CD74 and Proteases: Impact of Location on Immune and Cellular Functions
Highlights
- CD74 exists in two functional locations: within endolysosomal compartments as a chaperone and at the plasma membrane as a signaling receptor.
- Isoform-specific motifs and protease-dependent processing determine CD74 trafficking, stability, and its switch between intracellular and surface functions.
- The dual localization of CD74 explains how proteolytic regulation modulates both antigen presentation and receptor-mediated signaling.
- Understanding location-specific protease interactions summarizes emerging therapeutic opportunities in immune, inflammatory, and malignant diseases.
Abstract
1. Introduction
2. Localization and Function
2.1. Endolysosomal CD74
2.2. Cell Surface CD74
3. Gene Structure and Expression Control Mechanisms
4. Protein Domains of CD74 and Their Multifunctional Roles
4.1. Extracellular Domain
4.2. Transmembrane Domain
4.3. Intracellular (Cytoplasmic) Domain
4.4. Mechanistic Link Between Intracellular Trafficking and Surface Receptor Function of CD74
5. Proteolytic Interaction and Functional Implications
5.1. Intramembrane Cleavage of CD74
5.2. Endosomal Degradation of CD74
5.3. Cell Surface CD74 Can Interact with Extracellular Proteases
6. Potential Therapeutic Targets in Proteolysis of CD74
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MHC-II | major histocompatibility complex class II |
| Ii | invariant chain |
| MIF | macrophage migration inhibitory factor |
| SPPL2a | signal peptide peptidase–like 2a |
| CLIP | class II-associated invariant chain peptide |
| CIITA | class II major histocompatibility complex transactivator |
| HLA | human leukocyte antigen |
References
- Roche, P.A.; Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 2015, 15, 203–216. [Google Scholar] [CrossRef]
- Schröder, B. The multifaceted roles of the invariant chain CD74—More than just a chaperone. Biochim. Biophys. Acta 2016, 1863, 1269–1281. [Google Scholar] [CrossRef]
- Morton, P.A.; Zacheis, M.L.; Giacoletto, K.S.; Manning, J.A.; Schwartz, B.D. Delivery of nascent MHC class II-invariant chain complexes to lysosomal compartments and proteolysis of invariant chain by cysteine proteases precedes peptide binding in B-lymphoblastoid cells. J. Immunol. 1995, 154, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Metz, C.N.; Fang, Y.; Xu, J.; Donnelly, S.; Baugh, J.; Delohery, T.; Chen, Y.; Mitchell, R.A.; Bucala, R. MIF signal transduction initiated by binding to CD74. J. Exp. Med. 2003, 197, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, Y.; Bustos, M.A.; Cho, S.N.; Roszik, J.; Ryu, S.; Lopez, V.M.; Burks, J.K.; Lee, J.E.; Grimm, E.A.; Hoon, D.S.B.; et al. Interplay between soluble CD74 and macrophage-migration inhibitory factor drives tumor growth and influences patient survival in melanoma. Cell Death Dis. 2022, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Na, N.; Zhang, X.; Zhao, Y. The biological function and significance of CD74 in immune diseases. Inflamm. Res. 2017, 66, 209–216. [Google Scholar] [CrossRef]
- Li, Q.L.; Tang, J.; Zhao, L.; Ruze, A.; Shan, X.F.; Gao, X.M. The role of CD74 in cardiovascular disease. Front. Cardiovasc. Med. 2022, 9, 1049143. [Google Scholar] [CrossRef]
