Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters’ Cells along the Tonotopic Axis of the Cochlea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Preparation
2.2. Targeted Single-Cell Electroporation
2.3. Calcium Imaging
2.4. Measurement of the Morphological Parameters
2.5. Drug Delivery
2.6. Data Analysis
3. Results
3.1. The morphological Changes in Deiters’ Cell Somata and Processes during Postnatal Development Have No Tonotopic Preference
3.2. The Maturation-Dependent Spontaneous Ca2+ Activity Is Tonotopically Heterogeneous and Implies Subcellular Difference
3.3. Exogenous ATP-Evoked Ca2+ Responses Are Maturation-Dependent
3.4. Selective P2Y Receptor Activation Evokes Maturation and Tonotopy-Dependent Ca2+ Transients with a P2Y Receptor Dominance in the Apical Turn
4. Discussion
4.1. Postnatal Morphological Development of Deiters’ Cells in the Mouse Cochlea
4.2. Spontaneous Ca2+ Activity in Phalangeal Process and Soma of the Deiters’ Cells Decreases by Development with Different Pattern in the Middle and the Apical Cochlear Turns
4.3. Amplitude and Shape of Exogenous ATP-Induced Ca2+ Transients Depend on the Developmental Stage
4.4. Both P2X and P2Y Receptors Are Involved in the Maturation-Dependent Purinergic Signaling, with Tonotopically Different Cellular Distribution
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGovern, M.M.; Randle, M.R.; Cuppini, C.L.; Graves, K.A.; Cox, B.C. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 2019, 146, dev171009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Ueno, H.; Xu, C.Y.; Chen, B.; Weissman, I.L.; Xu, P.X. Identification of mouse cochlear progenitors that develop hair and supporting cells in the organ of Corti. Nat. Commun. 2017, 8, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mizutari, K.; Fujioka, M.; Hosoya, M.; Bramhall, N.; Okano, H.J.; Okano, H.; Edge, A.S.B. Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma. Neuron 2013, 77, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehret, G. Development of absolute auditory thresholds in the house mouse (Mus musculus). J. Am. Audiol. Soc. 1976, 1, 179–184. [Google Scholar] [PubMed]
- Rybak, L.P.; Whitworth, C.; Scott, V. Development of endocochlear potential and compound action potential in the rat. Hear. Res. 1992, 59, 189–194. [Google Scholar] [CrossRef]
- Kros, C.J.; Ruppersberg, J.P.; Rüsch, A. Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 1998, 394, 281–284. [Google Scholar] [CrossRef]
- Tritsch, N.X.; Bergles, D.E. Developmental regulation of spontaneous activity in the Mammalian cochlea. J. Neurosci. 2010, 30, 1539–1550. [Google Scholar] [CrossRef]
- Wang, H.C.; Lin, C.C.; Cheung, R.; Zhang-Hooks, Y.; Agarwal, A.; Ellis-Davies, G.; Rock, J.; Bergles, D.E. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells. Cell 2015, 163, 1348–1359. [Google Scholar] [CrossRef] [Green Version]
- Majumder, P.; Crispino, G.; Rodriguez, L.; Ciubotaru, C.D.; Anselmi, F.; Piazza, V.; Bortolozzi, M.; Mammano, F. ATP-mediated cell-cell signaling in the organ of Corti: the role of connexin channels. Purinergic Signal. 2010, 6, 167–187. [Google Scholar] [CrossRef]
