Functional Ultrastructure of the Excretory Gland Cell in Zoonotic Anisakids (Anisakidae, Nematoda)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Identification of the Larval and Adult Anisakidae
2.2. Confocal Microscopy of the Excretory Cell of Anisakis sp. Third-Stage Larvae
2.3. Ultrastructure of the Excretory cell of Anisakis sp. Third-Stage Larvae
2.4. Micro-Computational Tomography (µ-CT) of the Excretory Cell of Larval and Adult Anisakidae
3. Results
3.1. Molecular Identification of Larval and Adult Anisakids
3.2. Confocal Microscopy of the Excretory Cell of Anisakis pegreffii Third-Stage Larvae
3.3. Ultrastructure of the Excretory Cell of Anisakis pegreffii Third-Stage Larvae
3.4. Micro-Computational Tomography (µ-CT) of the Excretory Cell of Adult Pseudoterranova azarasi
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liégeois, S.; Benedetto, A.; Michaux, G.; Belliard, G.; Labouesse, M. Genes required for osmoregulation and apical secretion in Caenorhabditis elegans. Genetics 2007, 175, 709–724. [Google Scholar] [CrossRef]
- Hall, D.H. Gap junctions in C. elegans: Their roles in behavior and development. Dev. Neurobiol. 2017, 77, 587–596. [Google Scholar] [CrossRef]
- Nelson, F.K.; Albert, P.S.; Riddle, D.L. Fine structure of the Caenorhabditis elegans secretory—Excretory system. J. Ultrastruct. Res. 1983, 82, 156–171. [Google Scholar] [CrossRef]
- Gibson, L.M. General Organisation. In Biol. Nematodes, 1st ed.; Lee, D.L., Ed.; Taylor & Francis: London, UK, 2002; pp. 59–139. [Google Scholar]
- Bird, A.F.; Bird, J. The Structure of Nematodes, 2nd ed.; Academic Press: San Diego, CA, USA, 1991. [Google Scholar]
- Kennedy, M.W.; Harnett, W. (Eds.) Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology; CABI Publishing: Wallingford, UK, 2013. [Google Scholar]
- Bahlool, Q.Z.; Skovgaard, A.; Kania, P.W.; Buchmann, K. Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish. Immunol. 2013, 35, 734–739. [Google Scholar] [CrossRef]
- Lee, J.D.; Chung, L.Y.; Lin, R.J.; Wang, J.J.; Tu, H.P.; Yen, C.M. Excretory/secretory proteases and mechanical movement of Anisakis pegreffii infective larvae in the penetration of BALB/c mice gastrointestine. Kaohsiung J. Med. Sci. 2017, 33, 594–601. [Google Scholar] [CrossRef]
- Baeza, M.L.; Rodriguez, A.; Matheu, V.; Rubio, M.; Tornero, P.; De Barrio, M.; Herrero, T.; Santaolalla, M.; Zubeldia, J. Characterization of allergens secreted by Anisakis simplex parasite: Clinical relevance in comparison with somatic allergens. Clin. Exp. Allergy 2004, 34, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Fæste, C.K.; Jonscher, K.R.; Dooper, M.M.; Egge-Jacobsen, W.; Moen, A.; Daschner, A.; Egaas, E.; Christians, U. Characterisation of potential novel allergens in the fish parasite Anisakis simplex. EuPA Open Proteom. 2014, 4, 140–155. [Google Scholar] [CrossRef] [PubMed]
- McSorley, H.J.; Hewitson, J.P.; Maizels, R.M. Immunomodulation by helminth parasites: Defining mechanisms and mediators. Int. J. Parasitol. 2013, 43, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Harnett, W. Secretory products of helminth parasites as immunomodulators. Mol. Biochem. Parasitol. 2014, 195, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Davey, K.G.; Kan, S.P. Molting in parasitic nematode, Phocanema decipiens. IV Ecdysis and its control. Can. J. Zool. 1968, 46, 893–898. [Google Scholar] [CrossRef]
