A Model of Hormonal Regulation of Stamen Abortion during Pre-Meiosis of Litsea cubeba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Microscopice and Histological Observations
2.3. Scanning Electron Microscopy (SEM)
2.4. Total RNA Extraction and Sequencing
2.5. De Novo Assembly, Unigene Annotation and Functional Classification
2.6. Differentially Expressed Gene (DEG) Analysis
2.7. Network Analysis of SA Biosynthesis and Signaling Pathway
2.8. qRT-PCR Verification of Transcriptome
2.9. The Detection of Phytohormone Levels
2.10. Statistical Analysis
3. Results
3.1. Degenerative Organ Formation of Female and Male Flowers in L. cubeba
3.2. De Novo Assembly of the Transcriptome and Functional Annotation
3.3. Enrichment Analysis of DEGs in Female and Male Flower
3.4. Phytohormone Levels in Male and Female Flowers of L. cubeba
3.5. Candidate Genes Involved in Stamen Developmentin L. cubeba
3.6. Co-Expression Networks Involved in the Staminodes of Female Flowers
4. Discussion
4.1. L. cubeba as a Model for Stamens Abortion during Pre-Meiosis in L. cubeba
4.2. Plant Hormones are Involved in Develpmental Processof Female and Male Flowers in L. cubeba
4.3. GA or SA Mediates the Degeneration of Stamens of Female in L. cubeba
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tanurdzic, M.; Banks, J.A. Sex-determining mechanisms in land plants. Plant Cell 2004, 16, 61–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akagi, T.; Henry, I.M.; Ohtani, H.; Morimoto, T.; Beppu, K.; Kataoka, I.; Tao, R. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell 2018, 30, 780–795. [Google Scholar] [CrossRef] [PubMed]
- Diggle, P.K.; Di Stilio, V.S.; Gschwend, A.R.; Golenberg, E.M.; Moore, R.C.; Russell, J.R.W.; Sinclair, J.P. Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet. 2011, 27, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Coito, J.L.; Ramos, M.J.N.; Cunha, J.; Silva, H.G.; Amâncio, S.; Costa, M.M.R.; Rocheta, M. VviAPRT3 and VviFSEX: Two genes involved in sex specification able to distinguish different flower types in vitis. Front. Plant Sci. 2017, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sather, D.N.; Jovanovic, M.; Golenberg, E.M. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. BMC Plant Biol. 2010, 10, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobral, R.; Silva, H.G.; Morais-Cecílio, L.; Costa, M.M.R. The Quest for Molecular Regulation Underlying Unisexual Flower Development. Front. Plant Sci. 2016, 7, 160. [Google Scholar] [CrossRef] [Green Version]
- Aryal, R.; Ming, R. Sex determination in flowering plants: Papaya as a model system. Plant Sci. 2014, 217–218, 56–62. [Google Scholar] [CrossRef]
- Boualem, A.; Fergany, M.; Fernandez, R.; Troadec, C.; Martin, A.; Morin, H.; Sari, M.A.; Collin, F.; Flowers, J.M.; Pitrat, M.; et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 2008, 321, 836–838. [Google Scholar] [CrossRef]
- Martin, A.; Troadec, C.; Boualem, A.; Rajab, M.; Fernandez, R.; Morin, H.; Pitrat, M.; Dogimont, C.; Bendahmane, A. A transposon-induced epigenetic change leads to sex determination in melon. Nature 2009, 461, 1135–1138. [Google Scholar] [CrossRef]
- Boualem, A.; Troadec, C.; Camps, C.; Lemhemdi, A.; Morin, H.; Sari, M.A.; Fraenkel-Zagouri, R.; Kovalski, I.; Dogimont, C.; Perl-Treves, R.; et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 2015, 350, 688–691. [Google Scholar] [CrossRef]
