Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = corticotropin-releasing hormone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 2840 KiB  
Review
Oxytocin, Vasopressin and Stress: A Hormetic Perspective
by Hans P. Nazarloo, Marcy A. Kingsbury, Hannah Lamont, Caitlin V. Dale, Parmida Nazarloo, John M. Davis, Eric C. Porges, Steven P. Cuffe and C. Sue Carter
Curr. Issues Mol. Biol. 2025, 47(8), 632; https://doi.org/10.3390/cimb47080632 - 7 Aug 2025
Viewed by 387
Abstract
The purpose of this article is to examine a previously unrecognized role for the vasopressin–oxytocin (VP-OT) system in mammalian “stress-response hormesis.” The current review adds hormesis to the long list of beneficial effects of OT. Hormesis, a biphasic adaptive response to low-level stressors, [...] Read more.
The purpose of this article is to examine a previously unrecognized role for the vasopressin–oxytocin (VP-OT) system in mammalian “stress-response hormesis.” The current review adds hormesis to the long list of beneficial effects of OT. Hormesis, a biphasic adaptive response to low-level stressors, is introduced here to contextualize the dynamic roles of oxytocin and vasopressin. As with hormesis, the properties of the VP-OT system are context-, time-, and dose-sensitive. Here we suggest that one key to understanding hormesis is the fact that VP and OT and their receptors function as an integrated system. The VP-OT system is capable of changing and adapting to challenges over time, including challenges necessary for survival, reproduction and sociality. Prior research suggests that many beneficial effects of OT are most apparent only following stressful experiences, possibly reflecting interactions with VP, its receptors and other components of the hypothalamic–pituitary–adrenal axis. The release of OT is documented following various kinds of hormetic experiences such as birth, vigorous exercise, ischemic events and the ingestion of emetics, including psychedelics. The phasic or cyclic modulation of VP and related “stress” hormones, accompanied or followed by the release of OT, creates conditions that conform to the core principles of hormesis. This concept is reviewed here in the context of other hormones including corticotropin releasing hormone (CRH) and urocortin, as well as cytokines. In general, VP and classic “stress hormones” support an active response, helping to quickly mobilize body systems. OT interacts with all of these, and may subsequently re-establish homeostasis and precondition the organism to deal with future stressors. However, the individual history of an organism, including epigenetic modifications of classical stress hormones such as VP, can moderate the effects of OT. Oxytocin’s effects also help to explain the important role of sociality in mammalian resilience and longevity. A hormetic perspective, focusing on a dynamic VP-OT system, offers new insights into emotional and physical disorders, especially those associated with the management of chronic stress, and helps us to understand the healing power of social behavior and perceived safety. Full article
(This article belongs to the Special Issue Current Advances in Oxytocin Research)
Show Figures

Figure 1

13 pages, 2582 KiB  
Review
Establishment and Maintenance of Feline Pregnancy—A Comprehensive Review
by Sabine Schäfer-Somi
Animals 2025, 15(9), 1249; https://doi.org/10.3390/ani15091249 - 28 Apr 2025
Viewed by 1348
Abstract
Cats are different from dogs, and many questions remain open concerning the establishment of pregnancy. In cats, as in dogs, no feto-maternal signaling leading to establishment of pregnancy is known. But as opposed to dogs, the placenta is a source of steroid hormones [...] Read more.
Cats are different from dogs, and many questions remain open concerning the establishment of pregnancy. In cats, as in dogs, no feto-maternal signaling leading to establishment of pregnancy is known. But as opposed to dogs, the placenta is a source of steroid hormones and corticotropin-releasing hormone (CRH). Scarce information is available on physiological mechanisms at the uterine level during early gestation; more studies are needed on lymphocyte subsets, feto-maternal crosstalk and other mechanisms leading to local immunosuppression, allograft acceptance and embryo nidation and invasion. Recent studies investigate the function of extracellular vesicles (EVs); however, there is no study on embryo- or endometrium-derived EV. During pregnancy, anti-Müllerian hormone (AMH) serum concentrations were found to be higher than in non-pregnant cats, and a recent study found that supraphysiological levels may lead to pregnancy loss; the function of AMH during pregnancy warrants investigation. Most information is available on corpus luteum development and function, showing some similarities to dogs. Some information on maintenance of feline pregnancy was obtained by ovariectomy (OE) or the use of endocrine disruptors, showing that OE does not lead to pregnancy loss in all cases, especially when performed after day 35; the variable effect is still not fully understood. Antiprogesterone, dopamine agonists and prostaglandins were used in different dosages and treatment schemes and showed variable effect during the second half of gestation, highlighting progesterone and prolactin as key hormones for the maintenance of gestation. Some events during early gestation are comparable with the canine species, even though they appear earlier, like the entrance of the zygote into the uterus and implantation; however, significant differences are present concerning the histomorphology of the placenta and, in a few cases, even the gross morphology as in some cats, where the zonary placenta does not completely surround the fetus. Sonographical monitoring of feline pregnancy requires knowledge of species-specific developmental steps and the differential appearance of fetal and maternal structures in comparison with dogs. Full article
(This article belongs to the Special Issue Cutting-Edge Breakthroughs in Animal Reproductive Endocrinology)
Show Figures