- Ehret, G.; Romand, R. Development of tone response thresholds, latencies and tuning in the mouse inferior colliculus. Dev. Brain Res. 1992, 67, 317–326. [Google Scholar] [CrossRef]
- Kraus, H.-J.; Aulbach-Kraus, K. Morphological changes in the cochlea of the mouse after the onset of hearing. Hear. Res. 1981, 4, 89–102. [Google Scholar] [CrossRef]
- Haack, B.; Markl, H.; Ehret, G. Sound communication between parents and offspring. In The Auditory Psychobiology of the Mouse; Charles C Thomas Publisher: Springfield, MA, USA, 1983; pp. 57–97. [Google Scholar]
- Montcouquiol, M.; Kelley, M.W. Planar and Vertical Signals Control Cellular Differentiation and Patterning in the Mammalian Cochlea. J. Neurosci. 2003, 23, 9469–9478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moglie, M.J.; Fuchs, P.A.; Belén, A.; Goutman, J.D. Compartmentalization of antagonistic Ca2+ signals in developing cochlear hair cells. Proc. Natl. Acad. Sci. USA 2018, 115, E2095–E2104. [Google Scholar] [CrossRef] [PubMed]
- Fritzsch, B.; Straka, H. Evolution of vertebrate mechanosensory hair cells and inner ears: Toward identifying stimuli that select mutation driven altered morphologies. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2014, 200, 5–18. [Google Scholar] [CrossRef]
- Yang, S.-M.M.; Chen, W.; Guo, W.-W.W.; Jia, S.; Sun, J.-H.H.; Liu, H.-Z.Z.; Young, W.-Y.Y.; He, D.Z.Z. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS ONE 2012, 7, e46355. [Google Scholar] [CrossRef]
- Lelli, A.; Asai, Y.; Forge, A.; Holt, J.R.; Géléoc, G.S.G. Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J. Neurophysiol. 2009, 101, 2961–2973. [Google Scholar] [CrossRef]
- Housley, G.D.; Marcotti, W.; Navaratnam, D.; Yamoah, E.N. Hair Cells – Beyond the Transducer. J. Membr. Biol. 2006, 209, 89–118. [Google Scholar] [CrossRef]
- Kros, C.J. How to build an inner hair cell: Challenges for regeneration. Hear. Res. 2007, 227, 3–10. [Google Scholar] [CrossRef]
- Ralevic, V.; Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 1998, 50, 413–492. [Google Scholar]
- Vizi, E.S.; Sperlágh, B. Receptor- and carrier-mediated release of ATP of postsynaptic origin: Cascade transmission. Prog. Brain Res. 1999, 120, 159–169. [Google Scholar]
- Heinrich, A.; Kittel, Á.; Csölle, C.; Sylvester Vizi, E.; Sperlágh, B. Modulation of neurotransmitter release by P2X and P2Y receptors in the rat spinal cord. Neuropharmacology 2008, 54, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Berekméri, E.; Szepesy, J.; Köles, L.; Zelles, T. Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses. Brain Res. Bull. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Köles, L.; Szepesy, J.; Berekméri, E.; Zelles, T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int. J. Mol. Sci. 2019, 20, 2979. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, F.; Hernandez, V.H.; Crispino, G.; Seydel, A.; Ortolano, S.; Roper, S.D.; Kessaris, N.; Richardson, W.; Rickheit, G.; Filippov, M.A.; et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc. Natl. Acad. Sci. USA 2008, 105, 18770–18775. [Google Scholar] [CrossRef]