- Unanue, E.R.; Turk, V.; Neefjes, J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu. Rev. Immunol. 2016, 34, 265–297. [Google Scholar] [CrossRef]
- Pishesha, N.; Harmand, T.J.; Ploegh, H.L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 2022, 22, 751–764. [Google Scholar] [CrossRef]
- Cloutier, M.; Fortin, J.S.; Thibodeau, J. The transmembrane domain and luminal C-terminal region independently support invariant chain trimerization and assembly with MHCII into nonamers. BMC Immunol. 2021, 22, 56. [Google Scholar] [CrossRef]
- Teyton, L.; O’Sullivan, D.; Dickson, P.W.; Lotteau, V.; Sette, A.; Fink, P.; Peterson, P.A. Invariant chain distinguishes between the exogenous and endogenous antigen presentation pathways. Nature 1990, 348, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Amaya, M.; Mellins, E.; Wiley, D.C. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 1995, 378, 457–462. [Google Scholar] [CrossRef]
- Becker-Herman, S.; Rozenberg, M.; Hillel-Karniel, C.; Gil-Yarom, N.; Kramer, M.P.; Barak, A.; Sever, L.; David, K.; Radomir, L.; Lewinsky, H.; et al. CD74 is a regulator of hematopoietic stem cell maintenance. PLoS Biol. 2021, 19, e3001121. [Google Scholar] [CrossRef] [PubMed]
- Farr, L.; Ghosh, S.; Jiang, N.; Watanabe, K.; Parlak, M.; Bucala, R.; Moonah, S. CD74 Signaling Links Inflammation to Intestinal Epithelial Cell Regeneration and Promotes Mucosal Healing. Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 101–112. [Google Scholar] [CrossRef]
- David, K.; Friedlander, G.; Pellegrino, B.; Radomir, L.; Lewinsky, H.; Leng, L.; Bucala, R.; Becker-Herman, S.; Shachar, I. CD74 as a regulator of transcription in normal B cells. Cell Rep. 2022, 41, 111572. [Google Scholar] [CrossRef]
- Cardeira-da-Silva, J.; Wang, Q.; Sagvekar, P.; Mintcheva, J.; Latting, S.; Günther, S.; Ramadass, R.; Yekelchyk, M.; Preussner, J.; Looso, M.; et al. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat. Commun. 2024, 15, 3637. [Google Scholar] [CrossRef]
- El Bounkari, O.; Zan, C.; Yang, B.; Ebert, S.; Wagner, J.; Bugar, E.; Kramer, N.; Bourilhon, P.; Kontos, C.; Zarwel, M.; et al. An atypical atherogenic chemokine that promotes advanced atherosclerosis and hepatic lipogenesis. Nat. Commun. 2025, 16, 2297. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Enright, T.; Duvall, A.; Chitsazan, A.; Lin, H.Y.; Ors, A.; Davis, B.A.; Nikolova, O.; Bresciani, E.; Diemer, J.; et al. Targeting the CD74 signaling axis suppresses inflammation and rescues defective hematopoiesis in RUNX1-familial platelet disorder. Sci. Transl. Med. 2025, 17, eadn9832. [Google Scholar] [CrossRef]
- Farr, L.; Ghosh, S.; Moonah, S. Role of MIF Cytokine/CD74 Receptor Pathway in Protecting Against Injury and Promoting Repair. Front. Immunol. 2020, 11, 1273. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Liu, T.; Peng, L.; Li, L.; Xu, Z.; Li, X.; Chen, G.; Li, H.; Bai, L. Targeting CD74 in microglia to modulate experimental cerebral ischemia and reperfusion injury: Insights from Single-Cell and bulk transcriptomics. Mol. Brain 2025, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ouyang, Y.; Hu, Y.; Jiang, L.; Fu, C.; Lei, L.; Zhang, Y.; Guo, H.; Huang, J.; Chen, J.; et al. Macrophage migration inhibitory factor mediates skin aging via CD74: Insights from single-cell and bulk RNA sequencing data. Clin. Immunol. 2024, 263, 110199. [Google Scholar] [CrossRef]