- Cotton, S.; Donnelly, S.; Robinson, M.W.; Dalton, J.P.; Thivierge, K. Defense peptides secreted by helminth pathogens: Antimicrobial and/or immunomodulator molecules? Front. Immunol. 2012, 3, 269. [Google Scholar] [CrossRef] [PubMed]
- Midha, A.; Schlosser, J.; Hartmann, S. Reciprocal Interactions between Nematodes and Their Microbial Environments. Front. Microbiol. 2017, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Rausch, S.; Midha, A.; Kuhring, M.; Affinass, N.; Radonic, A.; Kühl, A.A.; Bleich, A.; Renard, B.Y.; Hartmann, S. Parasitic Nematodes Exert Antimicrobial Activity and Benefit from Microbiota-Driven Support for Host Immune Regulation. Front. Immunol. 2018, 9, 2282. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.W.; Donnelly, S.; Hutchinson, A.T.; To, J.; Taylor, N.L.; Norton, R.S.; Perugini, M.A.; Dalton, J.P. A Family of Helminth Molecules that Modulate Innate Cell Responses via Molecular Mimicry of Host Antimicrobial Peptides. PLoS Pathog. 2011, 7, e1002042. [Google Scholar] [CrossRef] [PubMed]
- Baird, F.J.; Su, X.; Aibinu, I.; Nolan, M.J.; Sugiyama, H.; Otranto, D.; Lopata, A.L.; Cantacessi, C. The Anisakis Transcriptome Provides a Resource for Fundamental and Applied Studies on Allergy-Causing Parasites. PLoS Negl. Trop. Dis. 2016, 10, e0004845. [Google Scholar] [CrossRef]
- Ditgen, D.; Anandarajah, E.M.; Meissner, K.A.; Brattig, N.; Wrenger, C.; Liebau, E. Harnessing the Helminth Secretome for Therapeutic Immunomodulators. BioMed Res. Int. 2014, 2014, 964350. [Google Scholar] [CrossRef]
- Moreno, Y.; Gros, P.-P.; Tam, M.; Segura, M.; Valanparambil, R.; Geary, T.G.; Stevenson, M.M. Proteomic Analysis of Excretory-Secretory Products of Heligmosomoides polygyrus Assessed with Next-Generation Sequencing Transcriptomic Information. PLoS Negl. Trop. Dis. 2011, 5, e1370. [Google Scholar] [CrossRef]
- Coghlan, A.; Tyagi, R.; Cotton, J.A.; Holroyd, N.; Rosa, B.A.; Tsai, I.J.; Laetsch, D.R.; Beech, R.N.; Day, T.A.; Hallsworth-Pepin, K. Comparative genomics of the major parasitic worms. Nat. Genet. 2019, 51, 163–174. [Google Scholar]
- Cavallero, S.; Lombardo, F.; Su, X.; Salvemini, M.; Cantacessi, C.; D’Amelio, S. Tissue-specific transcriptomes of Anisakis simplex (sensu stricto) and Anisakis pegreffii reveal potential molecular mechanisms involved in pathogenicity. Parasites Vectors 2018, 11, 31. [Google Scholar] [CrossRef]
- Messina, C.M.; Pizzo, F.; Santulli, A.; Bušelić, I.; Boban, M.; Orhanović, S.; Mladineo, I. Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines. Parasites Vectors 2016, 9, 607. [Google Scholar] [CrossRef]
- Napoletano, C.; Mattiucci, S.; Colantoni, A.; Battisti, F.; Rahimi, H.; Nuti, M.; Rughetti, A.; Zizzari, I.G. Anisakis pegreffii impacts differentiation and function of human dendritic cells. Parasite Immunol. 2018, 40, e12527. [Google Scholar] [CrossRef] [PubMed]
