, Y.; Shi, Y.; Pu, M.; Zhang, Z. TPH-2 Polymorphisms Interact with Early Life Stress to Influence Response to Treatment with Antidepressant Drugs. Int. J. Neuropsychopharmacol. 2016, 19, pyw070. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, P.A.; Norato, G.; Maurer, C.W.; Goldman, D.; Hodgkinson, C.; Horovitz, S.; Hallett, M. Effects of TPH2 gene variation and childhood trauma on the clinical and circuit-level phenotype of functional movement disorders. J. Neurol. Neurosurg. Psychiatry 2020, 91, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Sos, K.E.; Mayer, M.I.; Cserep, C.; Takacs, F.S.; Szonyi, A.; Freund, T.F.; Nyiri, G. Cellular architecture and transmitter phenotypes of neurons of the mouse median raphe region. Brain Struct. Funct. 2017, 222, 287–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudryavtseva, N.N. Sensory contact model: Protocol, control, applications. In Horizons in Neuroscience Research; Costa, A., Villalba, E., Eds.; NOVA Science Publishers Inc.: New York, NY, USA, 2011; Volume 3, pp. 81–100. [Google Scholar]
- Kudryavtseva, N.N.; Smagin, D.A.; Kovalenko, I.L.; Vishnivetskaya, G.B. Repeated positive fighting experience in male inbred mice. Nat. Protoc. 2014, 9, 2705–2717. [Google Scholar] [CrossRef] [PubMed]
- Kudryavtseva, N.N. The psychopathology of repeated aggression: A neurobiological aspect. In Perspectives on the Psychology of Aggression; Morgan, J.P., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2006; pp. 35–64. [Google Scholar]
- Kudryavtseva, N.N. Positive fighting experience, addiction-like state, and relapse: Retrospective analysis of experimental studies. Aggress. Viol. Behav. 2020, 52, 101403. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N. The sensory contact model for the study of aggressive and submissive behaviors in male mice. Aggress. Behav. 1991, 17, 285–291. [Google Scholar] [CrossRef]
- Avgustinovich, D.F.; Alekseenko, O.V.; Bakshtanovskaia, I.V.; Koriakina, L.A.; Lipina, T.V.; Tenditnik, M.V.; Bondar, N.P.; Kovalenko, I.L.; Kudriavtseva, N.N. Dynamic changes of brain serotonergic and dopaminergic activities during development of anxious depression: Experimental study. Usp. Fiziol. Nauk. 2004, 35, 19–40. [Google Scholar]
- Bondar, N.P.; Kovalenko, I.L.; Avgustinovich, D.F.; Smagin, D.A.; Kudryavtseva, N.N. Anhedonia in the shadow of chronic social defeat stress, or When the experimental context matters. Open Behav. Sci. J. 2009, 3, 17–27. [Google Scholar] [CrossRef]
- Galyamina, A.G.; Kovalenko, I.L.; Smagin, D.A.; Kudryavtseva, N.N. Interaction of depression and anxiety in the development of mixed anxiety/depression disorder: Experimental studies of the mechanisms of comorbidity (review). Neurosci. Behav. Physiol. 2017, 47, 699–713. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N. Development of Mixed Anxiety/Depression-Like State as a Consequences of Chronic Anxiety: Review of Experimental Data. In Neuroscience of Social Stress; Miczek, K.A., Sinha, R., Eds.; Current Topics in Behavioral Neurosciences Series; Springer Publishing: New York, NY, USA, 2021. [Google Scholar]