- Sánchez-Zuno, G.A.; Bucala, R.; Hernández-Bello, J.; Román-Fernández, I.V.; García-Chagollán, M.; Nicoletti, F.; Matuz-Flores, M.G.; García-Arellano, S.; Esparza-Michel, J.A.; Cerpa-Cruz, S.; et al. Canonical (CD74/CD44) and Non-Canonical (CXCR2, 4 and 7) MIF Receptors Are Differentially Expressed in Rheumatoid Arthritis Patients Evaluated by DAS28-ESR. J. Clin. Med. 2021, 11, 120. [Google Scholar] [CrossRef]
- Wallace, D.J.; Figueras, F.; Wegener, W.A.; Goldenberg, D.M. Experience with milatuzumab, an anti-CD74 antibody against immunomodulatory macrophage migration inhibitory factor (MIF) receptor, for systemic lupus erythematosus (SLE). Ann. Rheum. Dis. 2021, 80, 954–955. [Google Scholar] [CrossRef]
- Martínez-Hernández, R.; Sánchez de la Blanca, N.; Sacristán-Gómez, P.; Serrano-Somavilla, A.; Muñoz De Nova, J.L.; Sánchez Cabo, F.; Heyn, H.; Sampedro-Núñez, M.; Marazuela, M. Unraveling the molecular architecture of autoimmune thyroid diseases at spatial resolution. Nat. Commun. 2024, 15, 5895. [Google Scholar] [CrossRef]
- Li, R.Q.; Yan, L.; Zhang, L.; Zhao, Y.; Lian, J. CD74 as a prognostic and M1 macrophage infiltration marker in a comprehensive pan-cancer analysis. Sci. Rep. 2024, 14, 8125. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, E.; Rodrigo Riestra, M.; Marziali, F.; Mena Osuna, R.; Denizeau, J.; Maurin, M.; Saez, J.J.; Jouve, M.; Bonté, P.E.; Richer, W.; et al. CD74 supports accumulation and function of regulatory T cells in tumors. Nat. Commun. 2024, 15, 3749. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wang, Y.; Zhou, Y.; Zhu, Z.; Zhang, Q.; Zhang, X.; Wang, W.; Gu, X.; Guo, A.; Wang, Y. Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor. Oncotarget 2017, 8, 2719–2730. [Google Scholar] [CrossRef] [PubMed]
- Rubio, S.; Somers, V.; Fraussen, J. The macrophage migration inhibitory factor/CD74 axis in traumatic spinal cord injury: Lessons learned from animal and human studies. Eur. J. Immunol. 2024, 54, e2451333. [Google Scholar] [CrossRef]
- Assis, D.N.; Leng, L.; Du, X.; Zhang, C.K.; Grieb, G.; Merk, M.; Garcia, A.B.; McCrann, C.; Chapiro, J.; Meinhardt, A.; et al. The role of macrophage migration inhibitory factor in autoimmune liver disease. Hepatology 2014, 59, 580–591. [Google Scholar] [CrossRef]
- Vidak, E.; Javoršek, U.; Vizovišek, M.; Turk, B. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019, 8, 264. [Google Scholar] [CrossRef]
- Kudo, J.; Chao, L.Y.; Narni, F.; Saunders, G.F. Structure of the human gene encoding the invariant gamma-chain of class II histocompatibility antigens. Nucleic Acids Res. 1985, 13, 8827–8841. [Google Scholar] [CrossRef] [PubMed]
- Koch, N.; Lauer, W.; Habicht, J.; Dobberstein, B. Primary structure of the gene for the murine Ia antigen-associated invariant chains (Ii). An alternatively spliced exon encodes a cysteine-rich domain highly homologous to a repetitive sequence of thyroglobulin. EMBO J. 1987, 6, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.; Pantouris, G. Analysis of CD74 Occurrence in Oncogenic Fusion Proteins. Int. J. Mol. Sci. 2023, 24, 15981. [Google Scholar] [CrossRef] [PubMed]