Figure 1

18 pages, 12271 KiB  
Article
Prolactin-Releasing Peptide System as a Potential Mechanism of Stress Coping: Studies in Male Rats
by Evelin Szabó, Viktória Kormos, Zsuzsanna E. Tóth, Dóra Zelena and Anita Kovács
Int. J. Mol. Sci. 2025, 26(9), 4155; https://doi.org/10.3390/ijms26094155 - 27 Apr 2025
Viewed by 669
Abstract
Prolactin-releasing peptide (PrRP) has a regulatory role in both acute and chronic stress, suggesting its potential contribution to stress-related disorders such as depression. However, not all individuals with depression respond equally to stressors. We aimed to determine whether the PrRP system could underlie [...] Read more.
Prolactin-releasing peptide (PrRP) has a regulatory role in both acute and chronic stress, suggesting its potential contribution to stress-related disorders such as depression. However, not all individuals with depression respond equally to stressors. We aimed to determine whether the PrRP system could underlie stress coping, an important aspect of depression. The forced swim test was used both as a stressor and as a method to assess coping strategy. Based on immobility time, active coping and passive coping subgroups were identified, and 10 brain regions were studied using qPCR to measure the mRNA expression levels of PrRP and its receptors (specific: GPR10; non-specific: NPFFR2). Passive coping animals spent more time in an immobile posture and exhibited altered mRNA expression levels in the medullary A1 region, the habenula, and the arcuate nucleus than control or active coping rats. Additionally, we identified corticotropin-releasing hormone and vesicular glutamate transporter 2 positive neurons in the A1 medullary region that contained Prrp, suggesting a modulatory role of PrRP in these excitatory neurons involved in stress regulation. Our findings reinforce the hypothesis that PrRP plays a role in stress coping, a process closely linked to depression. However its effect is brain region-specific. Full article
(This article belongs to the Special Issue Depression: From Molecular Basis to Therapy—2nd Edition)
Show Figures

Figure 1

8 pages, 394 KiB  
Article
Benchmark for Setting ACTH Cell Dosage in Clinical Regenerative Medicine for Post-Operative Hypopituitarism
by Tatsuma Kondo, Hidetaka Suga, Kazuhito Takeuchi, Yutaro Fuse, Yoshiki Sato, Toshiaki Hirose, Harada Hideyuki, Yuichi Nagata and Ryuta Saito
Diseases 2025, 13(4), 112; https://doi.org/10.3390/diseases13040112 - 10 Apr 2025
Viewed by 603
Abstract
Background/Objectives: Our objective is to develop hormone-producing pituitary cells that can function in the same manner as the human body and provide more effective treatments than current hormone replacement therapy. We have already established a technique for generating hypothalamic–pituitary organoids using feeder-free human [...] Read more.
Background/Objectives: Our objective is to develop hormone-producing pituitary cells that can function in the same manner as the human body and provide more effective treatments than current hormone replacement therapy. We have already established a technique for generating hypothalamic–pituitary organoids using feeder-free human pluripotent stem cells (hPSCs) and demonstrated their effectiveness in vivo through transplantation into hypopituitary mouse models. To prospectively determine the upper limit of transplanting adenohypophyseal cells into humans, we investigated the human maximum secretion capacity of adrenocorticotropic hormone (ACTH) and growth hormone (GH). Methods: We analyzed data from 28 patients with pituitary adenomas, among whom 16 evinced no abnormality of ACTH secretion and 12 showed no GH secretion on corticotropin-releasing hormone (CRH) and growth hormone-releasing hormone-2 (GHRP-2) stimulation testing. Results: The average ACTH peak value after CRH stimulation tests was 97.2 pg/mL, and the average GH peak value after GHRP-2 stimulation tests was 25.1 ng/mL. Conclusions: These data will likely serve as benchmarks of ACTH and GH secretion when transplanting cultured cells into humans. Full article
Show Figures

