Does Divergence in Habitat Breadth Associate with Species Differences in Decision Making in Drosophila sechellia and Drosophila simulans?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drosophila sechellia and Drosophila simulans: Closely Related Fruit Fly Species that Differ Substantially in Habitat Breadth
2.2. Genotypes
2.3. Rearing
2.4. Measuring Environmental Sampling (Exploratory Behavior)
2.5. Measuring Decision Making (Habitat Choice)
2.6. Replication
2.7. Analysis
Exploratory Behavior
2.8. Decision Making
2.9. Measuring and Calculating Habitat Choice
2.10. Decision Making: Species and Sex Differences in Habitat Choice
3. Results
3.1. Sexes, but not Species, Differ in Exploratory Behavior
3.2. Decision Making: Habitat Choice
3.2.1. Species and Genotypes Differ in Habitat Choice
3.2.2. Sex Influences Habitat Choice, with Males Showing Stronger Habitat Choice than Females
3.2.3. A Left-Side Bias Influences Habitat Choice, Particularly for Females
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arganda, S.; Perez-Escudero, A.; De Polavieja, G.G. A common rule for decision making in animal collectives across species. Proc. Natl. Acad. Sci. USA 2012, 109, 20508–20513. [Google Scholar] [CrossRef] [Green Version]
- Blumstein, D.; Bouskila, A. Assessment and Decision Making in Animals: A Mechanistic Model underlying Behavioral Flexibility Can Prevent Ambiguity. Oikos 1996, 77, 569–576. [Google Scholar] [CrossRef]
- Chittka, L.; Skorpupski, P.; Raine, N.E. Speed-accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 2009, 24, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Shettleworth, S.J. Animal cognition and animal behaviour. Anim. Behav. 2001, 61, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.G.; Rodd, F.H. Hastiness, brain size and predation regime affect the performance of wild guppies in a spatial memory task. Anim. Behav. 2008, 76, 911–922. [Google Scholar] [CrossRef]
- Jackson, S.; Nicolson, S.W.; Lotz, C.W. Sugar Preferences and “Side Bias” in Cape Sugarbirds and Lesser Double-Collared Sunbirds. Auk 1998, 115, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Moiron, M.; Mathot, K.J.; Dingemanse, N.J. A multi-level approach to quantify speed-accuracy trade-offs in great tits (Parus Major). Behav. Ecol. 2016, 27, 1539–1546. [Google Scholar] [CrossRef]
- Riebel, K.; Naguib, M.; Gil, D. Experimental manipulation of the rearing environment influences adult female zebra finch song preferences. Anim. Behav. 2009, 78, 1397–1404. [Google Scholar] [CrossRef]
- Rivalan, M.; Valton, V.; Series, P.; Marchand, A.R.; Dellu-Hagedorn, F. Elucidating Poor Decision-Making in a Rat Gambling Task. PLoS ONE 2013, 8, e82052. [Google Scholar] [CrossRef]
- Wood, C.W.; Wice, E.W.; Del Sol, J.; Sanderson, B.J.; Brodie, E.D., 3rd. Constraints Imposed by a Natural Landscape Override Offspring Fitness Effects to Shape Oviposition Decisions in Wild Forked Fungus Beetles. Am. Nat. 2018, 191, 524–538. [Google Scholar] [CrossRef]
- Zentall, T.R.; Stagner, J. Maladaptive choice behaviour by pigeons: An animal analogue and possible mechanism for gambling (sub-optimal human decision-making behaviour). Proc. R. Soc. B 2010, 278. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, K.L.; Grindstaff, J.L.; Pravosudov, V.V. Condition dependence, developmental plasticity, and cognition: Implications for ecology and evolution. Trends Ecol. Evol. 2013, 28, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewitt, T.J.; Sih, A.; Wilson, D.S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 1998, 13, 77–81. [Google Scholar] [CrossRef]
- Ricklefs, R. The Cognitive Face of Avian Life Histories: The 2003 Margaret Morse Nice Lecture. Wilson J. Ornithol. 2004, 116, 119–133. [Google Scholar] [CrossRef]
- Walker, R.; Burger, O.; Wagner, J.; Von Rueden, C.R. Evolution of brain size and juvenile periods in primates. J. Hum. Evol. 2006, 51, 480–489. [Google Scholar] [CrossRef]
- Caine, N.; Mundy, N. Demonstration of a Foraging Advantage for Trichromatic Marmosets (Callithrix geoffroyi) Dependent on Food Colour. Proc. Biol. Sci. 2000, 267, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Caine, N.G.; Osorio, D.; Mundy, N.I. A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity. Biol. Lett. 2010, 6, 36–38. [Google Scholar] [CrossRef] [Green Version]
- Snell-Rood, E.C. An overview of the evolutionary causes and consequences of behavioral plasticity. Anim. Behav. 2013, 85, 1004–1011. [Google Scholar] [CrossRef]
- Reed, T.E.; Waples, R.S.; Schindler, D.E.; Hard, J.J.; Kinnison, M.T. Phenotypic plasticity and population viability: The importance of environmental predictability. Proc. R. Soc. B 2010, 277, 3391–3400. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.D.P.; Blumstein, D.P.; Fowler, J.H.; Haselton, M.G. The evolution of error: Error management, cognitive constraints, and adaptive decision-making biases. Trends Ecol. Evol. 2013, 28, 474–481. [Google Scholar] [CrossRef]