- Strubin, M.; Berte, C.; Mach, B. Alternative splicing and alternative initiation of translation explain the four forms of the Ia antigen-associated invariant chain. EMBO J. 1986, 5, 3483–3488. [Google Scholar] [CrossRef]
- Gedde-Dahl, M.; Freisewinkel, I.; Staschewski, M.; Schenck, K.; Koch, N.; Bakke, O. Exon 6 is essential for invariant chain trimerization and induction of large endosomal structures. J. Biol. Chem. 1997, 272, 8281–8287. [Google Scholar] [CrossRef]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef]
- Wang, N.; Waghray, D.; Caveney, N.A.; Jude, K.M.; Garcia, K.C. Structural insights into human MHC-II association with invariant chain. Proc. Natl. Acad. Sci. USA 2024, 121, e2403031121. [Google Scholar] [CrossRef]
- Rausch, T.; Schäfer, H.; Bein, J.; Mölder, F.; Beeck, L.K.; Kölsch, B.; Borchert, S.; Benes, V.; Halbsguth, T.; Brunnberg, U.; et al. Genetic lesions in nodular lymphocyte-predominant Hodgkin lymphoma and T cell/histiocyte-rich large B-cell lymphoma identified by whole genome sequencing. Leukemia 2025, 39, 2215–2225. [Google Scholar] [CrossRef]
- Li, W.; Fei, K.; Guo, L.; Wang, Y.; Shu, C.; Wang, J.; Ying, J. CD74/SLC34A2-ROS1 Fusion Variants Involving the Transmembrane Region Predict Poor Response to Crizotinib in NSCLC Independent of TP53 Mutations. J. Thorac. Oncol. 2023, 19, 613–625. [Google Scholar] [CrossRef]
- Ji, G.; Yao, Q.; Ren, M.; Bai, Q.; Zhu, X.; Zhou, X. An accurate DNA and RNA based targeted sequencing assay for clinical detection of gene fusions in solid tumors. Sci. Rep. 2025, 15, 7223. [Google Scholar] [CrossRef]
- Thibodeau, J.; Bourgeois-Daigneault, M.C.; Lapointe, R. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 2012, 1, 908–916. [Google Scholar] [CrossRef]
- Jahn, J.; Bollensdorf, A.; Kalischer, C.; Piecha, R.; Weiß-Müller, J.; Potru, P.S.; Ruß, T.; Spittau, B. Microglial CD74 Expression Is Regulated by TGFβ Signaling. Int. J. Mol. Sci. 2022, 23, 10247. [Google Scholar] [CrossRef]
- Tanese, K.; Hashimoto, Y.; Berkova, Z.; Wang, Y.; Samaniego, F.; Lee, J.E.; Ekmekcioglu, S.; Grimm, E.A. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ. J. Investig. Dermatol. 2015, 135, 2901. [Google Scholar] [CrossRef]
- Martín-Ventura, J.L.; Madrigal-Matute, J.; Muñoz-Garcia, B.; Blanco-Colio, L.M.; Van Oostrom, M.; Zalba, G.; Fortuño, A.; Gomez-Guerrero, C.; Ortega, L.; Ortiz, A.; et al. Increased CD74 expression in human atherosclerotic plaques: Contribution to inflammatory responses in vascular cells. Cardiovasc. Res. 2009, 83, 586–594. [Google Scholar] [CrossRef]
- Bruchez, A.; Sha, K.; Johnson, J.; Chen, L.; Stefani, C.; McConnell, H.; Gaucherand, L.; Prins, R.; Matreyek, K.A.; Hume, A.J.; et al. MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science 2020, 370, 241–247. [Google Scholar] [CrossRef]
- Zuo, J.; Thomas, W.A.; Haigh, T.A.; Fitzsimmons, L.; Long, H.M.; Hislop, A.D.; Taylor, G.S.; Rowe, M. Epstein-Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2. PLoS Pathog. 2011, 7, e1002455. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Tian, Z.; Wang, G.; Liu, L.; Li, K.; Wang, W.; Lei, X.; Ren, L.; Wang, J. CD74 Interacts with Proteins of Enterovirus D68 To Inhibit Virus Replication. Microbiol. Spectr. 2023, 11, e0080123. [Google Scholar] [CrossRef] [PubMed]