- Boyarskikh, U.A.; Bondar, N.P.; Filipenko, M.L.; Kudryavtseva, N.N. Downregulation of serotonergic gene expression in the Raphe nuclei of the midbrain under chronic social defeat stress in male mice. Mol. Neurobiol. 2013, 48, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Smagin, D.A.; Boyarskikh, U.A.; Bondar, N.P.; Filipenko, M.L.; Kudryavtseva, N.N. Reduction of serotonergic gene expression in the midbrain raphe nuclei under positive fighting experience. Adv Biosci Biotech. 2013, 4, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtseva, N.N.; Smagin, D.A.; Kovalenko, I.L.; Galyamina, A.G.; Vishnivetskaya, G.B.; Babenko, V.N.; Orlov, Y.L. Serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: RNA-seq data. Mol. Biol. 2017, 51, 251–262. [Google Scholar] [CrossRef]
- Redina, O.; Babenko, V.; Smagin, D.; Kovalenko, I.; Galyamina, A.; Efimov, V.; Kudryavtseva, N. Gene Expression Changes in the Ventral Tegmental Area of Male Mice with Alternative Social Behavior Experience in Chronic Agonistic Interactions. Int. J. Mol. Sci. 2020, 21, 6599. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N.; Bakshtanovskaya, I.V.; Koryakina, L.A. Social model of depression in mice of C57BL/6J strain. Pharmacol. Biochem. Behav. 1991, 38, 315–320. [Google Scholar] [CrossRef]
- Allen. Allen Institute for Brain Science. Allen Mouse Brain Atlas. 2004. Available online: http://mouse.brain-map.org/static/atlas (accessed on 24 April 2005).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapnell, C.; Hendrickson, D.G.; Sauvageau, M.; Goff, L.; Rinn, J.L.; Pachter, L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 2013, 31, 46–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 2014, 34, 11929–11947. [Google Scholar] [CrossRef] [PubMed]
- Babenko, V.N.; Smagin, D.A.; Kudryavtseva, N.N. RNA-Seq mouse brain regions expression data analysis: Focus on ApoE functional network. J. Integr. Bioinform. 2017, 14, 20170024. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Kanehisa, M. Post-Genome Informatics; Kyoto Encyclopedia of Genes and Genomes; Oxford University Press: Oxford, UK, 2000; p. 148. Available online: http://www.genome.jp/kegg (accessed on 16 July 2021).
- RGD. Neurological Disease Portal, Rat Genome Database Web Site; Medical College of Wisconsin: Milwaukee, WI, USA; Available online: http://rgd.mcw.edu/ (accessed on 7 January 2021).
- Ravasi, T.; Suzuki, H.; Cannistraci, C.V.; Katayama, S.; Bajic, V.B.; Tan, K.; Akalin, A.; Schmeier, S.; Kanamori-Katayama, M.; Bertin, N.; et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 2010, 140, 744–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polunin, D.; Shtaiger, I.; Efimov, V. JACOBI4 software for multivariate analysis of biological data. bioRxiv 2019, 803684. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, T.G.; Zangrossi, H., Jr.; Graeff, F.G. The median raphe nucleus in anxiety revisited. J. Psychopharmacol. 2013, 27, 1107–1115. [Google Scholar] [CrossRef]
- Yoshida, K.; Drew, M.R.; Mimura, M.; Tanaka, K.F. Serotonin-mediated inhibition of ventral hippocampus is required for sustained goal-directed behavior. Nat. Neurosci. 2019, 22, 770–777. [Google Scholar] [CrossRef]
- Ren, J.; Isakova, A.; Friedmann, D.; Zeng, J.; Grutzner, S.M.; Pun, A.; Zhao, G.Q.; Kolluru, S.S.; Wang, R.; Lin, R.; et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 2019, 8, e49424. [Google Scholar] [CrossRef]
- Serrats, J.; Raurich, A.; Vilaro, M.T.; Mengod, G.; Cortes, R. 5-ht5B receptor mRNA in the raphe nuclei: Coexpression with serotonin transporter. Synapse 2004, 51, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Maier, S.F.; Watkins, L.R. Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 2005, 29, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Hammack, S.E.; Pepin, J.L.; DesMarteau, J.S.; Watkins, L.R.; Maier, S.F. Low doses of corticotropin-releasing hormone injected into the dorsal raphe nucleus block the behavioral consequences of uncontrollable stress. Behav. Brain Res. 2003, 147, 55–64. [Google Scholar] [CrossRef]
- Ohmura, Y.; Yamaguchi, T.; Izumi, T.; Matsumoto, M.; Yoshioka, M. Corticotropin releasing factor in the median raphe nucleus is involved in the retrieval of fear memory in rats. Eur. J. Pharmacol. 2008, 584, 357–360. [Google Scholar] [CrossRef]
- Forster, G.L.; Pringle, R.B.; Mouw, N.J.; Vuong, S.M.; Watt, M.J.; Burke, A.R.; Lowry, C.A.; Summers, C.H.; Renner, K.J. Corticotropin-releasing factor in the dorsal raphe nucleus increases medial prefrontal cortical serotonin via type 2 receptors and median raphe nucleus activity. Eur. J. Neurosci. 2008, 28, 299–310. [Google Scholar] [CrossRef]
- Behan, D.P.; De Souza, E.B.; Lowry, P.J.; Potter, E.; Sawchenko, P.; Vale, W.W. Corticotropin releasing factor (CRF) binding protein: A novel regulator of CRF and related peptides. Front. Neuroendocrinol. 1995, 16, 362–382. [Google Scholar] [CrossRef]
- Westphal, N.J.; Seasholtz, A.F. CRH-BP: The regulation and function of a phylogenetically conserved binding protein. Front. Biosci. 2006, 11, 1878–1891. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Chen, Y.; Xiang, Q.; Xiang, J.; Tang, Y.; Li, J. The GCAG Haplotype of the CRHBP Gene May Decrease the Risk for Robbery Behavior Among the Han Chinese. Genet. Test. Mol. Biomark. 2020, 24, 436–442. [Google Scholar] [CrossRef]
- De Luca, V.; Tharmalingam, S.; Zai, C.; Potapova, N.; Strauss, J.; Vincent, J.; Kennedy, J.L. Association of HPA axis genes with suicidal behaviour in schizophrenia. J. Psychopharmacol. 2010, 24, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Chaves, T.; Fazekas, C.L.; Horvath, K.; Correia, P.; Szabo, A.; Torok, B.; Banrevi, K.; Zelena, D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int. J. Mol. Sci. 2021, 22, 9090. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.; Avni, J. Thyroid hormones in the treatment of affective disorders. Acta Psychiatr. Scand. 1988, 77, 623–636. [Google Scholar] [CrossRef]
- Bauer, M.; Heinz, A.; Whybrow, P.C. Thyroid hormones, serotonin and mood: Of synergy and significance in the adult brain. Mol. Psychiatry 2002, 7, 140–156. [Google Scholar] [CrossRef] [Green Version]