- Zhao, H.-B.; Yu, N.; Fleming, C.R. Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc. Natl. Acad. Sci. USA 2005, 102, 18724–18729. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.C.; Ryan, A.F.; Cockayne, D.A.; Housley, G.D. Developmentally regulated expression of the P2 × 3 receptor in the mouse cochlea. Histochem. Cell Biol. 2006, 125, 681–692. [Google Scholar] [CrossRef]
- Ceriani, F.; Hendry, A.; Jeng, J.; Johnson, S.L.; Stephani, F.; Olt, J.; Holley, M.C.; Mammano, F.; Engel, J.; Kros, C.J.; et al. Coordinated calcium signalling in cochlear sensory and non-sensory cells refines afferent innervation of outer hair cells. EMBO J. 2019, 38, 1–19. [Google Scholar] [CrossRef]
- Lagostena, L.; Mammano, F. Intracellular calcium dynamics and membrane conductance changes evoked by Deiters’ cell purinoceptor activation in the organ of Corti. Cell Calcium 2001, 29, 191–198. [Google Scholar] [CrossRef]
- Berekméri, E.; Deák, O.; Téglás, T.; Sághy, É.; Horváth, T.; Aller, M.; Fekete, Á.; Köles, L.; Zelles, T. Targeted single-cell electroporation loading of Ca2+ indicators in the mature hemicochlea preparation. Hear. Res. 2019, 371, 75–86. [Google Scholar] [CrossRef]
- Horváth, T.; Polony, G.; Fekete, Á.; Aller, M.; Halmos, G.; Lendvai, B.; Heinrich, A.; Sperlágh, B.; Vizi, E.S.; Zelles, T. ATP-Evoked Intracellular Ca2+ Signaling of Different Supporting Cells in the Hearing Mouse Hemicochlea. Neurochem. Res. 2016, 41, 364–375. [Google Scholar] [CrossRef]
- Yu, N.; Zhao, H.-B. Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions. PLoS ONE 2009, 4, e7923. [Google Scholar] [CrossRef] [PubMed]
- Bobbin, R.P. ATP-induced movement of the stalks of isolated cochlear Deiters’ cells. Neuroreport 2001, 12, 2923–2926. [Google Scholar] [CrossRef] [PubMed]
- Zetes, D.E.; Tolomeo, J.A.; Holley, M.C. Structure and mechanics of supporting cells in the guinea pig organ of Corti. PLoS ONE 2012, 7, e49338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liang, C.; Chen, J.; Zong, L.; Chen, G.-D.; Zhao, H.-B. Active cochlear amplification is dependent on supporting cell gap junctions. Nat. Commun. 2013, 4, 1786. [Google Scholar] [CrossRef] [PubMed]
- Dulon, D.; Blanchet, C.; Laffon, E. Photo-released intracellular Ca2+ evokes reversible mechanical responses in supporting cells of the guinea-pig organ of Corti.pdf. Biochem. Biophys. Res. Commun. 1994, 201, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Edge, R.M.; Evans, B.N.; Pearce, M.; Richter, C.P.; Hu, X.; Dallos, P. Morphology of the unfixed cochlea. Hear. Res. 1998, 124, 1–16. [Google Scholar] [CrossRef]
- Richter, C.-P.P.; Evans, B.N.; Edge, R.; Dallos, P. Basilar membrane vibration in the gerbil hemicochlea. J. Neurophysiol. 1998, 79, 2255–2264. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Richter, C.-P.; Edge, R.; He, D.Z.Z.; Dallos, P. Development of the Gerbil Inner Ear Observed in the Hemicochlea. J. Assoc. Res. Otolaryngol. 2000, 1, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Evans, B.N.; Dallos, P. Direct visualization of organ of corti kinematics in a hemicochlea. J. Neurophysiol. 1999, 82, 2798–2807. [Google Scholar] [CrossRef]