- Koch, N. Posttranslational modifications of the Ia-associated invariant protein p41 after gene transfer. Biochemistry 1988, 27, 4097–4102. [Google Scholar] [CrossRef] [PubMed]
- Machamer, C.E.; Cresswell, P. Biosynthesis and glycosylation of the invariant chain associated with HLA-DR antigens. J. Immunol. 1982, 129, 2564–2569. [Google Scholar] [CrossRef]
- Neumann, J.; Schach, N.; Koch, N. Glycosylation signals that separate the trimerization from the mhc class II-binding domain control intracellular degradation of invariant chain. J. Biol. Chem. 2001, 276, 13469–13475. [Google Scholar] [CrossRef]
- Guncar, G.; Pungercic, G.; Klemencic, I.; Turk, V.; Turk, D. Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J. 1999, 18, 793–803. [Google Scholar] [CrossRef]
- Arneson, L.S.; Miller, J. The chondroitin sulfate form of invariant chain trimerizes with conventional invariant chain and these complexes are rapidly transported from the trans-Golgi network to the cell surface. Biochem. J. 2007, 406, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Henne, C.; Schwenk, F.; Koch, N.; Möller, P. Surface expression of the invariant chain (CD74) is independent of concomitant expression of major histocompatibility complex class II antigens. Immunology 1995, 84, 177–182. [Google Scholar] [PubMed]
- Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 2014, 30, 1771–1773. [Google Scholar] [CrossRef]
- Spiro, R.C.; Quaranta, V. The invariant chain is a phosphorylated subunit of class II molecules. J. Immunol. 1989, 143, 2589–2594. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, T.; Peterson, P.A.; Karlsson, L. Exit of major histocompatibility complex class II-invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. Proc. Natl. Acad. Sci. USA 1998, 95, 1056–1061. [Google Scholar] [CrossRef]
- Taher, T.E.; Smit, L.; Griffioen, A.W.; Schilder-Tol, E.J.; Borst, J.; Pals, S.T. Signaling through CD44 is mediated by tyrosine kinases. Association with p56lck in T lymphocytes. J. Biol. Chem. 1996, 271, 2863–2867. [Google Scholar] [CrossRef]
- Shi, X.; Leng, L.; Wang, T.; Wang, W.; Du, X.; Li, J.; McDonald, C.; Chen, Z.; Murphy, J.W.; Lolis, E.; et al. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 2006, 25, 595–606. [Google Scholar] [CrossRef]
- Guan, X.; Fierke, C.A. Understanding Protein Palmitoylation: Biological Significance and Enzymology. Sci. China Chem. 2011, 54, 1888–1897. [Google Scholar] [CrossRef]
- Hüttl, S.; Helfrich, F.; Mentrup, T.; Held, S.; Fukumori, A.; Steiner, H.; Saftig, P.; Fluhrer, R.; Schröder, B. Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem. J. 2016, 473, 1405–1422. [Google Scholar] [CrossRef]
- Kok, T.; Wasiel, A.A.; Dekker, F.J.; Poelarends, G.J.; Cool, R.H. High yield production of human invariant chain CD74 constructs fused to solubility-enhancing peptides and characterization of their MIF-binding capacities. Protein Expr. Purif. 2018, 148, 46–53. [Google Scholar] [CrossRef]