- Akagi, T.; Henry, I.M.; Tao, R.; Comai, L. A y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 2014, 346, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.E.; Van der Hulst, R.; Ayyampalayam, S.; Mercati, F.; Riccardi, P.; McKain, M.R.; Kakrana, A.; et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 2017, 8, 1279. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Pilkington, S.M.; Varkonyi-Gasic, E.; Henry, I.M.; Sugano, S.S.; Sonoda, M.; Firl, A.; McNeilage, M.A.; Douglas, M.J.; Wang, T.; et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 2019, 5, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Liu, W.; Chen, X.; Xu, Y.; Lu, W.; Hou, J.; Ni, J.; Wang, Y.; Wu, L. Flower development and sex determination between male and female flowers in Vernicia fordii. Front. Plant Sci. 2017, 8, 1291. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Han, X.; Chen, Y.; Wu, Q.; Wang, Y. Identification of appropriate reference genes for normalizing transcript expression by quantitative real-time PCR in Litsea cubeba. Mol. Genet. Genomics 2013, 288, 727–737. [Google Scholar] [CrossRef]
- Guo, Q.; Zeng, K.; Gao, X.; Zhu, Z.; Zhang, S.; Chai, X.; Tu, P. Chemical constituents with NO production inhibitory and cytotoxic activities from Litsea cubeba. J. Nat. Med. 2014, 69, 94–99. [Google Scholar] [CrossRef]
- Gao, M.; Chen, Y.; Wu, L.; Wang, Y. Changes in the Profiles of Yield, Yield Component, Oil Content, and Citral Content in Litsea cubeba (Lour.) Persoon Following Foliar Fertilization with Zinc and Boron. Forests 2019, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Sandvik, S.M.; Totland, Ø. Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions. Can. J. Bot. 2003, 81, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.L.; Wang, Y.D.; Chen, Y.C.; Gao, M.; Xu, G.B.; He, G.S. Observation of the morphological and anatomical characteristics of male flower bud development in Litsea cubeba (lour.) Per. Plant Sci. J. 2017, 35, 152–163. [Google Scholar]
- He, W.; Chen, Y.; Gao, M.; Zhao, Y.; Xu, Z.; Cao, P.; Zhang, Q.; Jiao, Y.; Li, H.; Wu, L.; et al. Transcriptome analysis of Litsea cubeba floral buds reveals the role of hormones and transcription factors in the differentiation process. G3 Genes Genomes Genet. 2018, 8, 1103–1114. [Google Scholar]
- Ye, C. Botany Experimental Guidance; Tsinghua University Press: Beijing, China, 2012. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2014, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Grant, S.; Hunkirchen, B.; Saedler, H. Developmental differences between male and female flowers in the dioecious plant Silene latifolia. Plant J. 1994, 6, 471–480. [Google Scholar] [CrossRef]
- Heikrujam, M.; Sharma, K.; Prasad, M.; Agrawal, V. Review on different mechanisms of sex determination and sex-linked molecular markers in dioecious crops: A current update. Euphytica 2015, 201, 161–194. [Google Scholar] [CrossRef]
- Ghadge, A.G.; Karmakar, K.; Devani, R.S.; Banerjee, J.; Mohanasundaram, B.; Sinha, R.K.; Sinha, S.; Banerjee, A.K. Flower development, pollen fertility and sex expression analyses of three sexual phenotypes of Coccinia grandis. BMC Plant Biol. 2014, 14, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Boualem, A.; Bendahmane, A.; Ming, R. Genomics of sex determination. Curr. Opin. Plant Biol. 2014, 18, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhou, L.; Liu, J.; Cao, Z.; Du, X.; Huang, F.; Pan, G.; Cheng, F. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Rep. 2018, 37, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Lunde, C.; Kimberlin, A.; Leiboff, S.; Koo, A.J.; Hake, S. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Commun. Biol. 2019, 2, 114. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, J.; Li, S.; Cui, Q.; Zhang, H.; Xin, F.; Wang, H.; Lin, T.; Gao, D.; Wang, S.; et al. An ACC Oxidase Gene Essential for Cucumber Carpel Development. Mol. Plant 2016, 9, 1315–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Tian, L.; Sun, M.X.; Huang, X.Y.; Zhu, J.; Guan, Y.F.; Jia, Q.S.; Yang, Z.N. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol. 2013, 162, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Murmu, J.; Bush, M.J.; de Long, C.; Li, S.; Xu, M.; Khan, M.; Malcolmson, C.; Fobert, P.R.; Zachgo, S.; Hepworth, S.R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 2010, 154, 1492–1504. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, Z.; Biener, G.; Xiong, E.; Malik, S.; Eaton, N.; Zhao, C.Z.; Raicu, V.; Kong, H.; Zhao, D. Carbonic anhydrases function in anther cell differentiation downstream of the receptor-like kinase EMS1. Plant Cell 2017, 29, 1335–1356. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Xu, C.; Movahedi, A.; Sun, W.; Li, D.; Zhuge, Q. Characterization and Function of 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Populus trichocarpa: Overexpression of PtHMGR Enhances Terpenoids in Transgenic Poplar. Front. Plant Sci. 2019, 10, 1476. [Google Scholar] [CrossRef]
- Dempsey, D.A.; Vlot, A.C.; Wildermuth, M.C.; Klessig, D.F. Salicylic Acid Biosynthesis and Metabolism. Arab. Book 2011, 9, e0156. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Zhang, D. Roles of jasmonate signalling in plant inflorescence and flower development. Curr. Opin. Plant Biol. 2015, 27, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Stokes, T.S.; Croker, S.J.; Hanke, D.E. Developing Inflorescences of Male and Female Rumex acetosa L. Show Differences in Gibberellin Content. J. Plant Growth Regul. 2003, 22, 228–239. [Google Scholar] [CrossRef]
- Hou, X.; Hu, W.W.; Shen, L.; Lee, L.Y.C.; Tao, Z.; Han, J.H.; Yu, H. Global identification of DELLA target genes during arabidopsis flower development. Plant Physiol. 2008, 147, 1126–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.B.; Jin, Y.H.; Lee, J.; Miura, K.; Yoo, C.Y.; Kim, W.Y.; Van Oosten, M.; Hyun, Y.; Somers, D.E.; Lee, I.; et al. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J. 2008, 53, 530–540. [Google Scholar] [CrossRef] [Green Version]
- Seyfferth, C.; Tsuda, K. Salicylic acid signal transduction: The initiation of biosynthesis, perception and transcriptional reprogramming. Front. Plant Sci. 2014, 5, 697. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Amornsiripanitch, N.; Dong, X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog. 2006, 2, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
Degraded Stages | Species | Regulatory Patterns | Reference | |
---|---|---|---|---|
Male | Female | |||
Stage 0 (before sex organs primordium) | NA | Spinacia oleracea Thalictrum dioicum Quercus suber Populus tomentosa | Male flowers are regulated by B-class gene in Spinacia oleracea. | [5,6,7] |
Stage 1 (in the early development of sex organs primordium) | Cucumis melo Cucumis sativus Zea mays | Cucumis sativus Cucumis melo Kiwifruit | Regulation of ethylene synthesis pathway and DNA methylation in Cucumis melo; The SyGI gene inhibits carpel development in Kiwifruit. | [2,6,8,9,10] |
Stage 2 (pre-meiosis) | NA | Asparagus officinalis Silene latifolia Diospyros lotus | NA | [6] |
Stage 3 (post-meiosis) | Diospyros lotus Vitis vinifera Kiwifruit | Asparagus officinalis Vitis vinifera Vernicia fordii | Epigenetic regulation (sRNA) in Diospyros lotus; The two-mutation model in Asparagus officinalis; the FrBy acts for the maintenance of male functions in Kiwifruit | [6,11,12,13,14] |
Sample | Pathway ID | Pathway | Q-Value |
---|---|---|---|
MM (15,248) | ko01100 | Metabolic pathways | 0.000000 |
ko00500 | Starch and sucrose metabolism | 0.000000 | |
ko01110 | Biosynthesis of secondary metabolites | 0.000000 | |
ko00940 | Phenylpropanoid biosynthesis | 0.000000 | |
ko04712 | Circadian rhythm-plant | 0.000001 | |
ko00941 | Flavonoid biosynthesis | 0.000002 | |
ko04075 | Plant hormone signal transduction | 0.000066 | |