- Keiler, S.; Richter, C.-P.P. Cochlear dimensions obtained in hemicochleae of four different strains of mice: CBA/CaJ, 129/CD1, 129/SvEv and C57BL/6J. Hear. Res. 2001, 162, 91–104. [Google Scholar] [CrossRef]
- Teudt, I.U.; Richter, C.P. The hemicochlea preparation of the guinea pig and other mammalian cochleae. J. Neurosci. Methods 2007, 162, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hao, Q.Q.; Ren, L.L.; Ren, W.; Lin, H.; Guo, W.W.; Yang, S.M. Cochlear morphology in the developing inner ear of the porcine model of spontaneous deafness. BMC Neurosci. 2018, 19. [Google Scholar] [CrossRef] [PubMed]
- Parsa, A.; Webster, P.; Kalinec, F. Deiters Cells Tread a Narrow Path—The Deiters Cells-Basilar Membrane Junction. Hear. Res. 2012, 290, 13–20. [Google Scholar] [CrossRef]
- Walters, B.J.; Zuo, J. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear. Res. 2013, 297, 68–83. [Google Scholar] [CrossRef]
- Kikuchi, K.; Hilding, D. The Development of the Organ of Corti in the Mouse. Acta Otolaryngol. 1965, 60, 207e222. [Google Scholar] [CrossRef]
- Inoshita, A.; Iizuka, T.; Okamura, H.O.; Minekawa, A.; Kojima, K.; Furukawa, M.; Kusunoki, T.; Ikeda, K. Postnatal development of the organ of Corti in dominant-negative Gjb2 transgenic mice. Neuroscience 2008, 156, 1039–1047. [Google Scholar] [CrossRef]
- Tritsch, N.X.; Zhang, Y.-X.; Ellis-Davies, G.; Bergles, D.E. ATP-induced morphological changes in supporting cells of the developing cochlea. Purinergic Signal. 2010, 6, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Lahne, M.; Gale, J.E. Damage-induced cell-cell communication in different cochlear cell types via two distinct ATP-dependent Ca waves. Purinergic Signal. 2010, 6, 189–200. [Google Scholar] [CrossRef]
- Dayaratne, M.W.N.; Vlajkovic, S.M.; Lipski, J.; Thorne, P.R. Putative role of border cells in generating spontaneous morphological activity within Kölliker’s organ. Hear. Res. 2015, 330, 90–97. [Google Scholar] [CrossRef]
- Dayaratne, M.W.N.; Vlajkovic, S.M.; Lipski, J.; Thorne, P.R. Kölliker’s organ and the development of spontaneous activity in the auditory system: Implications for hearing dysfunction. Biomed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Tritsch, N.X.; Yi, E.; Gale, J.E.; Glowatzki, E.; Bergles, D.E. The origin of spontaneous activity in the developing auditory system. Nature 2007, 450, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Blandizzi, C.; Pacher, P.; Haskó, G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol. Rev. 2019, 71, 345–382. [Google Scholar] [CrossRef] [PubMed]
- Calovi, S.; Mut-Arbona, P.; Sperlágh, B. Microglia and the Purinergic Signaling System. Neuroscience 2019, 405, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Delacroix, L.; Malgrange, B. Cochlear afferent innervation development. Hear. Res. 2015, 330, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Fettiplace, R. Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. Compr. Physiol. 2017, 7, 1197–1227. [Google Scholar]
- Forge, A.; Becker, D.; Casalotti, S.; Edwards, J.; Marziano, N.; Nevill, G. Gap junctions in the inner ear: Comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J. Comp. Neurol. 2003, 467, 207–231. [Google Scholar] [CrossRef]