- Jasanoff, A.; Wagner, G.; Wiley, D.C. Structure of a trimeric domain of the MHC class II-associated chaperonin and targeting protein Ii. EMBO J. 1998, 17, 6812–6818. [Google Scholar] [CrossRef]
- Marks, M.S.; Blum, J.S.; Cresswell, P. Invariant chain trimers are sequestered in the rough endoplasmic reticulum in the absence of association with HLA class II antigens. J. Cell Biol. 1990, 111, 839–855. [Google Scholar] [CrossRef]
- Lamb, C.A.; Cresswell, P. Assembly and transport properties of invariant chain trimers and HLA-DR-invariant chain complexes. J. Immunol. 1992, 148, 3478–3482. [Google Scholar] [CrossRef]
- Roche, P.A.; Marks, M.S.; Cresswell, P. Formation of a nine-subunit complex by HLA class II glycoproteins and the invariant chain. Nature 1991, 354, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, M.; Gauthier, C.; Fortin, J.S.; Thibodeau, J. The invariant chain p35 isoform promotes formation of nonameric complexes with MHC II molecules. Immunol. Cell Biol. 2014, 92, 553–556. [Google Scholar] [CrossRef]
- Riberdy, J.M.; Newcomb, J.R.; Surman, M.J.; Barbosa, J.A.; Cresswell, P. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 1992, 360, 474–477. [Google Scholar] [CrossRef]
- Bijlmakers, M.J.; Benaroch, P.; Ploegh, H.L. Mapping functional regions in the lumenal domain of the class II-associated invariant chain. J. Exp. Med. 1994, 180, 623–629. [Google Scholar] [CrossRef]
- Bangia, N.; Watts, T.H. Evidence for invariant chain 85-101 (CLIP) binding in the antigen binding site of MHC class II molecules. Int. Immunol. 1995, 7, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Khalife, J.; Lin, A.P.; Ethiraj, P.; Jaafar, C.; Chiou, L.; Huelgas-Morales, G.; Aslam, S.; Arya, S.; Gupta, Y.K.; et al. IRF8-mutant B cell lymphoma evades immunity through a CD74-dependent deregulation of antigen processing and presentation in MHC CII complexes. bioRxiv 2023. [Google Scholar] [CrossRef]
- Lenarcic, B.; Ritonja, A.; Strukelj, B.; Turk, B.; Turk, V. Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-1 domain. J. Biol. Chem. 1997, 272, 13899–13903. [Google Scholar] [CrossRef]
- Barrera, C.A.; Beswick, E.J.; Sierra, J.C.; Bland, D.; Espejo, R.; Mifflin, R.; Adegboyega, P.; Crowe, S.E.; Ernst, P.B.; Reyes, V.E. Polarized expression of CD74 by gastric epithelial cells. J. Histochem. Cytochem. 2005, 53, 1481–1489. [Google Scholar] [CrossRef]
- Zhang, L.; Woltering, I.; Holzner, M.; Brandhofer, M.; Schaefer, C.C.; Bushati, G.; Ebert, S.; Yang, B.; Muenchhoff, M.; Hellmuth, J.C.; et al. CD74 is a functional MIF receptor on activated CD4+ T cells. Cell. Mol. Life Sci. 2024, 81, 296. [Google Scholar] [CrossRef]
- Merk, M.; Zierow, S.; Leng, L.; Das, R.; Du, X.; Schulte, W.; Fan, J.; Lue, H.; Chen, Y.; Xiong, H.; et al. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proc. Natl. Acad. Sci. USA 2011, 108, E577–E585. [Google Scholar] [CrossRef]
- Kok, T.; Wasiel, A.A.; Cool, R.H.; Melgert, B.N.; Poelarends, G.J.; Dekker, F.J. Small-molecule inhibitors of macrophage migration inhibitory factor (MIF) as an emerging class of therapeutics for immune disorders. Drug Discov. Today 2018, 23, 1910–1918. [Google Scholar] [CrossRef]
