High-Throughput Genotyping of Resilient Tomato Landraces to Detect Candidate Genes Involved in the Response to High Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phenotypic Evaluation
2.2. Statistical Analysis
2.3. Genotyping Analysis
3. Results
3.1. Phenotypic Analysis
3.2. Selection of Stable-Yielding Genotypes
3.3. GBS Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ainsworth, E.A.; Ort, D.R. How Do We Improve Crop Production in a Warming World? Plant Physiol. 2010, 154, 526–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 024041. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Peet, M.M.; Gardner, R.G. Altered flower retention and developmental patterns in nine tomato cultivars under elevated temperature. Sci. Hortic. 2004, 101, 95–101. [Google Scholar] [CrossRef]
- Warland, J.; McKeown, A.W.; McDonald, M.R. Impact of high air temperatures on Brassicacae crops in southern Ontario. Can. J. Plant Sci. 2006, 86, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Lavell, A.; Oppenheimer, M.; Diop, C.; Hess, J.; Lempert, R.; Li, J.; Myeong, S. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2012; pp. 25–64. [Google Scholar]
- Paupière, M.J.; Van Haperen, P.; Rieu, I.; Visser, R.G.F.; Tikunov, Y.M.; Bovy, A.G. Screening for pollen tolerance to high temperatures in tomato. Euphytica 2017, 213, 130. [Google Scholar] [CrossRef]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [Green Version]
- Massawe, F.; Mayes, S.; Cheng, A. Crop Diversity: An Unexploited Treasure Trove for Food Security. Trends Plant Sci. 2016, 21, 365–368. [Google Scholar] [CrossRef]
- Tieman, D.; Zhu, G.; Resende, M.F.R.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.; Beltran, K.S.O.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Stapley, J.; Reger, J.; Feulner, P.G.D.; Smadja, C.; Galindo, J.; Ekblom, R.; Bennison, C.; Ball, A.D.; Beckerman, A.P.; Slate, J. Adaptation genomics: The next generation. Trends Ecol. Evol. 2010, 25, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tao, Y.; Zheng, Z.; Li, C.; Sweetingham, M.W.; Howieson, J. Application of next-generation sequencing for rapid marker development in molecular plant breeding: A case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genom. 2012, 13, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaubitz, J.C.; Casstevens, T.M.; Lu, F.; Harriman, J.; Elshire, R.; Sun, Q.; Buckler, E.S. TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS ONE 2014, 9, e90346. [Google Scholar] [CrossRef] [PubMed]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef]
- Dodsworth, S.; Chase, M.W.; Sarkinen, T.; Knapp, S.; Leitch, A.R. Using genomic repeats for phylogenomics: A case study in wild tomatoes (Solanum section Lycopersicon: Solanaceae). Biol. J. Linn. Soc. 2015, 117, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, V.; Francese, G.; Sacco, A.; D’Alessandro, A.; Rigano, M.M.; Parisi, M.; Milone, M.; Cardi, T.; Mennella, G.; Barone, A. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014, 14, 337. [Google Scholar] [CrossRef] [Green Version]