- Lavan, B.E.; Fantin, V.R.; Chang, E.T.; Lane, W.S.; Keller, S.R.; Lienhard, G.E. A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J. Biol. Chem. 1997, 272, 21403–21407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wauman, J.; De Smet, A.S.; Catteeuw, D.; Belsham, D.; Tavernier, J. Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol. Endocrinol. 2008, 22, 965–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinen, C.A.; de Vries, E.M.; Alders, M.; Bikker, H.; Zwaveling-Soonawala, N.; van den Akker, E.L.T.; Bakker, B.; Hoorweg-Nijman, G.; Roelfsema, F.; Hennekam, R.C.; et al. Mutations in IRS4 are associated with central hypothyroidism. J. Med. Genet. 2018, 55, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Patyra, K.; Makkonen, K.; Haanpaa, M.; Karppinen, S.; Viikari, L.; Toppari, J.; Reeve, M.P.; Kero, J. Screening for Mutations in Isolated Central Hypothyroidism Reveals a Novel Mutation in Insulin Receptor Substrate 4. Front. Endocrinol 2021, 12, 658137. [Google Scholar] [CrossRef] [PubMed]
- Bardoux, P.; Zhang, P.; Flamez, D.; Perilhou, A.; Lavin, T.A.; Tanti, J.F.; Hellemans, K.; Gomas, E.; Godard, C.; Andreelli, F.; et al. Essential role of chicken ovalbumin upstream promoter-transcription factor II in insulin secretion and insulin sensitivity revealed by conditional gene knockout. Diabetes 2005, 54, 1357–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Xie, X.; Qin, J.; Jeha, G.S.; Saha, P.K.; Yan, J.; Haueter, C.M.; Chan, L.; Tsai, S.Y.; Tsai, M.J. The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism. Cell Metab. 2009, 9, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Boutant, M.; Ramos, O.H.; Lecoeur, C.; Vaillant, E.; Philippe, J.; Zhang, P.; Perilhou, A.; Valcarcel, B.; Sebert, S.; Jarvelin, M.R.; et al. Glucose-dependent regulation of NR2F2 promoter and influence of SNP-rs3743462 on whole body insulin sensitivity. PLoS ONE 2012, 7, e35810. [Google Scholar] [CrossRef] [Green Version]
- Soosaar, A.; Neuman, K.; Nornes, H.O.; Neuman, T. Cell type specific regulation of COUP-TF II promoter activity. FEBS Lett. 1996, 391, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Sabra-Makke, L.; Tourrel-Cuzin, C.; Denis, R.G.; Moldes, M.; Pegorier, J.P.; Luquet, S.; Vasseur-Cognet, M.; Bossard, P. The nutritional induction of COUP-TFII gene expression in ventromedial hypothalamic neurons is mediated by the melanocortin pathway. PLoS ONE 2010, 5, e13464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laursen, K.B.; Mongan, N.P.; Zhuang, Y.; Ng, M.M.; Benoit, Y.D.; Gudas, L.J. Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Res. 2013, 41, 6430–6443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooney, A.J.; Tsai, S.Y.; O’Malley, B.W.; Tsai, M.J. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol. Cell. Biol. 1992, 12, 4153–4163. [Google Scholar] [CrossRef] [PubMed]
KEGG Term | Gene Count | p Value | Genes |
---|---|---|---|
Ribosome | 13 | 1.18 × 10−5 | Rps5, Rplp1, Rpl34, Rplp0, Rpsa, Rpl10a, Rps16, Rps29, Rplp2, Rpl37, Uba52, Rps21, Rps12 |
Cardiac muscle contraction | 6 | 1.29 × 10−2 | Cacnb3, Uqcrq, Cox7a2, Uqcr11, Myh6, Cacng5 |
Focal adhesion | 10 | 1.31 × 10−2 | Prkcg, Lama5, Reln, Col24a1, Itga7, Pak6, Prkca, Parvb, Flnc, Mylk4 |
Oxytocin signaling pathway | 8 | 1.94 × 10−2 | Prkcg, Gucy1a3, Cacnb3, Kcnj12, Camk2a, Prkca, Cacng5, Mylk4 |
