An Agouti-Signaling-Protein Mutation is Strongly Associated with Melanism in European Roe Deer (Capreolus capreolus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Sequencing of Target Genes
2.3. Calculation of Amino Acid Substitution Effect
2.4. Test of Target Mutations
2.5. Statistical Analysis
3. Results
3.1. Amino Acid Substituion
3.2. Result of the Genetic Test
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eizirik, E.; Yuhki, N.; Johnson, W.E.; Menotti-Raymond, M.; Hannah, S.S.; O’Brien, S.J. Molecular genetics and evolution of melanism in the cat family. Curr. Biol. 2003, 13, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Rue, L.L., III. The Deer of North America; Crown Publishers Inc.: New York, NY, USA, 1978; ISBN 978-1592284658. [Google Scholar]
- Cieslak, M.; Reissmann, M.; Hofreiter, M.; Ludwig, A. Colours of domestication. Biol. Rev. 2011, 86, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Brenken, H. Das Schwarze Rehwild; Landbuch Verlagsgesellschaft mbH.: Hannover, Germany, 1982; ISBN 9783784200026. [Google Scholar]
- Brandt, C. Das Schwarze Rehwild; Druck und Verlag von Friedr. Scheel: Kassel, Germany, 1889. [Google Scholar]
- Rees, J.L. Genetics of Hair and Skin Color. Annu. Rev. Genet. 2003, 37, 67–90. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, H. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 2006, 97, 222–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H. Evolutionary and Phylogeographic Views on Mc1r and Asip Variation in Mammals. Genes Genet. Syst. 2013, 88, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kropatsch, R.; Dekomien, G.; Akkad, D.A.; Gerding, W.M.; Petrasch-Parwez, E.; Young, N.D.; Altmüller, J.; Nürnberg, P.; Gasser, R.B.; Epplen, J.T. SOX9 Duplication linked to intersex in deer. PLoS ONE 2013, 8, e73734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieder, S.; Taourit, S.; Mariat, D.; Langlois, B.; Guérin, G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm. Genome 2001, 12, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Royo, L.J.; Alvarez, I.; Fernandez, I.; Arranz, J.J.; Gomez, E.; Goyache, F. The coding sequence of the ASIP gene is identical in nine wild-type coloured cattle breeds. J. Anim. Breed. Genet. 2005, 122, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.; Ren, J.; Ding, N.; Xiao, S.; Huang, L. Genetic variation within coat color genes of MC1R and ASIP Chinese brownish red Tibetan pigs. Anim. Sci. J. 2010, 81, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Norris, B.J.; Whan, V.A. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res. 2008, 18, 1282–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Song, F.; Liang, L.; Nan, H.; Zhang, J.; Liu, H.; Wang, L.E.; Wei, Q.; Lee, J.E.; Amos, C.I.; et al. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum. Mol. Genet. 2013, 22, 2948–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reissmann, M.; Ludwig, A. Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals. Semin. Cell Dev. Biol. 2013, 6–7, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Candille, S.I.; Kaelin, C.B.; Cattanach, B.M.; Yu, B.; Thompson, D.A.; Nix, M.A.; Kerns, J.A.; Schmutz, S.M.; Millhauser, G.L.; Barsh, G.S. A β-defensin mutation causes black coat color in domestic dogs. Science 2007, 318, 1418–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, T.M.; von Holdt, B.M.; Candille, S.I.; Musiani, M.; Greco, C.; Stahler, D.R.; Smith, D.W.; Padhukasahasram, B.; Randi, E.; Leonard, J.A.; et al. Molecular and evolutionary history of melanism in North American gray wolves. Science 2009, 323, 1339–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sponenberg, D.P.; Bellone, R. Equine Color Genetics; Wiley-Blackwell: Hoboken, NJ, USA, 2017; ISBN 978-1-119-13058-1. [Google Scholar]
- Weich, K.; Affolter, V.; York, D.; Rebhun, R.; Grahn, R.; Kallenberg, A.; Bannasch, D. Pigment Intensity in Dogs is Associated with a Copy Number Variant Upstream of KITLG. Genes 2020, 11, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbin, L.J.; Pope, J.; Sanson, J.; Antczak, D.F.; Miller, D.; Sadeghi, R.; Brooks, S.A. An Independent Locus Upstream of ASIP Controls Variation in the Shade of the Bay Coat Colour in Horses. Genes 2020, 11, 606. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhao, B.; Hu, S.; Bao, Z.; Liu, M.; Chen, Y.; Wu, X. Characterization of POU2F1 Gene and Its Potential Impact on the Expression of Genes Involved in Fur Color Formation in Rex Rabbit. Genes 2020, 11, 575. [Google Scholar] [CrossRef] [PubMed]
- Reissmann, M.; Musa, L.; Zakizadeh, S.; Ludwig, A. Distribution of coat-color-associated alleles in the domestic horse population and Przewalski’s horse. J. Appl. Genet. 2016, 57, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Castellanos, E.; Wutke, S.; Gonzalez-Salazar, C.; Ludwig, A. Coat colour adaptation of post-glacial horses to increasing forest vegetation. Nat. Ecol. Evol. 2017, 1, 1816–1819. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence 5′–3′ | Length | Temp. |
---|---|---|---|
MC1R-1 up | CCC ACG GGC CAG GAG GAA | 708 bp | 62 °C |
MC1R-1 low | GCA GGG CGT AGA AGA TGG AGA TGT | ||
MC1R-2 up | GCC ATC GCC AAG AAC CGC AAC C | 944 bp | 63 °C |
MC1R-2 low | ACC ATC TCC CCA GCC TCC TCA TTC | ||
ASIP-A up | GGC ATT ACT GGG GAC CTA TCA AC | 941 bp | 56 °C |
ASIP-A low | CAA CCC TGG CAT GAA AGA ACT A | ||
ASIP-B up | CCC CAA GCC GCT ATC AGG A | 1068 bp | 56 °C |
ASIP-B low | TGC AGA CCT AGA GCC AGA GAC | ||
ASIP-C up | GGG ATA CCG GAA ACA CAA GAC CAT | 469 bp | 56 °C |
ASIP-C low | GGC ATG CAA CCC TGG ACA ATC | ||
ASIP-33-A1 | GAA GCA CAG GCA GGC CAG C | 44 bp | 57 °C |
ASIP-33-A2 | GGA AGC ACA GGC AGG CCA GA | ||
ASIP-33-C | CAG CCG CCT CCT CCT GGC TA |
SNP | Region | Genotype | Black | Chestnut |
---|---|---|---|---|
c.1-270C>A | Promotor | CC | 19 | 4 |
CA | 1 | 0 | ||
c.1-91A>G | Promotor | AA | 14 | 4 |
AG | 6 | 0 | ||
c.33G>T | Exon 1 | GG | 0 | 4 |
TT | 20 | 0 | ||
c.161-170C>A | Intron 1 | CC | 20 | 2 |
CA | 0 | 2 |
Origin | GG | GT | TT | Phenotype |
---|---|---|---|---|
North-West Germany | 281 | Chestnut | ||
25 | Chestnut | |||
11 | Black | |||
United Kingdom | 126 | Chestnut | ||
1 | Chestnut | |||
Saxony-Anhalt Germany | 25 | Chestnut | ||
2 | Black |