- Sacco, A.; Ruggieri, V.; Parisi, M.; Festa, G.; Rigano, M.M.; Picarella, M.E.; Mazzucato, A.; Barone, A. Exploring a Tomato Landraces Collection for Fruit-Related Traits by the Aid of a High-Throughput Genomic Platform. PLoS ONE 2015, 10, e0137139. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, V.; Calafiore, R.; Schettini, C.; Rigano, M.M.; Olivieri, F.; Frusciante, L.; Barone, A. Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes. Agronomy 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Eberhart, S.A.; Russell, W.A. Stability Parameters for Comparing Varieties 1. Crop. Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [Green Version]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drori, E.; Levy, D.; Smirin-Yosef, P.; Rahimi, O.; Salmon-Divon, M. CircosVCF: Circos visualization of whole-genome sequence variations stored in VCF files. Bioinformatics 2017, 33, 1392–1393. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Jegadeesan, S.; Beery, A.; Altahan, L.; Meir, S.; Pressman, E.; Firon, N. Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions. Plant Reprod. 2018, 31, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Marko, D.; El-Shershaby, A.; Carriero, F.; Summerer, S.; Petrozza, A.; Iannacone, R.; Schleiff, E.; Fragkostefanakis, S. Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato. Genes 2019, 10, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, R.K.; Handa, A.K.; Mattoo, A.K. Transcript Abundance Patterns of 9-and 13-Lipoxygenase Subfamily Gene Members in Response to Abiotic Stresses (Heat, Cold, Drought or Salt) in Tomato (Solanum lycopersicum L.) Highlights Member-Specific Dynamics Relevant to Each Stress. Genes 2019, 10, 683. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development. Ann. Bot. 2006, 97, 731–738. [Google Scholar] [CrossRef]
- Mesihovic, A.; Iannacone, R.; Firon, N.; Fragkostefanakis, S. Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reprod. 2016, 29, 93–105. [Google Scholar] [CrossRef]
- Müller, F.; Rieu, I. Acclimation to high temperature during pollen development. Plant Reprod. 2016, 29, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Driedonks, N.; Rutten, M.J.M.; Vriezen, W.H.; De Boer, G.-J.; Rieu, I. Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol. Breed. 2017, 37, 114. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wolters-Arts, M.; Mariani, C.; Huber, H.; Rieu, I. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica 2017, 213, 156. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.L.; Kefauver, S.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating High-Throughput Phenotyping into Genetic Gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J.; Inzé, D.; Nelissen, H.; Saibo, N. Source-Sink Regulation in Crops under Water Deficit. Trends Plant Sci. 2019, 24, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, S.K.; Srivastava, K. Stability Analysis in Tomato Inbreds and Their F1s for Yield and Quality Traits. Agric. Res. 2018, 8, 141–147. [Google Scholar] [CrossRef]
- Ayenan, M.A.T.; Danquah, A.; Hanson, P.; Ampomah-Dwamena, C.; Sodedji, F.A.K.; Asante, I.K.; Danquah, E.Y. Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy 2019, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Driedonks, N.; Wolters-Arts, M.; Huber, H.; De Boer, G.-J.; Vriezen, W.; Mariani, C.; Rieu, I. Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica 2018, 214, 67. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo, M.J.; Li, Y.-C.; Chen, K.-Y.; Gil, D.; Montoro, T.; Náquera, I.; Baixauli, C.; Granell, A.; Monforte Gilabert, A.J. Genetic control of reproductive trraits in tomatoes under high temperature. Front. Plant Sci. 2020, 11, 326. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, F.; Weng, Y.; Sun, M.; Shi, X.; Zhou, Y.; Yu, L.; Wu, Z. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol. 2019, 19, 398–417. [Google Scholar] [CrossRef]