GABAergic synapse | 6 | 2.09 × 10−2 | Prkcg, Gabrb2, Gabra1, Gabra4, Gad2, Prkca |
Fatty acid biosynthesis | 3 | 2.59 × 10−2 | Acsl1, Fasn, Acsbg1 |
Serotonergic synapse | 7 | 3.31 × 10−2 | Prkcg, Gabrb2, Tph2, Ddc, Prkca, Htr5b, Slc6a4 |
Amphetamine addiction | 5 | 3.34 × 10−2 | Prkcg, Ddc, Th, Camk2a, Prkca |
Tyrosine metabolism | 4 | 3.35 × 10−2 | Ddc, Th, Mif, Dbh |
MAPK signaling pathway | 10 | 3.93 × 10−2 | Prkcg, Cacnb3, Ptprr, Hspb1, Prkca, Flnc, Fgf13, Cacna1e, Cacng5, Cacna1g |
Calcium signaling pathway | 8 | 4.58 × 10−2 | Prkcg, Chrm1, Camk2a, Prkca, Cacna1e, Htr5b, Cacna1g, Mylk4 |
Endocrine and other factor-regulated calcium reabsorption | 4 | 6.84 × 10−2 | Prkcg, Calb1, Ap2s1, Prkca |
ECM-receptor interaction | 5 | 7.62 × 10−2 | Lama5, Reln, Col24a1, Itga7, Cd44 |
Butanoate metabolism | 3 | 8.59 × 10−2 | Hmgcl, Gad2, Aacs |
Morphine addiction | 5 | 8.91 × 10−2 | Prkcg, Gabrb2, Gabra1, Gabra4, Prkca |
Dopaminergic synapse | 6 | 9.72 × 10−2 | Prkcg, Ddc, Caly, Th, Camk2a, Prkca |
Long-term depression | 4 | 9.93 × 10−2 | Prkcg, Gucy1a3, Crh, Prkca |
KEGG Term | Gene Count | p Value | Genes |
---|---|---|---|
Cholinergic synapse | 6 | 4.25 × 10−3 | Slc5a7, Chrnb4, Chrm1, Kcnj12, Prkca, Slc18a3 |
Serotonergic synapse | 6 | 8.16 × 10−3 | Tph2, Ddc, Htr3a, Prkca, Htr5b, Slc6a4 |
MAPK signaling pathway | 7 | 3.14 × 10−2 | Cacnb3, Hspb1, Prkca, Flnc, Fgf13, Cacna1e, Cacna1g |
Focal adhesion | 6 | 4.63 × 10−2 | Reln, Col24a1, Pak6, Prkca, Parvb, Flnc |
Neuroactive ligand-receptor interaction | 7 | 5.28 × 10−2 | Chrnb4, Chrm1, Gabra4, Aplnr, Gabre, Htr5b, Hcrtr1 |
Type II diabetes mellitus | 3 | 8.13 × 10−2 | Irs4, Cacna1e, Cacna1g |
Endocrine and other factor-regulated calcium reabsorption | 3 | 8.70 × 10−2 | Kl, Calb1, Prkca |
Calcium signaling pathway | 5 | 9.12 × 10−2 | Chrm1, Prkca, Cacna1e, Htr5b, Cacna1g |
Gene Symbol | Gene ID | Expression in Controls, FPKM | Expression in Winners, FPKM | log2 (Fold Change) in Winners vs. Controls | q Value | Full Name |
DEGs taking part in the synthesis and transport of serotonin | ||||||
Ddc | 13195 | 22.39 | 13.29 | −0.75 | 4.64 × 10−3 | dopa decarboxylase |
Slc6a4 | 15567 | 19.58 | 7.20 | −1.44 | 4.64 × 10−3 | solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 |
Tph2 | 216343 | 21.91 | 9.11 | −1.27 | 4.64 × 10−3 | tryptophan hydroxylase 2 |
Crh and Trh expression | ||||||
Crh | 12918 | 48.07 | 9.70 | −2.31 | 4.64 × 10−3 | corticotropin-releasing hormone |
Trh | 22044 | 30.06 | 4.28 | −2.81 | 4.64 × 10−3 | thyrotropin-releasing hormone |
Gene Symbol | Gene ID | Expression in Controls, FPKM | Expression in Losers, FPKM | log2 (Fold Change) in Losers vs. Controls | q Value | Full Name |
DEGs taking part in the synthesis and transport of serotonin | ||||||
Ddc | 13195 | 22.23 | 8.80 | −1.34 | 5.07 × 10−3 | dopa decarboxylase |
Slc6a4 | 15567 | 19.44 | 3.72 | −2.39 | 5.07 × 10−3 | solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 |
Tph2 | 216343 | 21.75 | 4.40 | −2.31 | 5.07 × 10−3 | tryptophan hydroxylase 2 |
Crh and Trh expression | ||||||
Crh | 12918 | 47.71 | 5.76 | −3.05 | 5.07 × 10−3 | corticotropin-releasing hormone |