- Forge, A.; Becker, D.; Casalotti, S.; Edwards, J.; Marziano, N.; Nickel, R. Connexins and gap junctions in the inner ear. Audiol. Neurootol. 2002, 7, 141–145. [Google Scholar] [CrossRef]
- Greenwood, D.; Jagger, D.J.; Huang, L.-C.; Hoya, N.; Thorne, P.R.; Wildman, S.S.; King, B.F.; Pak, K.; Ryan, A.F.; Housley, G.D. P2X receptor signaling inhibits BDNF-mediated spiral ganglion neuron development in the neonatal rat cochlea. Development 2007, 134, 1407–1417. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.J.; Yang, J. Preferentially regulated expression of connexin 43 in the developing spiral ganglion neurons and afferent terminals in post-natal rat cochlea. Eur. J. Histochem. 2015. [Google Scholar] [CrossRef]
- Zhao, H.-B.B.; Yu, N. Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. J. Comp. Neurol. 2006, 499, 506–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, L.L.; Kingsley, J.; Nichols, D.H.; Fritzsch, B. The development of vestibulocochlear efferents and cochlear efferents in mice. Int. J. Dev. Neurosci. 1997, 15, 671–692. [Google Scholar] [CrossRef]
- Mammano, F.; Bortolozzi, M. Ca2+ signaling, apoptosis and autophagy in the developing cochlea: Milestones to hearing acquisition. Cell Calcium 2018, 70, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Piazza, V.; Ciubotaru, C.D.; Gale, J.E.; Mammano, F. Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti. Cell Calcium 2007, 41, 77–86. [Google Scholar] [CrossRef]
- Brändle, U.; Zenner, H.P.; Ruppersberg, J.P. Gene expression of P2X-receptors in the developing inner ear of the rat. Neurosci. Lett. 1999, 273, 105–108. [Google Scholar] [CrossRef]
- Chen, C.; Bobbin, R.P. P2X receptors in cochlear Deiters’ cells. Br. J. Pharmacol. 1998, 124, 337–344. [Google Scholar] [CrossRef]
- Lagostena, L.; Ashmore, J.F.; Kachar, B.; Mammano, F. Purinergic control of intercellular communication between Hensen’s cells of the guinea-pig cochlea. J. Physiol. 2001, 531, 693–706. [Google Scholar] [CrossRef]
- Szücs, A.; Szappanos, H.; Tóth, A.; Farkas, Z.; Panyi, G.; Csernoch, L.; Sziklai, I. Differential expression of purinergic receptor subtypes in the outer hair cells of the guinea pig. Hear. Res. 2004, 196, 2–7. [Google Scholar] [CrossRef]
- Järlebark, L.E.; Housley, G.D.; Raybould, N.P.; Vlajkovic, S.; Thorne, P.R. ATP-gated ion channels assembled from P2 × 2 receptor subunits in the mouse cochlea. Neuroreport 2002, 13, 1979–1984. [Google Scholar] [CrossRef]
- Huang, L.C.; Thorne, P.R.; Vlajkovic, S.M.; Housley, G.D. Differential expression of P2Y receptors in the rat cochlea during development. Purinergic Signal. 2010, 6, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.C.; Greenwood, D.; Thorne, P.R.; Housley, G.D. Developmental regulation of neuron-specific P2 × 3 receptor expression in the rat cochlea. J. Comp. Neurol. 2005, 484, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.-K.; Ryten, M.; Burnstock, G. Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev. Dyn. 2003, 228, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Song, Y.; Wang, R.; Gao, S.S.; Clifton, W.; Raphael, P.; Chao, S.; Pereira, F.A.; Groves, A.K.; Oghalai, J.S. Prestin regulation and function in residual outer hair cells after noise-induced hearing loss. PLoS ONE 2013, 8, e82602. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Zhu, M.L.; Zhao, H.B. Prestin is expressed on the whole outer hair cell basolateral surface. Brain Res. 2006. [Google Scholar] [CrossRef] [PubMed]