- Garrigan, D.; Kingan, S.B.; Geneva, A.J.; Andolfatto, P.; Clark, A.G.; Thornton, K.R.; Presgraves, D.C. Genome sequencing reveals complex speciation in the Drosophila simulans clade. Genome Res. 2012, 22, 1499–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliman, R.M.; Andolfatto, P.; Coyne, J.A.; Depaulis, F.; Kreitman, M.; Berry, A.J.; McCarter, J.; Wakeley, J.; Hey, J. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 2000, 156, 1913–1931. [Google Scholar] [PubMed]
- Schrider, D.R.; Ayroles, J.; Matute, D.R.; Kern, A.D. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. PLoS Genet 2018, 14, e1007341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.D. The genetics of adaptation in Drosophila sechellia. Genetica 2005, 123, 137. [Google Scholar] [CrossRef]
- Lachaise, D.; David, J.R.; Lemeunier, F.; Tsacas, L. The reproductive relationships of Drosophila sechellia with D. mauritiana, D. simulans, and D. melanogaster from the Afrotropical region. Evolution 1986, 402, 262–271. [Google Scholar]
- R’Kha, S.; Capy, P.; David, J.R. Host-plant specialization in the Drosophila melanogaster species complex: A physiological, behavioral, and genetical analysis. Proc. Natl. Acad. Sci. USA 1990, 88, 1835–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J. Progress and Prospects in Evolutionary Biology: The Drosophila Model; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Matute, D.R.; Gavin-Smyth, J.; Liu, G. Variable post-zygotic isolation in Drosophila melanogaster/D. simulans hybrids. J. Evol. Biol. 2014, 27, 1691–1705. [Google Scholar] [CrossRef]
- Davis, J.M. Preference or desperation? Distinguishing between the natal habitat’s effects on habitat choice. Anim. Behav. 2007, 74, 111–119. [Google Scholar] [CrossRef]
- Beckmann, C.; Biro, P.A. On the Validity of a Single (Boldness) Assay in Personality Research. Ethology 2013, 119, 937–947. [Google Scholar] [CrossRef]
- Guillette, L.M.; Reddon, A.R.; Hurd, P.L.; Sturdy, C.B. Exploration of a novel space is associated with individual differences in learning speed in black-capped chickadees, Poecile atricapillus. Behav. Process. 2009, 82, 265–270. [Google Scholar] [CrossRef]
- Guillette, L.M.; Hahn, A.H.; Hoeschele, M.; Przyslupski, A.; Sturdy, C.B. Individual differences in learning speed, performance accuracy and exploratory behavior in black-capped chickadees. Anim. Cogn. 2015, 18, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Perals, D.; Griffin, A.S.; Bartomeus, I.; Sol, D. Revisiting the open-field test: What does it really tell us about animal personality? Anim. Behav. 2016, 123, 69–79. [Google Scholar] [CrossRef]
- Dworkin, I.; Jones, C.D. Genetic Changes Accompanying the Evolution of Host Specialization in Drosophila sechellia. Genetics 2009, 181, 721–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, T.; Ibba, I.; Siju, K.P.; Stensmyr, M.C.; Hansson, B.S. Olfactory Shifts Parallel Superspecialism for Toxic Fruit in Drosophila melanogaster Sibling, D. sechellia. Curr. Biol. 2006, 16, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibba, I.; Angioy, A.M.; Hansson, B.S.; Dekker, T. Macroglomeruli for fruit odors change blend preference in Drosophila. Sci. Nat. 2010, 97, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Lavista-Llanos, S.; Svatos, A.; Kai, M.; Riemensperger, T.; Birman, S.; Stensmyr, M.C.; Hansson, B.S. Dopamine drives Drosophila sechellia adaptation to its toxic host. eLife 2014, 3, 1–17. [Google Scholar] [CrossRef]
- Prieto-Godino, L.L.; Rytz, R.; Cruchet, S.; Bargeton, B.; Abuin, L.; Silbering, A.F.; Ruta, V.; Peraro, M.D.; Benton, R. Evolution of Acid-Sensing Olfactory Circuits in Drosopholids. Neuron 2017, 93, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Auer, T.O.; Khallaf, M.A.; Silbering, A.F.; Zappia, G.; Ellis, K.; Alvarez-Ocana, R.; Arguello, J.R.; Hansson, B.S.; Jefferis, G.S.X.E.; Caron, S.J.C.; et al. Olfactory receptor and circuit evolution promote host specialization. Nature 2020, 579, 402–434. [Google Scholar] [CrossRef]
- Egan, L.C.; Bloom, P.; Santos, L.R. Choice-induced preferences in the absence of choice: Evidence from a blind two choice paradigm with young children and capuchin monkeys. J. Exp. Soc. Psychol. 2010, 46, 204–207. [Google Scholar] [CrossRef]
- Jozefowiez, J.; Staddon, J.E.R.; Cerutti, D.T. Metacognition in animals: How do we know that they know? Comp. Cogn. Behav. Rev. 2009, 4, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Roche, J.P.; Timberlake, W.; McCloud, C. Sensitivity to variability in food amount: Risk aversion is seen in discrete-choice, but not in free-choice, trials. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Catania, A.C.; Sagvolden, T. Preference for free choice over forced choice in pigeons. J. Exp. Anal. Behav. 1980, 34, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Therneau, T. coxme: Mixed Effects Cox Models 2018. Available online: https://cran.r-project.org/web/packages/coxme/vignettes/coxme.pdf (accessed on 8 May 2020).