- Hernández-Bautista, A.; Lobato-Ortiz, R.; Cruz-Izquierdo, S.; García-Zavala, J.J.; Chávez-Servia, J.L.; Hernández-Leal, E.; Bonilla-Barrientos, O.; Gainza, F.; Opazo, I.; Munoz, C. Fruit size QTLs affect in a major proportion the yield in tomato. Chil. J. Agric. Res. 2015, 75, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yu, H.; Wang, K.; Zheng, Z.; Liu, L.; Xu, M.; Jiao, Z.; Li, R.; Liu, X.; Li, J.; et al. Detection of major loci associated with the variation of 18 important agronomic traits between Solanum pimpinellifolium and cultivated tomatoes. Plant J. 2018, 95, 312–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfab, A.; Breindl, M.; Grasser, K.D. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes. Plant Mol. Biol. 2018, 96, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Owttrim, G.W. RNA helicases and abiotic stress. Nucleic Acids Res. 2006, 34, 3220–3230. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.Z.; Chen, Y.; Wang, C.; Kong, Y.H.; Wu, W.H.; Chen, Y.F. Arabidopsis RAV 1 transcription factor, phosphorylated by S n RK 2 kinases, regulates the expression of ABI 3, ABI 4, and ABI 5 during seed germination and early seedling development. Plant J. 2014, 80, 654–668. [Google Scholar] [CrossRef]
- Fu, M.; Kang, H.K.; Son, S.-H.; Kim, S.-K.; Nam, K.H. A Subset of Arabidopsis RAV Transcription Factors Modulates Drought and Salt Stress Responses Independent of ABA. Plant Cell Physiol. 2014, 55, 1892–1904. [Google Scholar] [CrossRef] [Green Version]
- Eom, S.; Lee, H.; Lee, J.; Wi, S.; Kim, S.K.; Hyun, T.K. Identification and Functional Prediction of Drought-Responsive Long Non-Coding RNA in Tomato. Agronomy 2019, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Wang, Y.; Liu, X.; Lv, S.; Feng, C.; Qi, M.; Li, T. Small RNA and degradome sequencing reveals microRNAs and their targets involved in tomato pedicel abscission. Planta 2015, 242, 963–984. [Google Scholar] [CrossRef]
- Perrakis, A.; Bita, C.E.; Arhondakis, S.; Krokida, A.; Mekkaoui, K.; Denic, D.; Blazakis, K.; Kaloudas, D.; Kalaitzis, P. Suppression of a Prolyl 4 Hydroxylase Results in Delayed Abscission of Overripe Tomato Fruits. Front. Plant Sci. 2019, 10, 348. [Google Scholar] [CrossRef]
- Yu, C.; Cai, X.; Ye, Z.; Li, H. Genome-wide identification and expression profiling analysis of trihelix gene family in tomato. Biochem. Biophys. Res. Commun. 2015, 468, 653–659. [Google Scholar] [CrossRef]
Trait | Field | Controls | E7 | E8 | E17 | E36 | E37 | E42 | E45 | E53 | E76 | E107 | DOCET |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NFL | C2016 | D | * | ** | ** | * | |||||||
J | * | ** | * | * | |||||||||
C2017 | D | * | * | * | ** | ||||||||
J | * | * | ** | ||||||||||
P2016 | D | * | |||||||||||
J | * | ** | *** | * | * | *** | * | ||||||
P2017 | D | * | * | ** | * | ||||||||
J | * | * | ** | * | |||||||||
FS | C2016 | D | * | * | |||||||||
J | * | ** | * | ** | |||||||||
C2017 | D | * | |||||||||||
J | ** | * | ** | ** | ** | ||||||||
P2016 | D | ** | * | * | ** | * | ** | ** | |||||
J | *** | * | * | ||||||||||
P2017 | D | * | * | ||||||||||
J | |||||||||||||
TNF | C2016 | D | * | ** | * | ** | ** | * | * | ||||
J | ** | * | ** | ** | * | ||||||||
C2017 | D | * | ** | *** | * | * | |||||||
J | *** | ** | ** | *** | * | ||||||||
P2016 | D | ** | ** | * | ** | *** | * | ||||||
J | ** | * | * | ** | *** | ||||||||
P2017 | D | ** | ** | * | |||||||||
J | ** | * | ** | ||||||||||