- Bulankina, A.V.; Moser, T. Neural Circuit Development in the Mammalian Cochlea. Physiology 2012, 27, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Nikolic, P.; Housley, G.D.; Thorne, P.R. Expression of the P2X7 Receptor Subunit of the Adenosine 5′-Triphosphate-Gated Ion Channel in the Developing and Adult Rat Cochlea. Audiol. Neurotol. 2003, 8, 28–37. [Google Scholar] [CrossRef]
- Kim, C.; Kim, H.; Lee, H.S.; Chang, S.O.; Oh, S.; Lee, J.H. P2Y 4 -Mediated Regulation of Na2+ Absorption in the Reissner ’ s Membrane of the Cochlea. J. Neurosci. 2010, 30, 3762–3769. [Google Scholar]
- Telang, R.S.; Paramananthasivam, V.; Vlajkovic, S.M.; Munoz, D.J.B.; Housley, G.D.; Thorne, P.R. Reduced P2x(2) receptor-mediated regulation of endocochlear potential in the ageing mouse cochlea. Purinergic Signal. 2010, 6, 263–272. [Google Scholar] [CrossRef]
- Salih, S.G.; Housley, G.D.; Burton, L.D.; Greenwood, D. P2X2 receptor subunit expression in a subpopulation of cochlear type I spiral ganglion neurones. Neuroreport 1998, 9, 279–282. [Google Scholar] [CrossRef]
- Parker, M.S.; Larroque, M.L.; Campbell, J.M.; Bobbin, R.P.; Deininger, P.L. Novel variant of the P2X2 ATP receptor from the guinea pig organ of Corti. Hear. Res. 1998, 121, 62–70. [Google Scholar] [CrossRef]
- Wang, J.C.-C.; Raybould, N.P.; Luo, L.; Ryan, A.F.; Cannell, M.B.; Thorne, P.R.; Housley, G.D. Noise induces up-regulation of P2X2 receptor subunit of ATP-gated ion channels in the rat cochlea. Neuroreport 2003, 14, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Buckiová, D.; Syka, J. Calbindin and S100 protein expression in the developing inner ear in mice. J. Comp. Neurol. 2009, 513, 469–482. [Google Scholar] [CrossRef] [PubMed]
Soma | Process | |||||||
---|---|---|---|---|---|---|---|---|
Length (µm) | Width (µm) | Length (µm) | Width (µm) | |||||
Apical | Middle | Apical | Middle | Apical | Middle | Apical | Middle | |
P5–7 | 17.25 ± 0.97 | 27.58 ± 4.15 | 9.76 ± 0.89 | 8.15 ± 0.43 | 19.81 ± 0.84 | 13.54 ± 1.59 | 4.54 ± 0.44 | 3.95 ± 0.15 |
P10–11 | 42.25 ± 1.75 | 43.09 ± 0.69 | 9.42 ± 0.54 | 8.68 ± 0.43 | 15.08 ± 1.55 | 11.35 ± 0.55 | 3.61 ± 0.35 | 2.83 ± 0.16 |
P14–15 | 47.44 ± 1.23 | 46.23 ± 0.76 | 10.00 ± 0.51 | 8.03 ± 0.46 | 19.79 ± 0.67 | 14.9 ± 0.79 | 2.54 ± 0.24 | 1.85 ± 0.11 |
P17–18 | 44.88 ± 1.19 | 46.67 ± 1.17 | 9.91 ± 0.36 | 9.71 ± 0.37 | 20.14 ± 0.68 | 14.91 ± 0.64 | 1.55 ± 0.14 | 1.51 ± 0.06 |
P20–25 | 45.96 ± 1.04 | 44.51 ± 0.46 | 9.40 ± 0.36 | 8.95 ± 0.71 | 22.95 ± 1.36 | 15.28 ± 0.69 | 1.78 ± 0.14 | 1.14 ± 0.06 |
Soma | Process | |||
---|---|---|---|---|
Apical | Middle | Apical | Middle | |
P5–7 | 4.65 ± 2.26 | 8.80 ± 3.69 | 7.51 ± 4.34 | 9.04 ± 3.51 |
P10–11 | 47.14 ± 11.07 | 8.68 ± 4.96 | 56.92 ± 13.34 | 10.86 ± 6.12 |
P14–15 | 4.86 ± 1.56 | 4.10 ± 1.58 | 11.69 ± 3.60 | 6.10 ± 2.24 |