- Starlets, D.; Gore, Y.; Binsky, I.; Haran, M.; Harpaz, N.; Shvidel, L.; Becker-Herman, S.; Berrebi, A.; Shachar, I. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 2006, 107, 4807–4816. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, R.; Meng, T.; Jin, C.; Zhang, S.; Xu, Y.; Meng, J.; Yang, C.; Zhang, M.; Liang, C. MIF regulates T helper 17 cell differentiation by activating the p38 MAPK signaling pathway to drive the pathogenesis of EAP. Int. Immunopharmacol. 2025, 159, 114959. [Google Scholar] [CrossRef]
- Ebert, S.; Zang, L.; Ismail, N.; Otabil, M.; Fröhlich, A.; Egea, V.; Ács, S.; Hoeberg, M.; Berres, M.L.; Weber, C.; et al. Tissue Inhibitor of Metalloproteinases-1 Interacts with CD74 to Promote AKT Signaling, Monocyte Recruitment Responses, and Vascular Smooth Muscle Cell Proliferation. Cells 2023, 12, 1899. [Google Scholar] [CrossRef] [PubMed]
- Schoeps, B.; Eckfeld, C.; Flüter, L.; Keppler, S.; Mishra, R.; Knolle, P.; Bayerl, F.; Böttcher, J.; Hermann, C.D.; Häußler, D.; et al. Identification of invariant chain CD74 as a functional receptor of tissue inhibitor of metalloproteinases-1 (TIMP-1). J. Biol. Chem. 2021, 297, 101072. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhang, Y.; Li, B.; He, X.; Ding, C.; Hu, W. The inhibitory effect of M2 macrophage-derived exosomes on gefitinib resistant lung adenocarcinoma cells through the MIF/TIMP1/CD74 axis. Sci. Rep. 2025, 15, 28482. [Google Scholar] [CrossRef] [PubMed]
- Høeberg, M.; Noer, J.B.; Vistesen, M.V.; Bartels, A.; Bech, E.M.; Nygård, S.B.; Lademann, U.; Stenvang, J.; Liu, S.; Fuglsang, A.T.; et al. The invariant chain CD74 protein is a cell surface binding partner of TIMP-1 in breast cancer cells. Mol. Oncol. 2023, 17, 1595–1612. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kadlecek, T.A.; Au-Yeung, B.B.; Goodfellow, H.E.; Hsu, L.Y.; Freedman, T.S.; Weiss, A. ZAP-70: An essential kinase in T-cell signaling. Cold Spring Harb. Perspect. Biol. 2010, 2, a002279. [Google Scholar] [CrossRef] [PubMed]
- Butrym, A.; Majewski, M.; Dzietczenia, J.; Kuliczkowski, K.; Mazur, G. High CD74 expression correlates with ZAP70 expression in B cell chronic lymphocytic leukemia patients. Med. Oncol. 2013, 30, 560. [Google Scholar] [CrossRef]
- Kukol, A.; Torres, J.; Arkin, I.T. A structure for the trimeric MHC class II-associated invariant chain transmembrane domain. J. Mol. Biol. 2002, 320, 1109–1117. [Google Scholar] [CrossRef]
- Dixon, A.M.; Stanley, B.J.; Matthews, E.E.; Dawson, J.P.; Engelman, D.M. Invariant chain transmembrane domain trimerization: A step in MHC class II assembly. Biochemistry 2006, 45, 5228–5234. [Google Scholar] [CrossRef]
- Yoo, S.A.; Leng, L.; Kim, B.J.; Du, X.; Tilstam, P.V.; Kim, K.H.; Kong, J.S.; Yoon, H.J.; Liu, A.; Wang, T.; et al. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2016, 113, E7917–E7926. [Google Scholar] [CrossRef]
- Matejuk, A.; Benedek, G.; Bucala, R.; Matejuk, S.; Offner, H.; Vandenbark, A.A. MIF contribution to progressive brain diseases. J. Neuroinflamm. 2024, 21, 8. [Google Scholar] [CrossRef]
- Gil-Yarom, N.; Radomir, L.; Sever, L.; Kramer, M.P.; Lewinsky, H.; Bornstein, C.; Blecher-Gonen, R.; Barnett-Itzhaki, Z.; Mirkin, V.; Friedlander, G.; et al. CD74 is a novel transcription regulator. Proc. Natl. Acad. Sci. USA 2017, 114, 562–567. [Google Scholar] [CrossRef]
