Carex muskingumensis and Osmotic Stress: Identification of Reference Genes for Transcriptional Profiling by RT-qPCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. The RNA Extraction and Reverse Transcription
2.3. RT-qPCR Reactions
2.4. Analysis of Gene Expression Stability
3. Results
3.1. Growth of Shoots
3.2. Candidate Reference Genes—Efficiency and Specificity of Amplification
3.2.1. Reference Gene Selection
3.2.2. geNorm Analysis
3.2.3. NormFinder Analysis
3.2.4. BestKeeper Analysis
3.2.5. deltaCt Method
3.2.6. Determination of Reference Genes Optimal Number
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reznicek, A.A. Sectional Names in Carex (Cyperaceae) for the Flora of North America. Novon 2001, 11, 454–459. [Google Scholar] [CrossRef]
- Mohlenbrock, R.H. Sedges: Carex. In The Illustrated Flora of Illinois, 2nd ed.; Southern Illinois University Press: Carbondale, IL, USA, 2011; Available online: https://opensiuc.lib.siu.edu/siupress_flora_of_illinois/8 (accessed on 14 April 2020).
- Ansari, W.A.; Atri, N.; Pandey, M.; Singh, A.K.; Singh, B.; Pandey, S. Influence of Drought Stress on Morphological, Physiological and Biochemical Attributes of Plants: A Review. Biosci. Biotechnol. Res. Asia 2019, 16, 697–709. [Google Scholar] [CrossRef]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Sarwar, M.I. A review: Impact of salinity on plant growth. Nat. Sci. 2019, 17, 34–40. [Google Scholar]
- Dudziak, K.; Zapalska, M.; Börner, A.; Szczerba, H.; Kowalczyk, K.; Nowak, M. Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivhare, R.; Lata, C. Assessment of pearl millet genotypes for drought stress tolerance at early and late seedling stages. Acta Physiol. Plant. 2019, 41, 39. [Google Scholar] [CrossRef]
- De Souza Rodrigues, T.; Lins, J.T.; Cattem, M.V.; Jardim, V.C.; Buckeridge, M.S.; de Sá, M.F.G.; Alves-Ferreira, M. Evaluation of Setaria viridis physiological and gene expression responses to distinct water-deficit conditions. Biotechnol. Res. Innov. 2020, in press. [Google Scholar]
- Zhu, M.; Zhou, M.; Shabala, L.; Shabala, S. Physiological and molecular mechanisms mediating xylem Na+loading in barley in the context of salinity stress tolerance. Plant Cell Environ. 2017, 40, 1009–1020. [Google Scholar] [CrossRef]
- Ahmadi, J.; Pour-Aboughadareh, A.; Ourang, S.F.; Khalili, P.; Poczai, P. Unraveling salinity stress responses in ancestral and neglected wheat species at early growth stage: A baseline for utilization in future wheat improvement programs. Physiol. Mol. Biol. Plants 2020, 26, 1–13. [Google Scholar] [CrossRef]
- Zeeshan, M.; Lu, M.; Naz, S.; Sehar, S.; Cao, F.; Wu, F. Resemblance and Difference of Seedling Metabolic and Transporter Gene Expression in High Tolerance Wheat and Barley Cultivars in Response to Salinity Stress. Plants 2020, 9, 519. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Vandesompele, J. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.R.; Waldenström, J. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. PLoS ONE 2015, 10, e0141853. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Yang, J.; Hu, K.; An, B.; Deng, X.; Li, Y. Reliable Selection and Holistic Stability Evaluation of Reference Genes for Rice Under 22 Different Experimental Conditions. Appl. Biochem. Biotechnol. 2016, 179, 753–775. [Google Scholar] [CrossRef] [PubMed]