P17–18 | 1.59 ± 0.74 | 1.50 ± 1.04 | 3.94 ± 1.56 | 3.0 ± 1.55 |
P20–25 | 0 ± 0 | 6.70 ± 3.83 | 0.8 ± 0.6 | 12.11 ± 5.30 |
Amplitude (dF/F0) | Duration (s) | AUC (s*dF/F0) | ||||
---|---|---|---|---|---|---|
Apical | Middle | Apical | Middle | Apical | Middle | |
P5–7 | 0.92 ± 0.08 | 1.02 ± 0.17 | 41.41 ± 5.06 | 43.39 ± 5.26 | 44.85 ± 9.13 | 56.62 ± 12.56 |
P10–11 | 0.83 ± 0.12 | 0.99 ± 0.11 | 60.47 ± 8.13 | 64.45 ± 3.46 | 55.12 ± 12.26 | 58.80 ± 7.77 |
P14–15 | 0.93±0.09 | 1.23±0.08 | 42.57±2.90 | 43.01±3.61 | 46.04±5.29 | 54.64±5.59 |
P17–18 | 1.18±0.07 | 1.24±0.11 | 35.10 ± 2.63 | 39.13 ± 3.64 | 44.43 ± 4.92 | 49.3 ± 6.22 |
P20–25 | 1.28 ± 0.09 | 1.39 ± 0.13 | 29.15 ± 3.01 | 36.72 ± 4.52 | 42.41 ± 5.62 | 52.45 ± 8.17 |
Amplitude (dF/F0) | Duration (s) | AUC (s*dF/F0) | ||||
---|---|---|---|---|---|---|
Apical | Middle | Apical | Middle | Apical | Middle | |
P5–7 | 0.43 ± 0.10 | 0.56 ± 0.11 | 36.04 ± 3.88 | 46.82 ± 6.9 | 17.04 ± 4.37 | 31.05 ± 11.03 |
P10–11 | 0.84 ± 0.11 | 0.86 ± 0.10 | 79.48 ± 12.30 | 63.75 ± 3.76 | 69.46 ± 13.15 | 56.96 ± 8.84 |
P14–15 | 0.58 ± 0.05 | 0.73 ± 0.05 | 34.68 ± 2.79 | 40.90 ± 1.91 | 23.87 ± 3.33 | 31.74 ± 3.01 |
P17–18 | 0.51 ± 0.05 | 0.60 ± 0.06 | 28.82 ± 2.31 | 32.4 ± 3.14 | 18.39 ± 2.53 | 21.10 ± 3.10 |
P20–25 | 0.56 ± 0.07 | 0.48 ± 0.10 | 27.94 ± 3.16 | 25.17 ± 2.57 | 19.95 ± 4.49 | 14.18 ± 4.05 |
Amplitude (dF/F0) | Duration (s) | AUC (s*dF/F0) | ||||
---|---|---|---|---|---|---|
Apical | Middle | Apical | Middle | Apical | Middle | |
P10–11 | 0.62 ± 0.15 | 0.42 ± 0.14 | 38.41 ± 5.44 | 37.73 ± 5.51 | 29.57 ± 10.21 | 17.89 ± 7.50 |
P14–15 | 0.77 ± 0.28 | 0.61 ± 0.20 | 25.51 ± 4.42 | 31.39 ± 7.45 | 23.67 ± 9.47 | 24.07 ± 10.27 |
P17–18 | 0.95 ± 0.08 | 0.68 ± 0.13 | 18.52 ± 1.78 | 13.9 ± 2.78 | 12.37 ± 3.00 | 8.50 ± 2.27 |
Amplitude (dF/F0) | Duration (s) | AUC (s*dF/F0) | ||||
---|---|---|---|---|---|---|
Apical | Middle | Apical | Middle | Apical | Middle | |
P10–11 | 0.63 ± 0.13 | 0.33 ± 0.13 | 39.41 ± 3.34 | 42.9 ± 12.79 | 27.81 ± 7.20 | 13.93 ± 8.86 |
P14–15 | 0.46 ± 0.13 | 0.29 ± 0.09 | 35.13 ± 9.53 | 22.54 ± 2.63 | 18.27 ± 6.06 | 6.80 ± 1.32 |
P17–18 | 0.55 ± 0.08 | 0.23 ± 0.06 | 25.99 ± 3.1 | 20.06 ± 5.06 | 15.47 ± 3.01 | 4.51 ± 1.77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berekméri, E.; Fekete, Á.; Köles, L.; Zelles, T. Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters’ Cells along the Tonotopic Axis of the Cochlea. Cells 2019, 8, 1266. https://doi.org/10.3390/cells8101266
Berekméri E, Fekete Á, Köles L, Zelles T. Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters’ Cells along the Tonotopic Axis of the Cochlea. Cells. 2019; 8(10):1266. https://doi.org/10.3390/cells8101266
Chicago/Turabian StyleBerekméri, Eszter, Ádám Fekete, László Köles, and Tibor Zelles. 2019. "Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters’ Cells along the Tonotopic Axis of the Cochlea" Cells 8, no. 10: 1266. https://doi.org/10.3390/cells8101266
APA StyleBerekméri, E., Fekete, Á., Köles, L., & Zelles, T. (2019). Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters’ Cells along the Tonotopic Axis of the Cochlea. Cells, 8(10), 1266. https://doi.org/10.3390/cells8101266