- Pankratz, V.S.; De Andrade, M.; Therneau, T.M. Random-effects Cox proportional hazards model: General variance components methods for time-to-event data. Genet. Epidemiol. 2005, 28, 97–109. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; SAGE Publications: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2008, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Saltz, J.B.; Foley, B.R. Natural Genetic Variation in Social Niche Construction: Social Effects of Aggression Drive Disruptive Sexual Selection in Drosophila Melanogaster. Am. Nat. 2011, 177, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Saltz, J.B. Genetic composition of social groups influences male aggressive behaviour and fitness in natural genotypes of Drosophila melanogaster. Proc. R. Soc. B 2013, 280, 20131926. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.; Chichery, R.; Boal, J.G.; Dickel, L. Orientation in the cuttlefish Sepia officinalis: Response versus place learning. Anim. Cogn. 2007, 10, 29–36. [Google Scholar] [CrossRef]
- Kight, S.L.; Steelman, L.; Coffey, G.; Lucente, J.; Castillo, M. Evidence of population-level lateralized behaviour in giant water bugs, Belostoma flumineum Say (Heteroptera: Belostomatidae): T-maze turning is left biased. Behav. Process. 2008, 79, 66–69. [Google Scholar] [CrossRef]
- Collins, R.L. When left-handed mice live in right-handed worlds. Science 1975, 187, 181–184. [Google Scholar] [CrossRef]
- Andrade, C.; Alwarshetty, M.; Sudha, S.; Suresh Chandra, J. Effect of innate direction bias on T-maze learning in rats: Implications for research. J. Neurosci. Methods 2001, 110, 31–35. [Google Scholar] [CrossRef]
- Castellano, M.A.; Diaz-Palarea, M.D.; Rodriguez, M.; Barroso, J. Lateralization in male rats and dopaminergic system: Evidence of right-side population bias. Physiol. Behav. 1987, 40, 607–612. [Google Scholar] [CrossRef]
- Glick, S.D.; Ross, D.A. Lateralization of function in the rat brain. Trends Neurosci. 1981, 4, 196–199. [Google Scholar] [CrossRef]
- Sherman, G.F.; Garbanati, J.A.; Rosen, G.D.; Yutzey, D.A.; Denenberg, V.H. Brain and Behavioral Asymmetries for Spatial Preference in Rats. Brain Res. 1980, 192, 61–67. [Google Scholar] [CrossRef]
- Doria, M.D.; Morand-Ferron, J.; Bertram, S.M. Spatial cognitive performance is linked to thigmotaxis in field crickets. Anim. Behav. 2019, 150, 15–25. [Google Scholar] [CrossRef]
- Anfora, G.; Frasnelli, E.; Maccagnani, B.; Rogers, L.J.; Vallortigara, G. Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav. Brain Res. 2009, 206, 236–239. [Google Scholar] [CrossRef]
- Letzkus, P.; Ribi, W.A.; Wood, J.T.; Zhu, H.; Zhang, S.W.; Srinivasan, M.V. Lateralization of Olfaction in the Honeybee Apis mellifera. Curr. Biol. 2006, 16, 1471–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallortigara, G.; Andrew, R.J. Olfactory lateralization in the chick. Neuropsychologia 1994, 32, 417–423. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J. Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 2005, 575–633. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burns, M.P.; Cavallaro, F.D.; Saltz, J.B. Does Divergence in Habitat Breadth Associate with Species Differences in Decision Making in Drosophila sechellia and Drosophila simulans? Genes 2020, 11, 528. https://doi.org/10.3390/genes11050528
Burns MP, Cavallaro FD, Saltz JB. Does Divergence in Habitat Breadth Associate with Species Differences in Decision Making in Drosophila sechellia and Drosophila simulans? Genes. 2020; 11(5):528. https://doi.org/10.3390/genes11050528
Chicago/Turabian StyleBurns, Madeline P., Frederick D. Cavallaro, and Julia B. Saltz. 2020. "Does Divergence in Habitat Breadth Associate with Species Differences in Decision Making in Drosophila sechellia and Drosophila simulans?" Genes 11, no. 5: 528. https://doi.org/10.3390/genes11050528