Trh | 22044 | 29.83 | 1.01 | −4.88 | 5.07 × 10−3 | thyrotropin-releasing hormone |
DEGs Encoding Receptors for Neurotransmitters and Hormones in the MRNs of Winners versus Control Mice | |||||||
Gene Symbol | Gene ID | Expression in Controls, FPKM | Expression in Winners, FPKM | log2 (Fold Change) in Winners vs. Controls | q Value | Full Name | Neurotransmitters and Hormones |
Chrm1 | 12669 | 0.69 | 0.42 | −0.73 | 1.98 × 10−2 | cholinergic receptor, muscarinic 1, CNS | acetylcholine |
Gabra1 | 14394 | 26.73 | 37.53 | 0.49 | 4.64 × 10−3 | γ-aminobutyric acid (GABA) A receptor, subunit α 1 | γ-aminobutyric acid |
Gabra4 | 14397 | 3.74 | 2.33 | −0.68 | 4.64 × 10−3 | γ-aminobutyric acid (GABA) A receptor, subunit α 4 | γ-aminobutyric acid |
Gabrb2 | 14401 | 13.71 | 19.18 | 0.48 | 4.64 × 10−3 | γ-aminobutyric acid (GABA) A receptor, subunit β 2 | γ-aminobutyric acid |
Hcrtr1 | 230777 | 6.22 | 3.95 | −0.66 | 1.15 × 10−2 | hypocretin (orexin) receptor 1 | The encoded protein selectively binds the hypothalamic neuropeptide orexin A |
Htr5b | 15564 | 21.63 | 0.73 | −4.89 | 4.64 × 10−3 | 5-hydroxytryptamine (serotonin) receptor 5B | serotonin |
Irs4 | 16370 | 2.82 | 1.80 | −0.65 | 8.27 × 10−3 | insulin receptor substrate 4 | insulin |
Nr2f2 | 11819 | 5.06 | 8.17 | 0.69 | 4.64 × 10−3 | nuclear receptor subfamily 2, group F, member 2 | This gene encodes a member of the steroid thyroid hormone superfamily of nuclear receptors. |
DEGs encoding receptors for neurotransmitters and hormones in the MRNs of losers versus control mice | |||||||
gene symbol | gene ID | expression in controls, FPKM | expression in losers, FPKM | log2 (fold change) in losers vs. controls | q value | full name | neurotransmitters and hormones |
Chrm1 | 12669 | 0.69 | 0.41 | −0.75 | 2.49 × 10−2 | cholinergic receptor, muscarinic 1, CNS | acetylcholine |
Chrnb4 | 108015 | 0.58 | 1.12 | 0.94 | 9.53 × 10−3 | cholinergic receptor, nicotinic, β polypeptide 4 | acetylcholine |
Gabra4 | 14397 | 3.71 | 2.43 | −0.61 | 3.50 × 10−2 | γ-aminobutyric acid (GABA) A receptor, subunit α 4 | γ-aminobutyric acid |
Gabre | 14404 | 2.37 | 1.48 | −0.68 | 2.12 × 10−2 | γ-aminobutyric acid (GABA) A receptor, subunit epsilon | γ-aminobutyric acid |
Hcrtr1 | 230777 | 6.18 | 3.40 | −0.86 | 5.07 × 10−3 | hypocretin (orexin) receptor 1 | the encoded protein selectively binds the hypothalamic neuropeptide orexin A |
Htr3a | 15561 | 1.99 | 0.97 | −1.04 | 5.07 × 10−3 | 5-hydroxytryptamine (serotonin) receptor 3A | serotonin |
Htr5b | 15564 | 21.47 | 0.34 | −5.99 | 5.07 × 10−3 | 5-hydroxytryptamine (serotonin) receptor 5B | serotonin |
Irs4 | 16370 | 2.80 | 1.29 | −1.12 | 5.07 × 10−3 | insulin receptor substrate 4 | insulin |
Nr2f2 | 11819 | 5.03 | 8.80 | 0.81 | 5.07 × 10−3 | nuclear receptor subfamily 2, group F, member 2 | This gene encodes a member of the steroid thyroid hormone superfamily of nuclear receptors. |
Winners/Control Mice Comparison | |||||||||||
Gene Symbol | Chrm1 | Crh | Gabra1 | Gabra4 | Gabrb2 | Hcrtr1 | Htr5b | Irs4 | Nr2f2 | Trh | |
Tph2 | 0.040 | 0.969 | −0.766 | 0.859 | −0.569 | 0.671 | 0.940 | 0.961 | −0.895 | 0.987 | |
Ddc | 0.219 | 0.983 | −0.826 | 0.937 | −0.682 | 0.732 | 0.978 | 0.970 | −0.964 | 0.991 | |