- Takamori, L.M.; Pereira, A.V.C.; Souza, G.M.; Vieira, L.G.E.; Ribas, A.F. Identification of Endogenous Reference Genes for RT-qPCR Expression Analysis in Urochloa brizantha Under Abiotic Stresses. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Liu, Q.; Qi, X.; Yan, H.; Hang, L.; Nie, G.; Zhang, X. Reference Gene Selection for Quantitative Real-Time Reverse-Transcriptase PCR in Annual Ryegrass (Lolium multiflorum) Subjected to Various Abiotic Stresses. Molecules 2018, 23, 172. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, B.; Tan, Z.; Liu, J.; Yang, Z.; Li, Z.; Huang, B. Selection of reference genes for quantitative real-time PCR normalization in creeping bentgrass involved in four abiotic stresses. Plant Cell Rep. 2015, 34, 1825–1834. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, Z.; Hu, B.; Yang, Z.; Xu, B.; Zhuang, L.; Huang, B. Selection and validation of reference genes for target gene analysis with quantitative RT-PCR in leaves and roots of bermudagrass under four different abiotic stresses. Physiol. Plant. 2015, 155, 138–148. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Xu, L.; Lai, H.; Chen, Y.; Yang, Z.; Huang, B. Identification and Validation of Reference Genes for Seashore Paspalum Response to Abiotic Stresses. Int. J. Mol. Sci. 2017, 18, 1322. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Niu, S.; Di, D.; Shi, L.; Liu, D.; Cao, X.; Miao, H.; Wang, X.-B.; Han, C.; Yu, J.; et al. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR. J. Biotechnol. 2013, 168, 7–14. [Google Scholar] [CrossRef]
- Gines, M.; Baldwin, T.; Rashid, A.; Bregitzer, P.; Maughan, P.J.; Jellen, E.N.; Klos, K.E. Selection of Expression Reference Genes with Demonstrated Stability in Barley among a Diverse Set of Tissues and Cultivars. Crop. Sci. 2018, 58, 332–341. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.; Jiang, Y.; Li, Y.; Zhang, H.; Li, R. Reference genes identification for normalization of qPCR under multiple stresses in Hordeum brevisubulatum. Plant Methods 2018, 14, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.N.; Long, R.C.; Feng, Z.R.; Liu, F.Q.; Yan, S.U.N.; Zhang, K.; Cao, S.H. Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq. J. Integr. Agric. 2018, 17, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, K.; Sun, Y.; Cui, H.; Cao, S.; Yan, L.; Xu, M. Growth, physiology, and transcriptional analysis of Two contrasting Carex rigescens genotypes under Salt stress reveals salt-tolerance mechanisms. J. Plant Physiol. 2018, 229, 77–88. [Google Scholar] [CrossRef]
- Zhang, K.; Cui, H.; Li, M.; Xu, Y.; Cao, S.; Long, R.; Kang, J.; Wang, K.; Hu, Q.; Sun, Y. Comparative time-course transcriptome analysis in contrasting Carex rigescens genotypes in response to high environmental salinity. Ecotoxicol. Environ. Saf. 2020, 194, 110435. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Li, M.; Cao, S.; Sun, Y.; Long, R.; Kang, J.; Cui, H. Selection and validation of reference genes for target gene analysis with quantitative real-time PCR in the leaves and roots of Carex rigescens under abiotic stress. Ecotoxicol. Environ. Saf. 2019, 168, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Kiarash, J.G.; Wilde, H.D.; Amirmahani, F.; Moemeni, M.M.; Zaboli, M.; Nazari, M.; Moosavi, S.S.; Jamalvandi, M. Selection and validation of reference genes for normalization of qRT-PCR gene expression in wheat (Triticum durum L.) under drought and salt stresses. J. Genet. 2018, 97, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Liu, J.-X.; Xing, G.-M.; Sun, S.; Li, S.; Duan, A.-Q.; Wang, F.; Li, M.-Y.; Xu, Z.-S.; Xiong, A.-S. Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ 2019, 7, e7925. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yan, H.; Jiang, X.; Yin, G.; Zhang, X.; Qi, X.; Zhang, Y.; Yan, Y.; Ma, X.; Peng, Y. Identification of Candidate Reference Genes in Perennial Ryegrass for Quantitative RT-PCR under Various Abiotic Stress Conditions. PLoS ONE 2014, 9, e93724. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Wang, L.; Yang, Y.; Wang, P.; Guozhang, K.; Kang, G. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front. Plant Sci. 2015, 6, 458. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, L.; Wu, H.; Jiang, L.; Liu, S. Genome-Wide Identification and Transcriptional Expression Analysis of Cucumber Superoxide Dismutase (SOD) Family in Response to Various Abiotic Stresses. Int. J. Genom. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Satapathy, L.; Kumar, D.; Kumar, M.; Mukhopadhyay, K. Functional and DNA-protein binding studies of WRKY transcription factors and their expression analysis in response to biotic and abiotic stress in wheat (Triticum aestivum L.). 3 Biotech 2018, 8, 40. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Regulation of citrus responses to the combined action of drought and high temperatures depends on the severity of water deprivation. Physiol. Plant. 2018, 162, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Mao, X.; Wang, R.; Li, A.; Zhao, G.; Zhao, J.; Jing, R. Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Dudziak, K.; Sozoniuk, M.; Szczerba, H.; Kuzdraliński, A.; Kowalczyk, K.; Börner, A.; Nowak, M. Identification of stable reference genes for qPCR studies in common wheat (Triticum aestivum L.) seedlings under short-term drought stress. Plant Methods 2020, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.S.; Wang, S.Y.; Du, J.C.; Wu, Z.J.; Li, X.Q.; Bing, H.A. Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress. J. Integr. Agric. 2016, 15, 2097–2104. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Lu, L.; Xie, L.; Chen, X.; Zhang, B. Selection and evaluation of potential reference genes for gene expression analysis in Avena fatua. Plant Prot. Sci. 2018, 55, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Dutta, S.; Biswas, P.; Das, M. Identification of candidate reference genes in tropical bamboos stable across species, tissues, and developmental stages. Biol. Plant. 2019, 63, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Seo, P.J.; Yang, M.-S.; Xiang, F.; Park, C.-M. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol. 2010, 8, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Xie, W.; Yu, X.; Zhang, Z.; Zhao, Y.; Wang, N.; Wang, Y.R. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Siberian Wild Rye (Elymus sibiricus) under Different Experimental Conditions. Genes 2019, 10, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, K.; Shi, Y.; Ma, H. Selection of Candidate Reference Genes for Gene Expression Analysis in Kentucky Bluegrass (Poa pratensis L.) under Abiotic Stress. Front. Plant Sci. 2017, 8, 193. [Google Scholar] [CrossRef]
- Wan, D.; Wan, Y.; Yang, Q.; Zou, B.; Ren, W.; Ding, Y.; Wang, Z.; Wang, R.; Wang, K.; Hou, X. Selection of Reference Genes for qRT-PCR Analysis of Gene Expression in Stipa grandis during Environmental Stresses. PLoS ONE 2017, 12, e0169465. [Google Scholar] [CrossRef]