Type of Genotype Categories | Nr. of Genotype Categories | Sample | χ2 | p-Value | |
---|---|---|---|---|---|
Contingency table | Independent genotypes | 2: (GG/GT), (TT) | North-West Germany | 341.00 | <1.0 × 10−10 |
United Kingdom | NA * | NA * | |||
Saxony-Anhalt Germany | 27.000 | 2.03 × 10−7 | |||
Pooled | 495.00 | <1.0 × 10−10 | |||
3: (GG), (GT), (TT) | North-West Germany | 341.00 | <1.0 × 10−10 | ||
United Kingdom | NA * | NA * | |||
Saxony-Anhalt Germany | 27.000 | 1.37 × 10−6 | |||
Pooled | 495.00 | <1.0 × 10−10 | |||
Hardy–Weinberg equilibrium | 2: (GG/GT), (TT) | North-West Germany | 1879.1 | <1.0 × 10−10 | |
United Kingdom | 0.00196 ** | 0.9646 ** | |||
Saxony-Anhalt Germany | 362.64 | <1.0 × 10−10 | |||
Pooled | 3792.3 | <1.0 × 10−10 | |||
3: (GG), (GT), (TT) | North-West Germany | 1917.3 | <1.0 × 10−10 | ||
United Kingdom | 0.00198 ** | 0.999 ** | |||
Saxony-Anhalt Germany | 366.66 | <1.0 × 10−10 | |||
Pooled | 3835.0 | <1.0 × 10−10 | |||
By alleles | Alleles: (G), (T) | North-West Germany | 466.43 | <1.0 × 10−10 | |
United Kingdom | NA * | NA * | |||
Saxony-Anhalt Germany | 54.000 | <1.0 × 10−10 | |||
Pooled | 690.23 | <1.0 × 10−10 | |||
Multinomial | Independent genotypes | 2: (GG/GT), (TT) | North-West Germany | 5.75 × 10−47 | |
United Kingdom | NA * | ||||
Saxony-Anhalt Germany | 0.00022 | ||||
Pooled | 1.59 × 10−54 | ||||
3: (GG), (GT), (TT) | North-West Germany | 4.77 × 10−48 | |||
United Kingdom | NA *** | ||||
Saxony-Anhalt Germany | NA *** | ||||
Pooled | 2.22 × 10−56 | ||||
Hardy–Weinberg equilibrium | 2: (GG/GT), (TT) | North-West Germany | 1.66 × 10−59 | ||
United Kingdom | NA *** | ||||
Saxony-Anhalt Germany | 7.37 × 10−6 | ||||
Pooled | 1.19 × 10−84 | ||||
3: (GG), (GT), (TT) | North-West Germany | 9.92 × 10−71 | |||
United Kingdom | NA *** | ||||
Saxony-Anhalt Germany | 1.81 × 10−7 | ||||
Pooled | 1.03 × 10−71 | ||||
By alleles | Alleles: (G), (T) | North-West Germany | 1.16 × 10−70 | ||
United Kingdom | NA *** | ||||
Saxony-Anhalt Germany | 1.30 × 10−7 | ||||
Pooled | 1.21 × 10−84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reissmann, M.; Lutz, W.; Lieckfeldt, D.; Sandoval-Castellanos, E.; Ludwig, A. An Agouti-Signaling-Protein Mutation is Strongly Associated with Melanism in European Roe Deer (Capreolus capreolus). Genes 2020, 11, 647. https://doi.org/10.3390/genes11060647
Reissmann M, Lutz W, Lieckfeldt D, Sandoval-Castellanos E, Ludwig A. An Agouti-Signaling-Protein Mutation is Strongly Associated with Melanism in European Roe Deer (Capreolus capreolus). Genes. 2020; 11(6):647. https://doi.org/10.3390/genes11060647
Chicago/Turabian StyleReissmann, Monika, Walburga Lutz, Dietmar Lieckfeldt, Edson Sandoval-Castellanos, and Arne Ludwig. 2020. "An Agouti-Signaling-Protein Mutation is Strongly Associated with Melanism in European Roe Deer (Capreolus capreolus)" Genes 11, no. 6: 647. https://doi.org/10.3390/genes11060647
APA StyleReissmann, M., Lutz, W., Lieckfeldt, D., Sandoval-Castellanos, E., & Ludwig, A. (2020). An Agouti-Signaling-Protein Mutation is Strongly Associated with Melanism in European Roe Deer (Capreolus capreolus). Genes, 11(6), 647. https://doi.org/10.3390/genes11060647