- Corcuera, M.T.; Rodríguez-Bobada, C.; Zuloaga, J.; Gómez-Aguado, F.; Rodríguez-Perez, R.; Mendizabal, Á.; González, P.; Arias-Díaz, J.; Caballero, M.L. Exploring tumourigenic potential of the parasite Anisakis: A pilot study. Parasitol. Res. 2018, 117, 3127–3136. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.F.; Chen, I.L.; Lin, R.P. Ultrastructure of the Excretory System of Anisakis Larva (Nematoda: Anisakidae). J. Parasitol. 1973, 59, 289. [Google Scholar] [CrossRef] [PubMed]
- Roongruangchai, J.; Tamepattanapongsa, A.; Roongruangchai, K. Light and transmission electron microscopis studies of the third stage larvae of Anisakis simplex. Siriraj Med. J. 2012, 64, S72–S77. [Google Scholar]
- Mladineo, I.; Bušelić, I.; Hrabar, J.; Vrbatović, A.; Radonić, I. Population parameters and mito-nuclear mosaicism of Anisakis spp. in the Adriatic Sea. Mol. Biochem. Parasitol. 2017, 212, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Nadler, S.A.; Hudspeth, D.S. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: Hypotheses of structural and sequence evolution. J. Parasitol. 2000, 86, 380–393. [Google Scholar] [CrossRef]
- Mladineo, I.; Trumbić, Ž.; Hrabar, J.; Vrbatović, A.; Bušelić, I.; Ujević, I.; Roje-Busatto, R.; Babić, I.; Messina, C. Efficiency of target larvicides is conditioned by ABC-mediated transport in the zoonotic nematode Anisakis pegreffii. Antimicrob Agents Chemother 2018, 62, e00916–e00918. [Google Scholar] [CrossRef]
- Metscher, B.D. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009, 9, 11. [Google Scholar] [CrossRef]
- Yoshinaga, T.; Ogawa, K.; Wakabayashi, H. Morphology of the Excretory System of Hysterothylacium haze (Nematoda: Anisakidae: Raphidascaridinae). J. Parasitol. 1989, 75, 812. [Google Scholar] [CrossRef]
- Mueller, J.F. The excretory system of Anisakis simplex. Cell Tissue Res. 1927, 5, 495–504. [Google Scholar] [CrossRef]
- Parshad, V.R.; Guraya, S.S. Comparative histochemical observations on the excretory system of helminth parasites. Parasitol. Res. 1977, 52, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Vegni-Talluri, M.; Dallai, R. Ultrastructure of the excretory-secretory system in Toxocara canis (Nematoda, Ascarididae) infective larvae. Ital. J. Zool. 1989, 56, 285–290. [Google Scholar]
- Waddell, A.H. The excretory system of the kidney worm Stephanurus dentatus (Nematoda). Parasitology 1968, 58, 907–919. [Google Scholar] [CrossRef]
- Grabda, J. Studies on the life cycle and morphogenesis of Anisakis simplex (Rudolphi, 1809) (Nematoda: Anisakidae) cultured in vitro. Acta Ichtyol. Piscat. 1976, 6, 119–141. [Google Scholar] [CrossRef] [Green Version]
- Pavelka, M.; Roth, J. Functional Ultrastructure: An Atlas of Tissue Biology and Pathology; Springer: Wien, Austria, 2005. [Google Scholar]
- Chugh, P.; Paluch, E.K. The actin cortex at a glance. J. Cell. Sci. 2018, 131, jcs186254. [Google Scholar] [CrossRef] [Green Version]
- Orci, L.; Gabbay, K.H.; Malaisse, W.J. Pancreatic Beta-Cell Web: Its Possible Role in Insulin Secretion. Science 1972, 175, 1128–1130. [Google Scholar] [CrossRef]
- Mladineo, I.; Hrabar, J.; Vrbatović, A.; Duvnjak, S.; Gomerčić, T.; Đuras, M. Microbiota and gut ultrastructure of Anisakis pegreffii isolated from stranded cetaceans in the Adriatic Sea. Parasites Vectors 2019, 12, 315–381. [Google Scholar] [CrossRef] [Green Version]