Figure 1

20 pages, 13199 KiB  
Article
Peripherally Restricted Activation of Opioid Receptors Influences Anxiety-Related Behaviour and Alters Brain Gene Expression in a Sex-Specific Manner
by Nabil Parkar, Wayne Young, Trent Olson, Charlotte Hurst, Patrick Janssen, Nick J. Spencer, Warren C. McNabb and Julie E. Dalziel
Int. J. Mol. Sci. 2024, 25(23), 13183; https://doi.org/10.3390/ijms252313183 - 7 Dec 2024
Cited by 1 | Viewed by 1649
Abstract
Although effects of stress-induced anxiety on the gastrointestinal tract and enteric nervous system (ENS) are well studied, how ENS dysfunction impacts behaviour is not well understood. We investigated whether ENS modulation alters anxiety-related behaviour in rats. We used loperamide, a potent μ-opioid receptor [...] Read more.
Although effects of stress-induced anxiety on the gastrointestinal tract and enteric nervous system (ENS) are well studied, how ENS dysfunction impacts behaviour is not well understood. We investigated whether ENS modulation alters anxiety-related behaviour in rats. We used loperamide, a potent μ-opioid receptor agonist that does not cross the blood–brain barrier, to manipulate ENS function and assess changes in behaviour, gut and brain gene expression, and microbiota profile. Sprague Dawley (male/female) rats were acutely dosed with loperamide (subcutaneous) or control solution, and their behavioural phenotype was examined using open field and elevated plus maze tests. Gene expression in the proximal colon, prefrontal cortex, hippocampus, and amygdala was assessed by RNA-seq and caecal microbiota composition determined by shotgun metagenome sequencing. In female rats, loperamide treatment decreased distance moved and frequency of supported rearing, indicating decreased exploratory behaviour and increased anxiety, which was associated with altered hippocampal gene expression. Loperamide altered proximal colon gene expression and microbiome composition in both male and female rats. Our results demonstrate the importance of the ENS for communication between gut and brain for normo-anxious states in female rats and implicate corticotropin-releasing hormone and gamma-aminobutyric acid gene signalling pathways in the hippocampus. This study also sheds light on sexually dimorphic communication between the gut and the brain. Microbiome and colonic gene expression changes likely reflect localised effects of loperamide related to gut dysmotility. These results suggest possible ENS pharmacological targets to alter gut to brain signalling for modulating mood. Full article
(This article belongs to the Special Issue Interactions between the Nervous System and Gastrointestinal Motility)
Show Figures

Figure 1

27 pages, 29104 KiB  
Article
Metabonomics and Transcriptomics Analyses Reveal the Underlying HPA-Axis-Related Mechanisms of Lethality in Larimichthys polyactis Exposed to Underwater Noise Pollution
by Qinghua Jiang, Yu Zhang, Ting Ye, Xiao Liang and Bao Lou
Int. J. Mol. Sci. 2024, 25(23), 12610; https://doi.org/10.3390/ijms252312610 - 24 Nov 2024
Viewed by 1079
Abstract
The problem of marine noise pollution has a long history. Strong noise (>120 dB re 1 µPa) will affects the growth, development, physiological responses, and behaviors of fish, and also can induce the stress response, posing a mortal threat. Although many studies have [...] Read more.
The problem of marine noise pollution has a long history. Strong noise (>120 dB re 1 µPa) will affects the growth, development, physiological responses, and behaviors of fish, and also can induce the stress response, posing a mortal threat. Although many studies have reported that underwater noise may affect the survival of fish by disturbing their nervous system and endocrine system, the underlying causes of death due to noise stimulation remain unknown. Therefore, in this study, we used the underwater noise stress models to conduct underwater strong noise (50–125 dB re 1 µPa, 10–22,000 Hz) stress experiments on small yellow croaker for 10 min (short-term noise stress) and 6 days (long-term noise stress). A total of 150 fishes (body weight: 40–60 g; body length: 12–14 cm) were used in this study. Omics (metabolomics and transcriptomics) studies and quantitative analyses of important genes (HPA (hypothalamic–pituitary–adrenal)-axis functional genes) were performed to reveal genetic and metabolic changes in the important tissues associated with the HPA axis (brain, heart, and adrenal gland). Finally, we found that the strong noise pollution can significantly interfere with the expression of HPA-axis functional genes (including corticotropin releasing hormone (CRH), corticotropin releasing hormone receptor 2 (CRHR2), and arginine vasotocin (AVT)), and long-term stimulation can further induce metabolic disorders of the functional tissues (brain, heart, and adrenal gland), posing a lethal threat. Meanwhile, we also found that there were two kinds of death processes, direct death and chronic death, and both were closely related to the duration of stimulation and the regulation of the HPA axis. Full article
(This article belongs to the Special Issue Fish Nutrition, Metabolism and Physiology)
Show Figures