- Jatav, P.K.; Sharma, A.; Dahiya, D.K.; Khan, A.; Agarwal, A.; Kothari, S.L.; Kachhwaha, S. Identification of suitable internal control genes for transcriptional studies in Eleusine coracana under different abiotic stress conditions. Physiol. Mol. Biol. Plants 2018, 24, 793–807. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Eamens, A.L.; Grof, C.P.L. Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis. Plant Methods 2018, 14, 1–12. [Google Scholar] [CrossRef]
Rank | Total | NaCl | PEG | |||
---|---|---|---|---|---|---|
Gene | SV | Gene | SV | Gene | SV | |
1 | TBP | 0.187 | ADP | 0.138 | PEPKR1 | 0.115 |
2 | ADP | 0.197 | TBP | 0.145 | eIF4A | 0.147 |
3 | eIF4A | 0.205 | ACT7 | 0.170 | TBP | 0.220 |
4 | PEPKR1 | 0.235 | eIF4A | 0.238 | ADP | 0.234 |
5 | ACT7 | 0.278 | PEPKR1 | 0.242 | GAPDH | 0.272 |
6 | EF1a | 0.305 | EF1a | 0.326 | SAND | 0.299 |
7 | SAND | 0.355 | SAND | 0.381 | EF1a | 0.326 |
8 | GAPDH | 0.452 | GAPDH | 0.432 | ACT7 | 0.363 |
9 | TUBa | 0.794 | TUBa | 0.496 | TUBa | 0.793 |
Rank | Total | NaCl | PEG | |||
---|---|---|---|---|---|---|
Gene | Mean SD | Gene | Mean SD | Gene | Mean SD | |
1 | ADP | 0.707 | ADP | 0.624 | ADP | 0.742 |
2 | TBP | 0.733 | TBP | 0.646 | eIF4A | 0.769 |
3 | eIF4A | 0.787 | ACT7 | 0.765 | TBP | 0.787 |
4 | SAND | 0.834 | eIF4A | 0.777 | SAND | 0.824 |
5 | ACT7 | 0.838 | SAND | 0.802 | ACT7 | 0.923 |
6 | EF1a | 0.913 | GAPDH | 0.851 | EF1a | 0.971 |
7 | GAPDH | 0.999 | EF1a | 0.859 | GAPDH | 1.089 |
8 | PEPKR1 | 1.076 | TUBa | 1.001 | PEPKR1 | 1.188 |
9 | TUBa | 1.428 | PEPKR1 | 1.033 | TUBa | 1.425 |
Method | Stability (High→Low) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Total | |||||||||
geNorm | ADP/eIF4A | - | TBP | ACT7 | PEPKR1 | EF1a | SAND | GAPDH | TUBa |
NormFinder | TBP | ADP | eIF4A | PEPKR1 | ACT7 | EF1a | SAND | GAPDH | TUBa |
BestKeeper | TBP | ADP | eIF4A | EF1a | SAND | ACT7 | GAPDH | PEPKR1 | TUBa |
deltaCt | ADP | TBP | eIF4A | SAND | ACT7 | EF1a | GAPDH | PEPKR1 | TUBa |
NaCl | |||||||||
geNorm | ADP/eIF4A | - | TBP | ACT7 | PEPKR1 | EF1a | GAPDH | SAND | TUBa |
NormFinder | ADP | TBP | ACT7 | eIF4A | PEPKR1 | EF1a | SAND | GAPDH | TUBa |
BestKeeper | TBP | ADP | EF1a | eIF4A | ACT7 | SAND | GAPDH | TUBa | PEPKR1 |
deltaCt | ADP | TBP | ACT7 | eIF4A | SAND | GAPDH | EF1a | TUBa | PEPKR1 |
PEG | |||||||||
geNorm | eIF4A/TBP | - | PEPKR1 | GAPDH | ADP | ACT7 | SAND | EF1a | TUBa |
NormFinder | PEPKR1 | eIF4A | TBP | ADP | GAPDH | SAND | EF1a | ACT7 | TUBa |
BestKeeper | TBP | eIF4A | ADP | EF1a | SAND | GAPDH | ACT7 | PEPKR1 | TUBa |
deltaCt | ADP | eIF4A | TBP | SAND | ACT7 | EF1a | GAPDH | PEPKR1 | TUBa |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sozoniuk, M.; Parzymies, M.; Kozak, D.; Ismael, B.S. Carex muskingumensis and Osmotic Stress: Identification of Reference Genes for Transcriptional Profiling by RT-qPCR. Genes 2020, 11, 1022. https://doi.org/10.3390/genes11091022
Sozoniuk M, Parzymies M, Kozak D, Ismael BS. Carex muskingumensis and Osmotic Stress: Identification of Reference Genes for Transcriptional Profiling by RT-qPCR. Genes. 2020; 11(9):1022. https://doi.org/10.3390/genes11091022
Chicago/Turabian StyleSozoniuk, Magdalena, Marzena Parzymies, Danuta Kozak, and Bairam Solomon Ismael. 2020. "Carex muskingumensis and Osmotic Stress: Identification of Reference Genes for Transcriptional Profiling by RT-qPCR" Genes 11, no. 9: 1022. https://doi.org/10.3390/genes11091022
APA StyleSozoniuk, M., Parzymies, M., Kozak, D., & Ismael, B. S. (2020). Carex muskingumensis and Osmotic Stress: Identification of Reference Genes for Transcriptional Profiling by RT-qPCR. Genes, 11(9), 1022. https://doi.org/10.3390/genes11091022