FW | C2016 | D | * | ** | *** | * | * | *** | * | ** | |||
J | *** | *** | ** | ** | *** | *** | ** | *** | |||||
C2017 | D | *** | *** | *** | *** | *** | *** | *** | |||||
J | * | * | * | * | * | ** | * | ||||||
P2016 | D | *** | *** | *** | *** | *** | *** | * | *** | ||||
J | ** | ** | ** | ** | ** | ** | * | ||||||
P2017 | D | *** | ** | ||||||||||
J | * | *** | ** | * | |||||||||
YP | C2016 | D | *** | *** | *** | ** | |||||||
J | * | ** | * | ** | ** | ** | * | ||||||
C2017 | D | ** | ** | * | * | * | * | ||||||
J | ** | *** | ** | *** | * | ** | *** | ||||||
P2016 | D | ** | * | ||||||||||
J | ** | ** | * | ** | * | * | |||||||
P2017 | D | * | ** | * | |||||||||
J | * | ** | * |
Marker | E7 | E8 | E17 | E36 | E37 | E42 | E45 | E53 | E76 | E107 | DOCET | JAG8810 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP | 93 | 29 | 288 | 11 | 11 | 11,050 | 99 | 47 | 76 | 921 | 51 | 186 |
InDel | 29 | 16 | 55 | 14 | 23 | 1640 | 41 | 36 | 20 | 83 | 57 | 99 |
Type of Mutation | Total Mutations (no.) | Effect on Protein | Affected Genes (no.) | |||
---|---|---|---|---|---|---|
High (no.) | Moderate (no.) | Low (no.) | Modifier (no.) | |||
SNP | 22,594 | 15 | 239 | 252 | 22,088 | 4124 |
InDel | 3519 | 22 | 44 | 24 | 3429 | 1863 |
Total | 26,113 | 37 | 283 | 276 | 25,517 | 5987 |
Gene | Mutation | Position (SL3.0) | Mutated Genotypes | Predicted Effect | Protein Function |
---|---|---|---|---|---|
Solyc01g028980 | InDel | 39,016,299 | E42 | stop_gained | Gamma-tubulin complex component |
SNP | 39,016,322 | E42 | stop_gained | ||
Solyc02g049106 | SNP | 3,958,278 | E8, E17, E36, E42, E53, E76, E107, DOCET | stop_gained | Leucine-rich repeat protein kinase family protein |
Solyc02g086610 | SNP | 49,909,435 | E42 | splice_acceptor_variant and intron_variant | Isocitrate dehydrogenase [NADP] |
Solyc02g087620 | InDel | 50,622,904 | E42 | splice_donor_variant, intron_variant | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase |
Solyc02g087680 | InDel | 50,664,745 | E42 | frameshift_variant | FACT complex subunit SSRP1 |
Solyc02g087690 | SNP | 50,665,049 | E42 | stop_lost, splice_region_variant | FACT complex subunit SSRP1 |
Solyc03g070435 | InDel | 18,418,311 | E8, E53, E76, E107 | frameshift_variant | Alpha-mannosidase |
Solyc03g061655 | InDel | 33,847,933 | E7, E8, E17, E36, E37, E42, E53 | frameshift_variant | Ribosomal protein S12 |
Solyc03g113310 | InDel | 64,961,947 | DOCET, JAG88100 | frameshift_variant | Pseudouridine synthase family protein |
Solyc03g115910 | InDel | 66,978,174 | E8, E53 | frameshift_variant | MADS-box transcription factor |
Solyc04g050890 | SNP | 48,811,041 | E42 | stop_gained | DNA-directed RNA polymerase subunit alpha |
Solyc05g013120 | SNP | 6,223,628 | E36, E37 | stop_gained | Ninja-family protein AFP1 |
Solyc05g015570 | SNP | 11,438,471 | DOCET, JAG88100 | start_lost | UDP-glucose 6-dehydrogenase 1 |
Solyc05g016525 | InDel | 17,404,131 | DOCET, JAG88100 | frameshift_variant | Core-2/I-branching beta-1 |
Solyc05g021410 | InDel | 27,336,522 | E8, E36, E42, E45, E76, E107, DOCET | frameshift_variant | Histone-lysine N-methyltransferase SUVR5 |
Solyc05g025530 | InDel | 33,154,148 | DOCET, JAG88100 | frameshift_variant | DNA-directed RNA polymerase subunit beta |
Solyc05g025540 | SNP | 33,160,167 | DOCET, JAG88100 | stop_gained | Molybdenum cofactor sulfurase |
Solyc05g045790 | SNP | 58,428,505 | DOCET, JAG88100 | splice_donor_variant, intron_variant | Cytochrome c oxidase subunit 2 |