Figure 1

16 pages, 5341 KiB  
Article
Sex Differences in the Neuroendocrine Stress Response: A View from a CRH-Reporting Mouse Line
by Krisztina Horváth, Pál Vági, Balázs Juhász, Dániel Kuti, Szilamér Ferenczi and Krisztina J. Kovács
Int. J. Mol. Sci. 2024, 25(22), 12004; https://doi.org/10.3390/ijms252212004 - 8 Nov 2024
Viewed by 1866
Abstract
Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRHPVH neurons in [...] Read more.
Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRHPVH neurons in activation of the hypothalamic–pituitary–adrenal (HPA) axis is well established, the distribution and function of CRH-expressing neurons across the whole central nervous system are less understood. Stress responses activate complex neural networks, which differ depending on the type of stressor and on the sex of the individual. Because of the technical difficulties of localizing CRH neurons throughout the rodent brain, several CRH reporter mouse lines have recently been developed. In this study, we used Crh-IRES-Cre;Ai9 reporter mice to examine whether CRH neurons are recruited in a stressor- or sex-specific manner, both within and outside the hypothalamus. In contrast to the clear sexual dimorphism of CRH-mRNA-expressing neurons, quantification of CRH-reporting, tdTomato-positive neurons in different stress-related brain areas revealed only subtle differences between male and female subjects. These results strongly imply that sex differences in CRH mRNA expression occur later in development under the influence of sex steroids and reflects the limitations of using genetic reporter constructs to reveal the current physiological/transcriptional status of a specific neuron population. Next, we compared the recruitment of stress-related, tdTomato-expressing (putative CRH) neurons in male and female Crh-IRES-Cre;Ai9 reporter mice that had been exposed to predator odor. In male mice, fox odor triggered more c-Fos in the CRH neurons of the paraventricular hypothalamic nucleus, central amygdala, and anterolateral bed nucleus of the stria terminalis compared to females. These results indicate that male mice are more sensitive to predator exposure due to a combination of hormonal, environmental, and behavioral factors. Full article
(This article belongs to the Special Issue Emerging Molecular Views in Neuroendocrinology)
Show Figures

Figure 1

19 pages, 5595 KiB  
Article
Effects of DNA Methylation of HPA-Axis Genes of F1 Juvenile Induced by Maternal Density Stress on Behavior and Immune Traits in Root Voles (Microtus oeconomus)—A Field Experiment
by Shouyang Du, Guozhen Shang, Xin Tian, Zihan Liu, Yanbin Yang, Hongxing Niu, Jianghui Bian, Yan Wu and Jinyou Ma
Animals 2024, 14(17), 2467; https://doi.org/10.3390/ani14172467 - 25 Aug 2024
Viewed by 1427
Abstract
The literature shows that maternal stress can influence behavior and immune function in F1. Yet, most studies on these are from the laboratory, and replicated studies on the mechanisms by which maternal stress drives individual characteristics are still not fully understood in wild [...] Read more.
The literature shows that maternal stress can influence behavior and immune function in F1. Yet, most studies on these are from the laboratory, and replicated studies on the mechanisms by which maternal stress drives individual characteristics are still not fully understood in wild animals. We manipulated high- and low-density parental population density using large-scale field enclosures and examined behavior and immune traits. Within the field enclosures, we assessed anti-keyhole limpet hemocyanin immunoglobulin G (anti-KLH IgG) level, phytohemagglutinin (PHA) responses, hematology, cytokines, the depressive and anxiety-like behaviors and prevalence and intensity of coccidial infection. We then collected brain tissue from juvenile voles born at high or low density, quantified mRNA and protein expression of corticotropin-releasing hormone (CRH) and glucocorticoid receptor gene (NR3C1) and measured DNA methylation at CpG sites in a region that was highly conserved with the prairie vole CRH and NR3C1 promoter. At high density, we found that the F1 had a lower DNA methylation level of CRH and a higher DNA methylation level of NR3C1, which resulted in an increase in the expression levels of the CRH mRNA and protein expression and further reduced the expression levels of the NR3C1 mRNA and protein expression, and ultimately led to have delayed responses to acute immobilization stress. Juvenile voles born at high density also reduced anti-KLH IgG levels and PHA responses, increased cytokines, and depressive and anxiety-like behaviors, and the effects further led to higher coccidial infection. From the perspective of population density inducing the changes in behavior and immunity at the brain level, our results showed a physiological epigenetic mechanism for population self-regulation in voles. Our results indicate that altering the prenatal intrinsic stress environment can fundamentally impact behavior and immunity by DNA methylation of HPA-axis genes and can further drive population fluctuations in wild animals. Full article
Show Figures

