Next Article in Journal
The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy
Next Article in Special Issue
Does Divergence in Habitat Breadth Associate with Species Differences in Decision Making in Drosophila Sechellia and Drosophila Simulans?
Previous Article in Journal
Erratum: The Role of Plasticity and Adaptation in the Incipient Speciation of a Fire Salamander Population (Genes 2019, 10, 875)
Previous Article in Special Issue
Dissecting the Genetic Basis of Variation in Drosophila Sleep Using a Multiparental QTL Mapping Resource
Open AccessArticle

Combining Experimental Evolution and Genomics to Understand How Seed Beetles Adapt to a Marginal Host Plant

1
Department of Biology, Utah State University, Logan, UT 84322, USA
2
Department of Zoology, Stockholm University, 114 19 Stockholm, Sweden
3
Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Genes 2020, 11(4), 400; https://doi.org/10.3390/genes11040400
Received: 7 March 2020 / Revised: 1 April 2020 / Accepted: 1 April 2020 / Published: 8 April 2020
(This article belongs to the Special Issue Genetic Basis of Phenotypic Variation in Drosophila and Other Insects)
Genes that affect adaptive traits have been identified, but our knowledge of the genetic basis of adaptation in a more general sense (across multiple traits) remains limited. We combined population-genomic analyses of evolve-and-resequence experiments, genome-wide association mapping of performance traits, and analyses of gene expression to fill this knowledge gap and shed light on the genomics of adaptation to a marginal host (lentil) by the seed beetle Callosobruchus maculatus. Using population-genomic approaches, we detected modest parallelism in allele frequency change across replicate lines during adaptation to lentil. Mapping populations derived from each lentil-adapted line revealed a polygenic basis for two host-specific performance traits (weight and development time), which had low to modest heritabilities. We found less evidence of parallelism in genotype-phenotype associations across these lines than in allele frequency changes during the experiments. Differential gene expression caused by differences in recent evolutionary history exceeded that caused by immediate rearing host. Together, the three genomic datasets suggest that genes affecting traits other than weight and development time are likely to be the main causes of parallel evolution and that detoxification genes (especially cytochrome P450s and beta-glucosidase) could be especially important for colonization of lentil by C. maculatus. View Full-Text
Keywords: plant-insect interaction; host shift; parallel evolution; detoxification; experimental evolution; population genomics; genome-wide association mapping; gene expression; Callosobruchus maculatus plant-insect interaction; host shift; parallel evolution; detoxification; experimental evolution; population genomics; genome-wide association mapping; gene expression; Callosobruchus maculatus
Show Figures

Figure 1

MDPI and ACS Style

Rêgo, A.; Chaturvedi, S.; Springer, A.; Lish, A.M.; Barton, C.L.; Kapheim, K.M.; Messina, F.J.; Gompert, Z. Combining Experimental Evolution and Genomics to Understand How Seed Beetles Adapt to a Marginal Host Plant. Genes 2020, 11, 400.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop