Condensins are Required for Maintenance of Nuclear Architecture
Abstract
:1. Introduction
2. Experimental Section
2.1. Drosophila Cells and RNAi
2.2. Immunofluorescence of Drosophila Cells
2.3. Fluorescent In-Situ Hybridization (FISH)
2.4. FISH Probe Preparation
2.5. Microscopy/Image Analysis
2.6. Human Cell Culture
2.7. siRNA of Condensin II in Human Cells
2.8. Immunoblot
2.9. Immunofluorescence and Nuclear Abnormality Analysis
3. Results and Discussion
3.1. The Prestressed Nucleus and Compaction Forces
3.2. Condensins Regulate Nuclear Size in Drosophila Cultured Cells
3.3. Condensins Regulate Nuclear Size in HeLa Cells
3.4. Condensins Regulate Nuclear Shape in Human Cells
3.5. Model of Mechanical Forces Modulating Nuclear Shape
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mazumder, A.; Roopa, T.; Basu, A.; Mahadevan, L.; Shivashankar, G.V. Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. Biophys. J. 2008, 95, 3028–3035. [Google Scholar] [CrossRef]
- Mammoto, A.; Mammoto, T.; Ingber, D.E. Mechanosensitive mechanisms in transcriptional regulation. J. Cell. Sci. 2012, 125, 3061–3073. [Google Scholar] [CrossRef]
- Widom, J. Structure, dynamics, and function of chromatin in vitro. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 285–327. [Google Scholar] [CrossRef]
- Fussner, E.; Ching, R.W.; Bazett-Jones, D.P. Living without 30nm chromatin fibers. Trends Biochem. Sci. 2011, 36, 1–6. [Google Scholar] [CrossRef]
- Joti, Y.; Hikima, T.; Nishino, Y.; Kamada, F.; Hihara, S.; Takata, H.; Ishikawa, T.; Maeshima, K. Chromosomes without a 30-nm chromatin fiber. Nucleus 2012, 3, 404–410. [Google Scholar] [CrossRef]
- Razin, S.V.; Gavrilov, A.A. Chromatin without the 30-nm fiber: Constrained disorder instead of hierarchical folding. Epigenetics 2014, 9, 653–657. [Google Scholar] [CrossRef]
- Wilkins, B.J.; Rall, N.A.; Ostwal, Y.; Kruitwagen, T.; Hiragami-Hamada, K.; Winkler, M.; Barral, Y.; Fischle, W.; Neumann, H. A cascade of histone modifications induces chromatin condensation in mitosis. Science 2014, 343, 77–80. [Google Scholar] [CrossRef]
- Hirano, T. Condensins: Universal organizers of chromosomes with diverse functions. Genes Dev. 2012, 26, 1659–1678. [Google Scholar] [CrossRef]
- Hartl, T.A.; Smith, H.F.; Bosco, G. Chromosome alignment and transvection are antagonized by condensin ii. Science 2008, 322, 1384–1387. [Google Scholar] [CrossRef]
- Bauer, C.R.; Hartl, T.A.; Bosco, G. Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS Genet. 2012, 8, e1002873. [Google Scholar] [CrossRef]
- Smith, H.F.; Roberts, M.A.; Nguyen, H.Q.; Peterson, M.; Hartl, T.A.; Wang, X.J.; Klebba, J.E.; Rogers, G.C.; Bosco, G. Maintenance of interphase chromosome compaction and homolog pairing in drosophila is regulated by the condensin cap-h2 and its partner mrg15. Genetics 2013, in press. [Google Scholar]
- Buster, D.W.; Daniel, S.G.; Nguyen, H.Q.; Windler, S.L.; Skwarek, L.C.; Peterson, M.; Roberts, M.; Meserve, J.H.; Hartl, T.; Klebba, J.E.; et al. Scfslimb ubiquitin ligase suppresses condensin ii-mediated nuclear reorganization by degrading cap-h2. J. Cell. Biol. 2013, 201, 49–63. [Google Scholar] [CrossRef]
- Worman, H.J.; Fong, L.G.; Muchir, A.; Young, S.G. Laminopathies and the long strange trip from basic cell biology to therapy. J. Clin. Investig. 2009, 119, 1825–1836. [Google Scholar] [CrossRef]
- Fazzio, T.G.; Panning, B. Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. J. Cell. Biol. 2010, 188, 491–503. [Google Scholar] [CrossRef]
- Manning, A.L.; Yazinski, S.A.; Nicolay, B.; Bryll, A.; Zou, L.; Dyson, N.J. Suppression of genome instability in prb-deficient cells by enhancement of chromosome cohesion. Mol. Cell. 2014, 53, 993–1004. [Google Scholar] [CrossRef]
- Wallace, H.A.; Bosco, G. Condensins and 3d organization of the interphase nucleus. Curr. Genet. Med. Rep. 2013, 1, 219–229. [Google Scholar] [CrossRef]
- Rawlings, J.S.; Gatzka, M.; Thomas, P.G.; Ihle, J.N. Chromatin condensation via the condensin ii complex is required for peripheral t-cell quiescence. EMBO J. 2011, 30, 263–276. [Google Scholar] [CrossRef]
- Burtner, C.R.; Kennedy, B.K. Progeria syndromes and ageing: What is the connection? Nature reviews. Mol. Cell. Biol. 2010, 11, 567–578. [Google Scholar] [CrossRef]
- Dechat, T.; Pfleghaar, K.; Sengupta, K.; Shimi, T.; Shumaker, D.K.; Solimando, L.; Goldman, R.D. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008, 22, 832–853. [Google Scholar] [CrossRef]
- Rogers, G.C.; Rusan, N.M.; Roberts, D.M.; Peifer, M.; Rogers, S.L. The scf slimb ubiquitin ligase regulates plk4/sak levels to block centriole reduplication. J. Cell. Biol. 2009, 184, 225–239. [Google Scholar] [CrossRef]
- Wahlby, C.; Kamentsky, L.; Liu, Z.H.; Riklin-Raviv, T.; Conery, A.L.; O'Rourke, E.J.; Sokolnicki, K.L.; Visvikis, O.; Ljosa, V.; Irazoqui, J.E.; et al. An image analysis toolbox for high-throughput c. Elegans assays. Nat. Methods 2012, 9, 714–716. [Google Scholar] [CrossRef]
- Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J.; et al. Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at ucsc. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef]
- Ono, T.; Losada, A.; Hirano, M.; Myers, M.P.; Neuwald, A.F.; Hirano, T. Differential contributions of condensin i and condensin ii to mitotic chromosome architecture in vertebrate cells. Cell 2003, 115, 109–121. [Google Scholar] [CrossRef]
- Shintomi, K.; Hirano, T. The relative ratio of condensin i to ii determines chromosome shapes. Genes Develop. 2011, 25, 1464–1469. [Google Scholar] [CrossRef]
- Green, L.C.; Kalitsis, P.; Chang, T.M.; Cipetic, M.; Kim, J.H.; Marshall, O.; Turnbull, L.; Whitchurch, C.B.; Vagnarelli, P.; Samejima, K.; et al. Contrasting roles of condensin i and condensin ii in mitotic chromosome formation. J. Cell Sci. 2012, 125, 1591–1604. [Google Scholar] [CrossRef]
- Mammoto, A.; Connor, K.M.; Mammoto, T.; Yung, C.W.; Huh, D.; Aderman, C.M.; Mostoslavsky, G.; Smith, L.E.; Ingber, D.E. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 2009, 457, 1103–1108. [Google Scholar] [CrossRef]
- Aranda-Anzaldo, A.; Dent, M.A.; Martinez-Gomez, A. The higher-order structure in the cells nucleus as the structural basis of the post-mitotic state. Prog. Biophys. Mol. Biol. 2014, 114, 137–145. [Google Scholar] [CrossRef]
- Guilluy, C.; Osborne, L.D.; Van Landeghem, L.; Sharek, L.; Superfine, R.; Garcia-Mata, R.; Burridge, K. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nature Cell Biol. 2014. [Google Scholar]
- Davidson, P.M.; Lammerding, J. Broken nuclei - lamins, nuclear mechanics, and disease. Tr. Cell Biol. 2013, 24, 247–256. [Google Scholar] [CrossRef]
- Hirota, T.; Gerlich, D.; Koch, B.; Ellenberg, J.; Peters, J.M. Distinct functions of condensin i and ii in mitotic chromosome assembly. J. Cell. Sci. 2004, 117, 6435–6445. [Google Scholar] [CrossRef]
- Dowen, J.M.; Bilodeau, S.; Orlando, D.A.; Hubner, M.R.; Abraham, B.J.; Spector, D.L.; Young, R.A. Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements. Stem. Cell. Reports 2013, 1, 371–378. [Google Scholar] [CrossRef]
- Van Bortle, K.; Nichols, M.H.; Li, L.; Ong, C.T.; Takenaka, N.; Qin, Z.S.; Corces, V.G. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 2014, 15, R82. [Google Scholar] [CrossRef]
- Je, E.M.; Yoo, N.J.; Lee, S.H. Mutational and expressional analysis of smc2 gene in gastric and colorectal cancers with microsatellite instability. Apmis 2014, 122, 499–504. [Google Scholar] [CrossRef]
- Ham, M.F.; Takakuwa, T.; Rahadiani, N.; Tresnasari, K.; Nakajima, H.; Aozasa, K. Condensin mutations and abnormal chromosomal structures in pyothorax-associated lymphoma. Cancer Sci. 2007, 98, 1041–1047. [Google Scholar] [CrossRef]
- Murakami-Tonami, Y.; Kishida, S.; Takeuchi, I.; Katou, Y.; Maris, J.M.; Ichikawa, H.; Kondo, Y.; Sekido, Y.; Shirahige, K.; Murakami, H.; et al. Inactivation of smc2 shows a synergistic lethal response in mycn-amplified neuroblastoma cells. Cell. Cycle 2014, 13, 1115–1131. [Google Scholar]
- Davalos, V.; Suarez-Lopez, L.; Castano, J.; Messent, A.; Abasolo, I.; Fernandez, Y.; Guerra-Moreno, A.; Espin, E.; Armengol, M.; Musulen, E.; et al. Human smc2 protein, a core subunit of human condensin complex, is a novel transcriptional target of the wnt signaling pathway and a new therapeutic target. J. Biol. Chem. 2012, 287, 43472–43481. [Google Scholar] [CrossRef]
- Chan, K.S.; Koh, C.G.; Li, H.Y. Mitosis-targeted anti-cancer therapies: Where they stand. Cell. Death Dis. 2012, 3, e411. [Google Scholar] [CrossRef]
- Leman, E.S.; Getzenberg, R.H. Nuclear structure as a source of cancer specific biomarkers. J. Cell. Biochem. 2008, 104, 1988–1993. [Google Scholar] [CrossRef]
- Barboro, P.; D'Arrigo, C.; Repaci, E.; Patrone, E.; Balbi, C. Organization of the lamin scaffold in the internal nuclear matrix of normal and transformed hepatocytes. Exp. Cell Res. 2010, 316, 992–1001. [Google Scholar] [CrossRef]
- Malhas, A.; Goulbourne, C.; Vaux, D.J. The nucleoplasmic reticulum: Form and function. Tr. Cell Biol. 2011, 21, 362–373. [Google Scholar] [CrossRef]
- Schmick, M.; Bastiaens, P.I. The interdependence of membrane shape and cellular signal processing. Cell 2014, 156, 1132–1138. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
George, C.M.; Bozler, J.; Nguyen, H.Q.; Bosco, G. Condensins are Required for Maintenance of Nuclear Architecture. Cells 2014, 3, 865-882. https://doi.org/10.3390/cells3030865
George CM, Bozler J, Nguyen HQ, Bosco G. Condensins are Required for Maintenance of Nuclear Architecture. Cells. 2014; 3(3):865-882. https://doi.org/10.3390/cells3030865
Chicago/Turabian StyleGeorge, Carolyn M., Julianna Bozler, Huy Q. Nguyen, and Giovanni Bosco. 2014. "Condensins are Required for Maintenance of Nuclear Architecture" Cells 3, no. 3: 865-882. https://doi.org/10.3390/cells3030865
APA StyleGeorge, C. M., Bozler, J., Nguyen, H. Q., & Bosco, G. (2014). Condensins are Required for Maintenance of Nuclear Architecture. Cells, 3(3), 865-882. https://doi.org/10.3390/cells3030865