Figure 1

24 pages, 2752 KiB  
Article
Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH)
by Md Rabiul Islam, Christos Markatos, Ioannis Pirmettis, Minas Papadopoulos, Vlasios Karageorgos, George Liapakis and Hesham Fahmy
Molecules 2024, 29(15), 3647; https://doi.org/10.3390/molecules29153647 - 1 Aug 2024
Viewed by 2267
Abstract
Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related [...] Read more.
Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related to over-activation of this system. Thus, new molecules that may interfere with CRF receptor binding may be of value to treat neuropsychiatric stress-related disorders. Also, CRF1R antagonists have recently emerged as potential treatment options for congenital adrenal hyperplasia. Previously, several series of CRF1 receptor antagonists were developed by our group. In continuation of our efforts in this direction, herein we report the synthesis and biological evaluation of a new series of CRF1R antagonists. Representative compounds were evaluated for their binding affinities compared to antalarmin. Four compounds (2, 5, 20, and 21) showed log IC50 values of −8.22, −7.95, −8.04, and −7.88, respectively, compared to −7.78 for antalarmin. This result indicates that these four compounds are superior to antalarmin by 2.5, 1.4, 1.7, and 1.25 times, respectively. It is worth mentioning that compound 2, in terms of IC50, is among the best CRF1R antagonists ever developed in the last 40 years. The in silico physicochemical properties of the lead compounds showed good drug-like properties. Thus, further research in this direction may lead to better and safer CRF receptor antagonists that may have clinical applications, particularly for stress-related disorders and the treatment of congenital adrenal hyperplasia. Full article
Show Figures

Graphical abstract

34 pages, 3381 KiB  
Review
The Interaction of Vasopressin with Hormones of the Hypothalamo–Pituitary–Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases
by Ewa Szczepanska-Sadowska, Katarzyna Czarzasta, Wiktor Bogacki-Rychlik and Michał Kowara
Int. J. Mol. Sci. 2024, 25(13), 7394; https://doi.org/10.3390/ijms25137394 - 5 Jul 2024
Cited by 5 | Viewed by 4681
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water–electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of [...] Read more.
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water–electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo–pituitary–adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases. Full article
(This article belongs to the Special Issue Molecular Pharmacology and Interventions in Cardiovascular Disease)
Show Figures

Figure 1

17 pages, 2778 KiB  
Article
Transcriptional Evaluation of Neuropeptides, Hormones, and Tissue Repair Modulators in the Skin of Gilthead Sea Bream (Sparus aurata L.) Subjected to Mechanical Damage
by Rocío Piñera-Moreno, Felipe E. Reyes-López, Merari Goldstein, María Jesús Santillán-Araneda, Bárbara Robles-Planells, Camila Arancibia-Carvallo, Eva Vallejos-Vidal, Alberto Cuesta, María Ángeles Esteban and Lluis Tort
Animals 2024, 14(12), 1815; https://doi.org/10.3390/ani14121815 - 18 Jun 2024
Viewed by 1443
Abstract
The skin of bony fish is the first physical barrier and is responsible for maintaining the integrity of the fish. Lesions make the skin vulnerable to potential infection by pathogens present in the aquatic environment. In this way, wound repair has barely been [...] Read more.
The skin of bony fish is the first physical barrier and is responsible for maintaining the integrity of the fish. Lesions make the skin vulnerable to potential infection by pathogens present in the aquatic environment. In this way, wound repair has barely been studied in gilthead sea bream. Thus, this study investigated the modulation of peripheral neuro-endocrine and tissue repair markers at the transcriptional level in the skin of teleost fish subjected to mechanical damage above or below the lateral line (dorsal and ventral lesions, respectively). Samples were evaluated using RT-qPCR at 2-, 4-, and 20-days post-injury. Fish with a ventral lesion presented a trend of progressive increase in the expressions of corticotropin-releasing hormone (crh), pro-opiomelanocortin-A (pomca), proenkephalin-B (penkb), cholecystokinin (cck), oxytocin (oxt), angiotensinogen (agt), and (less pronounced) somatostatin-1B (sst1b). By contrast, fish with a dorsal lesion registered no significant increase or biological trend for the genes evaluated at the different sampling times. Collectively, the results show a rapid and more robust response of neuro-endocrine and tissue repair markers in the injuries below than above the lateral line, which could be attributable to their proximity to vital organs. Full article
(This article belongs to the Special Issue Research Progress in Growth, Health and Metabolism of Fishes)
Show Figures