- Burgoyne, R.D.; Morgan, A. Secretory granule exocytosis. Physiol. Rev. 2003, 83, 581–632. [Google Scholar] [CrossRef]
- Frantová, D.; Moravec, F. Comparative studies on intestine ultrastructure of third-stage larvae and adults of Cystidicoloides ephemeridarum (Nematoda, Cystidicolidae). Parasitol. Res. 2004, 94, 377–383. [Google Scholar] [CrossRef]
- Frey, T.G.; Mannella, C. The internal structure of mitochondria. Trends Biochem. Sci. 2000, 25, 319–324. [Google Scholar] [CrossRef]
- Bennett, M.K. Ca2+ and the regulation of neurotransmitter secretion. Curr. Opin. Neurobiol. 1997, 7, 316–322. [Google Scholar] [CrossRef]
- Gold, V.A.; Chroscicki, P.; Bragoszewski, P.; Chacinska, A. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep. 2017, 18, 1786–1800. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.J.; Baillie, D.L. Characterization of the let-653 gene in Caenorhabditis elegans. Mol. Genet. Genom. 1995, 248, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Chitwood, B.G.; Chitwood, M.B. General Structure of Nematodes. In Introduction to Nematology; University Park Press: Baltimore, MD, USA, 1950; pp. 7–27. [Google Scholar]
- Malhas, A.; Goulbourne, C.; Vaux, D.J. The nucleoplasmic reticulum: Form and function. Trends Cell Biol. 2011, 21, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Bastian, H.C. XXI. On the anatomy and physiology of the nematoids, parasitic and free; with observations on their zoological position and affinities to the echinoderms. Philos. Trans. R. Soc. Lond. 1866, 156, 545–638. [Google Scholar]
- Lamond, A.I.; Spector, D.L. Nuclear speckles: A model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 2003, 4, 605–612. [Google Scholar] [CrossRef]
- Saitoh, N.; Spahr, C.S.; Petterson, S.D.; Bubulya, P.; Neuwald, A.F.; Spector, D.L. Proteomic analysis of interchromartin granule clusters. Mol. Biol. Cell 2004, 15, 3876–3890. [Google Scholar] [CrossRef] [Green Version]
- Tschochner, H.; Hurt, E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 2003, 13, 255–263. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladineo, I.; Hrabar, J.; Smodlaka, H.; Palmer, L.; Sakamaki, K.; Keklikoglou, K.; Katharios, P. Functional Ultrastructure of the Excretory Gland Cell in Zoonotic Anisakids (Anisakidae, Nematoda). Cells 2019, 8, 1451. https://doi.org/10.3390/cells8111451
Mladineo I, Hrabar J, Smodlaka H, Palmer L, Sakamaki K, Keklikoglou K, Katharios P. Functional Ultrastructure of the Excretory Gland Cell in Zoonotic Anisakids (Anisakidae, Nematoda). Cells. 2019; 8(11):1451. https://doi.org/10.3390/cells8111451
Chicago/Turabian StyleMladineo, Ivona, Jerko Hrabar, Hrvoje Smodlaka, Lauren Palmer, Kristen Sakamaki, Kleoniki Keklikoglou, and Pantelis Katharios. 2019. "Functional Ultrastructure of the Excretory Gland Cell in Zoonotic Anisakids (Anisakidae, Nematoda)" Cells 8, no. 11: 1451. https://doi.org/10.3390/cells8111451
APA StyleMladineo, I., Hrabar, J., Smodlaka, H., Palmer, L., Sakamaki, K., Keklikoglou, K., & Katharios, P. (2019). Functional Ultrastructure of the Excretory Gland Cell in Zoonotic Anisakids (Anisakidae, Nematoda). Cells, 8(11), 1451. https://doi.org/10.3390/cells8111451