Slc6a4 | 0.090 | 0.982 | −0.807 | 0.887 | −0.624 | 0.720 | 0.959 | 0.975 | −0.926 | 0.996 | |
Losers/Control Mice Comparison | |||||||||||
Gene Symbol | Chrm1 | Chrnb4 | Crh | Gabra4 | Gabre | Hcrtr1 | Htr3a | Htr5b | Irs4 | Nr2f2 | Trh |
Tph2 | 0.419 | −0.201 | 0.994 | 0.904 | 0.300 | 0.817 | 0.637 | 0.993 | 0.973 | −0.940 | 0.981 |
Ddc | 0.622 | −0.424 | 0.988 | 0.919 | 0.473 | 0.904 | 0.711 | 0.982 | 0.972 | −0.988 | 0.967 |
Slc6a4 | 0.427 | −0.195 | 0.992 | 0.874 | 0.329 | 0.846 | 0.686 | 0.985 | 0.958 | −0.949 | 0.996 |
Gene Symbol | Expression in Controls, FPKM | Expression in Losers, FPKM | log2 (Fold Change) in Losers vs. Controls | q Value | Correlation with Crh Expression |
Crh | 47.71 | 5.76 | −3.05 | 5.07 × 10−03 | 1.000 |
Crhbp | 9.97 | 4.60 | −1.11 | 5.07 × 10−03 | 0.916 |
Crhr1 | 7.28 | 7.77 | 0.09 | 9.99 × 10−01 | −0.690 |
correlation with Trh expression | |||||
Trh | 29.83 | 1.01 | −4.88 | 5.07 × 10−03 | 1.000 |
Trhr | 1.09 | 0.87 | −0.33 | 9.99 × 10−01 | 0.585 |
Trhr2 | 1.18 | 1.33 | 0.18 | 9.99 × 10−01 | −0.688 |
Trhde | 1.78 | 1.36 | −0.39 | 9.99 × 10−01 | 0.566 |
Gene Symbol | Expression in Controls, FPKM | Expression in Winners, FPKM | log2 (Fold Change) in Winners vs. Controls | q Value | Correlation with Crh Expression |
Crh | 48.07 | 9.70 | −2.31 | 4.64 × 10−03 | 1.000 |
Crhbp | 10.04 | 6.78 | −0.57 | 3.84 × 10−02 | 0.915 |
Crhr1 | 7.33 | 7.05 | −0.06 | 9.54 × 10−01 | −0.697 |
correlation with Trh expression | |||||
Trh | 30.06 | 4.28 | −2.81 | 4.64 × 10−03 | 1.000 |
Trhr | 1.10 | 1.12 | 0.03 | 9.85 × 10−01 | 0.343 |
Trhr2 | 1.19 | 1.18 | −0.01 | 9.96 × 10−01 | −0.864 |
Trhde | 1.79 | 1.69 | −0.09 | 9.80 × 10−01 | 0.751 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redina, O.E.; Babenko, V.N.; Smagin, D.A.; Kovalenko, I.L.; Galyamina, A.G.; Kudryavtseva, N.N. Correlation of Expression Changes between Genes Controlling 5-HT Synthesis and Genes Crh and Trh in the Midbrain Raphe Nuclei of Chronically Aggressive and Defeated Male Mice. Genes 2021, 12, 1811. https://doi.org/10.3390/genes12111811
Redina OE, Babenko VN, Smagin DA, Kovalenko IL, Galyamina AG, Kudryavtseva NN. Correlation of Expression Changes between Genes Controlling 5-HT Synthesis and Genes Crh and Trh in the Midbrain Raphe Nuclei of Chronically Aggressive and Defeated Male Mice. Genes. 2021; 12(11):1811. https://doi.org/10.3390/genes12111811
Chicago/Turabian StyleRedina, Olga E., Vladimir N. Babenko, Dmitry A. Smagin, Irina L. Kovalenko, Anna G. Galyamina, and Natalia N. Kudryavtseva. 2021. "Correlation of Expression Changes between Genes Controlling 5-HT Synthesis and Genes Crh and Trh in the Midbrain Raphe Nuclei of Chronically Aggressive and Defeated Male Mice" Genes 12, no. 11: 1811. https://doi.org/10.3390/genes12111811
APA StyleRedina, O. E., Babenko, V. N., Smagin, D. A., Kovalenko, I. L., Galyamina, A. G., & Kudryavtseva, N. N. (2021). Correlation of Expression Changes between Genes Controlling 5-HT Synthesis and Genes Crh and Trh in the Midbrain Raphe Nuclei of Chronically Aggressive and Defeated Male Mice. Genes, 12(11), 1811. https://doi.org/10.3390/genes12111811