Solyc06g005930 | InDel | 919,488 | E7, E8, E42, E45, E53, E76, DOCET | frameshift_variant | Protein sensitivity to red light reduced 1 |
Solyc06g011663 | SNP | 11,052,789 | E7, E8, E36, E37, E42, E45, E53, E76 | stop_gained | Beta glucosidase 25 |
Solyc06g025415 | InDel | 11,106,015 | E7, E8, E17, E36, E37, E42, E45, E107, DOCET | frameshift_variant | Mediator of RNA polymerase II transcription subunit 14 |
Solyc06g024203 | InDel | 12,303,996 | E8, E17, E36, E42, E53, E76, E107, JAG8810 | frameshift_variant, splice_region_variant | Peroxidase superfamily protein |
Solyc06g084626 | InDel | 49,741,555 | E8, E45, E107, JAG8810 | frameshift_variant | 1-deoxy-D-xylulose 5-phosphate reductoisomerase |
InDel | 49,741,558 | E17, E45, E107, DOCET, JAG8810 | frameshift_variant | ||
Solyc07g004993 | InDel | 4478 | E17, E42, E76, DOCET | start_lost | Phosphatidylinositol N-acetyglucosaminlytransferase subunit P-like protein |
Solyc07g017575 | InDel | 7,582,232 | E42 | stop_gained | Flavin-containing monooxygenase |
Solyc07g021370 | SNP | 17,487,354 | E42 | stop_lost; splice_region_variant | DNA-directed DNA polymerase |
Solyc07g042660 | SNP | 56,308,217 | E42 | splice_acceptor_variant&intron_variant | Helicase SNF2 domain-containing protein |
Solyc07g053565 | InDel | 62,107,933 | E42 | frameshift_variant | NAD(P)H-quinone oxidoreductase subunit 2 |
Solyc10g054967 | SNP | 56,116,455 | E17, E42 | stop_gained | Mediator of RNA polymerase II transcription subunit 20-like protein |
Solyc11g018853 | InDel | 9,702,107 | E42, JAG8810 | frameshift_variant | Adenylate isopentenyltransferase |
Solyc11g020345 | SNP | 10,916,212 | JAG8810 | splice_acceptor_variant and intron_variant | Small nuclear ribonucleoprotein family protein |
Solyc12g038540 | InDel | 51,497,675 | E42 | frameshift_variant, splice_acceptor_variant, splice_region_variant, intron_variant | Transducin/WD40 repeat-like superfamily protein |
Solyc12g038970 | InDel | 52,525,425 | E8, E36, E37, E45, E53, E76, E107, DOCET, JAG8810 | frameshift_variant | EMB1873 protein |
Solyc12g044645 | InDel | 60,656,260 | E42 | frameshift_variant | AP2/B3 transcription factor family protein |
Solyc12g044645 | SNP | 60,656,273 | E42 | stop_lost, splice_region_variant |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivieri, F.; Calafiore, R.; Francesca, S.; Schettini, C.; Chiaiese, P.; Rigano, M.M.; Barone, A. High-Throughput Genotyping of Resilient Tomato Landraces to Detect Candidate Genes Involved in the Response to High Temperatures. Genes 2020, 11, 626. https://doi.org/10.3390/genes11060626
Olivieri F, Calafiore R, Francesca S, Schettini C, Chiaiese P, Rigano MM, Barone A. High-Throughput Genotyping of Resilient Tomato Landraces to Detect Candidate Genes Involved in the Response to High Temperatures. Genes. 2020; 11(6):626. https://doi.org/10.3390/genes11060626
Chicago/Turabian StyleOlivieri, Fabrizio, Roberta Calafiore, Silvana Francesca, Carlo Schettini, Pasquale Chiaiese, Maria Manuela Rigano, and Amalia Barone. 2020. "High-Throughput Genotyping of Resilient Tomato Landraces to Detect Candidate Genes Involved in the Response to High Temperatures" Genes 11, no. 6: 626. https://doi.org/10.3390/genes11060626
APA StyleOlivieri, F., Calafiore, R., Francesca, S., Schettini, C., Chiaiese, P., Rigano, M. M., & Barone, A. (2020). High-Throughput Genotyping of Resilient Tomato Landraces to Detect Candidate Genes Involved in the Response to High Temperatures. Genes, 11(6), 626. https://doi.org/10.3390/genes11060626