ko00860 | Porphyrin and chlorophyll metabolism | 0.000820 | |
ko00942 | Anthocyanin biosynthesis | 0.006066 | |
ko00945 | Stilbenoid, diarylheptanoid and gingerol biosynthesis | 0.006066 | |
FF (7928) | ko04075 | Plant hormone signal transduction | 0.000000 |
ko00940 | Phenylpropanoid biosynthesis | 0.000003 | |
ko00941 | Flavonoid biosynthesis | 0.000005 | |
ko03010 | Ribosome | 0.000666 | |
ko03440 | Homologous recombination | 0.008624 | |
ko00902 | Monoterpenoid biosynthesis | 0.008624 | |
ko00073 | Cutin, suberine and wax biosynthesis | 0.009764 | |
FM12 (F1,160) | ko04075 | Plant hormone signal transduction | 0.000000 |
ko00941 | Flavonoid biosynthesis | 0.000004 | |
ko00514 | Other types of O-glycan biosynthesis | 0.000086 | |
FM12 (M8,616) | ko01100 | Metabolic pathways | 0.000000 |
ko00500 | Starch and sucrose metabolism | 0.000082 | |
ko00941 | Flavonoid biosynthesis | 0.000669 | |
ko00940 | Phenylpropanoid biosynthesis | 0.000669 | |
ko01110 | Biosynthesis of secondary metabolites | 0.001530 | |
ko00195 | Photosynthesis | 0.005490 | |
ko00860 | Porphyrin and chlorophyll metabolism | 0.008780 | |
FM23 (F4,485) | ko03010 | Ribosome | 0.000000 |
ko03440 | Homologous recombination | 0.005823 | |
FM23 (M9,886) | ko00500 | Starch and sucrose metabolism | 0.000000 |
ko01100 | Metabolic pathways | 0.000000 | |
ko00195 | Photosynthesis | 0.000779 | |
ko04712 | Circadian rhythm-plant | 0.001618 | |
ko00051 | Fructose and mannose metabolism | 0.004187 | |
ko00910 | Nitrogen metabolism | 0.005636 | |
ko01212 | Fatty acid metabolism | 0.005636 | |
ko00030 | Pentose phosphate pathway | 0.009996 |
Hormones | Male Flowers Stages | Female Flowers Stages | |||||
---|---|---|---|---|---|---|---|
M1 | M2 | M3 | F1 | F2 | F3 | ||
IAA | IAA | 3.67 ± 0.09a | 2.35 ± 0.06b | 1.28 ± 0.06e | 1.68 ± 0.04d | 1.94 ± 0.03c | 1.24 ± 0.06e |
SAs | SA | 4.20 ± 0.16c | 3.12 ± 0.04d | 1.15 ± 0.05e | 5.02 ± 0.20b | 11.05 ± 0.12a | 4.70 ± 0.38b |
MESA | 0.08 ± 0.01a | 0.06 ± 0.01a | 0.08 ± 0.02a | 0.08 ± 0.01a | 0.08 ± 0.01a | 0.06 ± 0.01a | |
JAs | JA | 0.84 ± 0.05b | 0.33 ± 0.06d | 0.43 ± 0.03cd | 0.93 ± 0.08b | 1.67 ± 0.07a | 0.55 ± 0.08c |
MEJA | 2.45 ± 0.17b | 1.27 ± 0.07d | 2.09 ± 0.08c | 2.93 ± 0.12a | 0.95 ± 0.15d | 0.42 ± 0.11e | |
GAs | GA1 | ND | ND | ND | ND | ND | ND |
GA3 | 2.45 ± 0.11d | 2.84 ± 0.07c | 2.40 ± 0.05d | 3.59 ± 0.05a | 3.32 ± 0.04b | 2.71 ± 0.07c | |
GA4 | 0.08 ± 0.01bcd | 0.12 ± 0.01a | 0.05 ± 0.01d | 0.11 ± 0.02ab | 0.06 ± 0.01bcd | 0.09 ± 0.01abc | |
GA7 | ND | ND | ND | ND | ND | ND | |
ACC | ACC | 31.22 ± 0.51d | 86.54 ± 2.23a | 55.06 ± 0.86b | 24.67 ± 0.10e | 42.65 ± 2.55c | 33.84 ± 3.55d |
CTK | TZR | 0.50 ± 0.01d | 0.33 ± 0.00e | 0.55 ± 0.00c | 0.50 ± 0.00d | 1.09 ± 0.01b | 1.19 ± 0.01a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Wang, Y.; Chen, Y.; Yin, H.; Wu, L.; Zhao, Y.; Wang, M.; Gao, M. A Model of Hormonal Regulation of Stamen Abortion during Pre-Meiosis of Litsea cubeba. Genes 2020, 11, 48. https://doi.org/10.3390/genes11010048
Xu Z, Wang Y, Chen Y, Yin H, Wu L, Zhao Y, Wang M, Gao M. A Model of Hormonal Regulation of Stamen Abortion during Pre-Meiosis of Litsea cubeba. Genes. 2020; 11(1):48. https://doi.org/10.3390/genes11010048
Chicago/Turabian StyleXu, Zilong, Yangdong Wang, Yicun Chen, Hengfu Yin, Liwen Wu, Yunxiao Zhao, Minyan Wang, and Ming Gao. 2020. "A Model of Hormonal Regulation of Stamen Abortion during Pre-Meiosis of Litsea cubeba" Genes 11, no. 1: 48. https://doi.org/10.3390/genes11010048
APA StyleXu, Z., Wang, Y., Chen, Y., Yin, H., Wu, L., Zhao, Y., Wang, M., & Gao, M. (2020). A Model of Hormonal Regulation of Stamen Abortion during Pre-Meiosis of Litsea cubeba. Genes, 11(1), 48. https://doi.org/10.3390/genes11010048