Graphical abstract

12 pages, 2063 KiB  
Article
Prenatal Hypoxia Triggers a Glucocorticoid-Associated Depressive-like Phenotype in Adult Rats, Accompanied by Reduced Anxiety in Response to Stress
by Viktor Stratilov, Sofiya Potapova, Diana Safarova, Ekaterina Tyulkova and Oleg Vetrovoy
Int. J. Mol. Sci. 2024, 25(11), 5902; https://doi.org/10.3390/ijms25115902 - 28 May 2024
Cited by 5 | Viewed by 1603
Abstract
Fetal hypoxia and maternal stress frequently culminate in neuropsychiatric afflictions in life. To replicate this condition, we employed a model of prenatal severe hypoxia (PSH) during days 14–16 of rat gestation. Subsequently, both control and PSH rats at 3 months old were subjected [...] Read more.
Fetal hypoxia and maternal stress frequently culminate in neuropsychiatric afflictions in life. To replicate this condition, we employed a model of prenatal severe hypoxia (PSH) during days 14–16 of rat gestation. Subsequently, both control and PSH rats at 3 months old were subjected to episodes of inescapable stress to induce learned helplessness (LH). The results of the open field test revealed an inclination towards depressive-like behavior in PSH rats. Following LH episodes, control (but not PSH) rats displayed significant anxiety. LH induced an increase in glucocorticoid receptor (GR) levels in extrahypothalamic brain structures, with enhanced nuclear translocation in the hippocampus (HPC) observed both in control and PSH rats. However, only control rats showed an increase in GR nuclear translocation in the amygdala (AMG). The decreased GR levels in the HPC of PSH rats correlated with elevated levels of hypothalamic corticotropin-releasing hormone (CRH) compared with the controls. However, LH resulted in a reduction of the CRH levels in PSH rats, aligning them with those of control rats, without affecting the latter. This study presents evidence that PSH leads to depressive-like behavior in rats, associated with alterations in the glucocorticoid system. Notably, these impairments also contribute to increased resistance to severe stressors. Full article
Show Figures

Figure 1

13 pages, 756 KiB  
Review
Stress and the CRH System, Norepinephrine, Depression, and Type 2 Diabetes
by Michele Perrelli, Pruthvi Goparaju, Teodor T. Postolache, Laura del Bosque-Plata and Claudia Gragnoli
Biomedicines 2024, 12(6), 1187; https://doi.org/10.3390/biomedicines12061187 - 27 May 2024
Cited by 9 | Viewed by 4013
Abstract
Major depressive disorder (MDD) increases the risk of type 2 diabetes (T2D) by 60% in untreated patients, and hypercortisolism is common in MDD as well as in some patients with T2D. Patients with MDD, despite hypercortisolism, show inappropriately normal levels of corticotropin-releasing hormone [...] Read more.
Major depressive disorder (MDD) increases the risk of type 2 diabetes (T2D) by 60% in untreated patients, and hypercortisolism is common in MDD as well as in some patients with T2D. Patients with MDD, despite hypercortisolism, show inappropriately normal levels of corticotropin-releasing hormone (CRH) and plasma adrenocorticotropin (ACTH) in the cerebrospinal fluid, which might implicate impaired negative feedback. Also, a positive feedback loop of the CRH–norepinephrine (NE)–CRH system may be involved in the hypercortisolism of MDD and T2D. Dysfunctional CRH receptor 1 (CRHR1) and CRH receptor 2 (CRHR2), both of which are involved in glucose regulation, may explain hypercortisolism in MDD and T2D, at least in a subgroup of patients. CRHR1 increases glucose-stimulated insulin secretion. Dysfunctional CRHR1 variants can cause hypercortisolism, leading to serotonin dysfunction and depression, which can contribute to hyperglycemia, insulin resistance, and increased visceral fat, all of which are characteristics of T2D. CRHR2 is implicated in glucose homeostasis through the regulation of insulin secretion and gastrointestinal functions, and it stimulates insulin sensitivity at the muscular level. A few studies show a correlation of the CRHR2 gene with depressive disorders. Based on our own research, we have found a linkage and association (i.e., linkage disequilibrium [LD]) of the genes CRHR1 and CRHR2 with MDD and T2D in families with T2D. The correlation of CRHR1 and CRHR2 with MDD appears stronger than that with T2D, and per our hypothesis, MDD may precede the onset of T2D. According to the findings of our analysis, CRHR1 and CRHR2 variants could modify the response to prolonged chronic stress and contribute to high levels of cortisol, increasing the risk of developing MDD, T2D, and the comorbidity MDD-T2D. We report here the potential links of the CRH system, NE, and their roles in MDD and T2D. Full article
(This article belongs to the Special Issue Diabetes: Comorbidities, Therapeutics and Insights)
Show Figures

Figure 1

31 pages, 7141 KiB  
Article
Unraveling the Mechanism of Xiaochaihu Granules in Alleviating Yeast-Induced Fever Based on Network Analysis and Experimental Validation
by Xiuli Chen, Hao Wu, Peibo Li, Wei Peng, Yonggang Wang, Xiaoli Zhang, Ao Zhang, Jinliang Li, Fenzhao Meng, Weiyue Wang and Weiwei Su
Pharmaceuticals 2024, 17(4), 475; https://doi.org/10.3390/ph17040475 - 8 Apr 2024
Cited by 4 | Viewed by 3209
Abstract
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid [...] Read more.
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb–compound–biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)–saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)–lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)–glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA’s downstream regulators [interleukin (IL)-1β and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG’s effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG. Full article
(This article belongs to the Special Issue The Mode of Action of Herbal Medicines and Natural Products)
Show Figures

Figure 1

14 pages, 310 KiB  
Review
The Hormonal Background of Hair Loss in Non-Scarring Alopecias
by Barbara Owecka, Agata Tomaszewska, Krzysztof Dobrzeniecki and Maciej Owecki
Biomedicines 2024, 12(3), 513; https://doi.org/10.3390/biomedicines12030513 - 24 Feb 2024
Cited by 8 | Viewed by 12595
Abstract
Hair loss is a common clinical condition connected with serious psychological distress and reduced quality of life. Hormones play an essential role in the regulation of the hair growth cycle. This review focuses on the hormonal background of hair loss, including pathophysiology, underlying [...] Read more.
Hair loss is a common clinical condition connected with serious psychological distress and reduced quality of life. Hormones play an essential role in the regulation of the hair growth cycle. This review focuses on the hormonal background of hair loss, including pathophysiology, underlying endocrine disorders, and possible treatment options for alopecia. In particular, the role of androgens, including dihydrotestosterone (DHT), testosterone (T), androstenedione (A4), dehydroepiandrosterone (DHEA), and its sulfate (DHEAS), has been studied in the context of androgenetic alopecia. Androgen excess may cause miniaturization of hair follicles (HFs) in the scalp. Moreover, hair loss may occur in the case of estrogen deficiency, appearing naturally during menopause. Also, thyroid hormones and thyroid dysfunctions are linked with the most common types of alopecia, including telogen effluvium (TE), alopecia areata (AA), and androgenetic alopecia. Particular emphasis is placed on the role of the hypothalamic–pituitary–adrenal axis hormones (corticotropin-releasing hormone, adrenocorticotropic hormone (ACTH), cortisol) in stress-induced alopecia. This article also briefly discusses hormonal therapies, including 5-alpha-reductase inhibitors (finasteride, dutasteride), spironolactone, bicalutamide, estrogens, and others. Full article
(This article belongs to the Special Issue Hair Loss: From Pathophysiology to Therapeutic Perspectives)
Show Figures

Graphical abstract

Back to TopTop