Synthetic DNA and RNA Programming
Abstract
1. Expanding the Genetic Code
2. Genetic Code Evolution
3. Novel Genetic Systems and Molecular Tools
4. RNA Programming
Funding
Acknowledgments
Conflicts of Interest
References
- Berg, M.D.; Genereaux, J.; Zhu, Y.; Mian, S.; Gloor, G.B.; Brandl, C.J. Acceptor stem differences contribute to species-specific use of yeast and human tRNASer. Genes 2018, 9, 612. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, U.M.; Hendrickson, T.L. Bacterial aspartyl-tRNA synthetase has glutamyl-tRNA synthetase activity. Genes 2019, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.S.; Crnkovic, A.; Söll, D. Versatility of synthetic tRNAs in genetic code expansion. Genes 2018, 9, 537. [Google Scholar] [CrossRef] [PubMed]
- Gang, D.; Kim, D.W.; Park, H.S. Cyclic peptides: Promising scaffolds for biopharmaceuticals. Genes 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Schwark, D.G.; Schmitt, M.A.; Fisk, J.D. Dissecting the contribution of release factor interactions to amber stop codon reassignment efficiencies of the Methanocaldococcus jannaschii orthogonal pair. Genes 2018, 9, 546. [Google Scholar] [CrossRef] [PubMed]
- Umehara, T.; Kosono, S.; Söll, D.; Tamura, K. Lysine acetylation regulates alanyl-tRNA synthetase activity in Escherichia coli. Genes 2018, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Balasuriya, N.; McKenna, M.; Liu, X.; Li, S.S.C.; O’Donoghue, P. Phosphorylation-dependent inhibition of Akt1. Genes 2018, 9, 450. [Google Scholar] [CrossRef]
- Chen, A.W.; Jayasinghe, M.I.; Chung, C.Z.; Rao, B.S.; Kenana, R.; Heinemann, I.U.; Jackman, J.E. The role of 3′ to 5′ reverse RNA polymerization in tRNA fidelity and repair. Genes 2019, 10, 250. [Google Scholar] [CrossRef] [PubMed]
- Turk, M.A.; Chung, C.Z.; Manni, E.; Zukowski, S.A.; Engineer, A.; Badakhshi, Y.; Bi, Y.; Heinemann, I.U. MiRAR-miRNA activity reporter for living cells. Genes 2018, 9, 305. [Google Scholar] [CrossRef]
- Chen, H.; Venkat, S.; Wilson, J.; McGuire, P.; Chang, A.L.; Gan, Q.; Fan, C. Genome-wide quantification of the effect of gene overexpression on Escherichia coli growth. Genes 2018, 9, 414. [Google Scholar] [CrossRef]
- Gordon, Z.B.; Soltysiak, M.P.M.; Leichthammer, C.; Therrien, J.A.; Meaney, R.S.; Lauzon, C.; Adams, M.; Lee, D.K.; Janakirama, P.; Lachance, M.A.; et al. Development of a transformation method for Metschnikowia borealis and other CUG-serine yeasts. Genes 2019, 10, 78. [Google Scholar] [CrossRef]
- Diwo, C.; Budisa, N. Alternative biochemistries for alien life: Basic concepts and requirements for the design of a robust biocontainment system in genetic isolation. Genes 2018, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Brock, A.; Herberich, B.; Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 2001, 292, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.E.; Altaany, Z.; Bi, Y.; Alperstein, Z.; O’Donoghue, P. Acetylation regulates thioredoxin reductase oligomerization and activity. Antioxid. Redox Signal. 2018, 29, 377–388. [Google Scholar] [CrossRef]
- Wan, W.; Huang, Y.; Wang, Z.; Russell, W.K.; Pai, P.J.; Russell, D.H.; Liu, W.R. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew. Chem. Int. Ed. 2010, 49, 3211–3214. [Google Scholar] [CrossRef] [PubMed]
- Blight, S.K.; Larue, R.C.; Mahapatra, A.; Longstaff, D.G.; Chang, E.; Zhao, G.; Kang, P.T.; Green-Church, K.B.; Chan, M.K.; Krzycki, J.A. Direct charging of tRNACUA with pyrrolysine in vitro and in vivo. Nature 2004, 431, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Polycarpo, C.; Ambrogelly, A.; Berube, A.; Winbush, S.M.; McCloskey, J.A.; Crain, P.F.; Wood, J.L.; Söll, D. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc. Natl. Acad. Sci. USA 2004, 101, 12450–12454. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Hohn, M.J.; Umehara, T.; Guo, L.T.; Osborne, E.M.; Benner, J.; Noren, C.J.; Rinehart, J.; Söll, D. Expanding the genetic code of Escherichia coli with phosphoserine. Science 2011, 333, 1151–1154. [Google Scholar] [CrossRef]
- Crick, F.H. The origin of the genetic code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef]
- Lant, J.T.; Berg, M.D.; Heinemann, I.U.; Brandl, C.J.; O’Donoghue, P. Pathways to disease from natural variations in human cytoplasmic tRNAs. J. Biol. Chem. 2019, 294, 5294–5308. [Google Scholar] [CrossRef]
- Mandell, D.J.; Lajoie, M.J.; Mee, M.T.; Takeuchi, R.; Kuznetsov, G.; Norville, J.E.; Gregg, C.J.; Stoddard, B.L.; Church, G.M. Biocontainment of genetically modified organisms by synthetic protein design. Nature 2015, 518, 55–60. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Donoghue, P.; Heinemann, I.U. Synthetic DNA and RNA Programming. Genes 2019, 10, 523. https://doi.org/10.3390/genes10070523
O’Donoghue P, Heinemann IU. Synthetic DNA and RNA Programming. Genes. 2019; 10(7):523. https://doi.org/10.3390/genes10070523
Chicago/Turabian StyleO’Donoghue, Patrick, and Ilka U. Heinemann. 2019. "Synthetic DNA and RNA Programming" Genes 10, no. 7: 523. https://doi.org/10.3390/genes10070523
APA StyleO’Donoghue, P., & Heinemann, I. U. (2019). Synthetic DNA and RNA Programming. Genes, 10(7), 523. https://doi.org/10.3390/genes10070523