- Bakke, O.; Dobberstein, B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell 1990, 63, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, K.; Yuan, H.; Schwappach, B. Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep. 2005, 6, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Ssadh, H.A.; Spencer, P.S.; Alabdulmenaim, W.; Alghamdi, R.; Madar, I.H.; Miranda-Sayago, J.M.; Fernández, N. Measurements of heterotypic associations between cluster of differentiation CD74 and CD44 in human breast cancer-derived cells. Oncotarget 2017, 8, 92143–92156. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.Z.; Chen, Q.; Lan, H.Y. Macrophage Migration Inhibitory Factor (MIF) as a Stress Molecule in Renal Inflammation. Int. J. Mol. Sci. 2022, 23, 4908. [Google Scholar] [CrossRef]
- Meyer-Siegler, K.L.; Leifheit, E.C.; Vera, P.L. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells. BMC Cancer 2004, 4, 34. [Google Scholar] [CrossRef]
- Hofmann, M.W.; Höning, S.; Rodionov, D.; Dobberstein, B.; von Figura, K.; Bakke, O. The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP1 and AP2 and their medium chains. J. Biol. Chem. 1999, 274, 36153–36158. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, T.S.; Leijten, E.F.A.; Lindenbergh, M.F.S.; Nordkamp, M.O.; Driessen, C.; Lebbink, R.J.; Baerlecken, N.; Witte, T.; Radstake, T.; Boes, M. Impaired proteolysis by SPPL2a causes CD74 fragment accumulation that can be recognized by anti-CD74 autoantibodies in human ankylosing spondylitis. Eur. J. Immunol. 2020, 50, 1209–1219. [Google Scholar] [CrossRef]
- Mentrup, T.; Häsler, R.; Fluhrer, R.; Saftig, P.; Schröder, B. A Cell-Based Assay Reveals Nuclear Translocation of Intracellular Domains Released by SPPL Proteases. Traffic 2015, 16, 871–892. [Google Scholar] [CrossRef]
- Voss, M.; Schröder, B.; Fluhrer, R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim. Biophys. Acta 2013, 1828, 2828–2839. [Google Scholar] [CrossRef]
- Anderson, H.A.; Roche, P.A. Phosphorylation regulates the delivery of MHC class II invariant chain complexes to antigen processing compartments. J. Immunol. 1998, 160, 4850–4858. [Google Scholar] [CrossRef] [PubMed]
- Beswick, E.J.; Reyes, V.E. CD74 in antigen presentation, inflammation, and cancers of the gastrointestinal tract. World J. Gastroenterol. 2009, 15, 2855–2861. [Google Scholar] [CrossRef]
- Schröder, B.; Saftig, P. Intramembrane proteolysis within lysosomes. Ageing Res. Rev. 2016, 32, 51–64. [Google Scholar] [CrossRef]
- Leinung, N.; Mentrup, T.; Patel, M.; Gallagher, T.; Schröder, B. Dynamic association of the intramembrane proteases SPPL2a/b and their substrates with tetraspanin-enriched microdomains. iScience 2023, 26, 107819. [Google Scholar] [CrossRef] [PubMed]
- Behnke, J.; Schneppenheim, J.; Koch-Nolte, F.; Haag, F.; Saftig, P.; Schröder, B. Signal-peptide-peptidase-like 2a (SPPL2a) is targeted to lysosomes/late endosomes by a tyrosine motif in its C-terminal tail. FEBS Lett. 2011, 585, 2951–2957. [Google Scholar] [CrossRef]
- Shi, G.P.; Villadangos, J.A.; Dranoff, G.; Small, C.; Gu, L.; Haley, K.J.; Riese, R.; Ploegh, H.L.; Chapman, H.A. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 1999, 10, 197–206. [Google Scholar] [CrossRef]
- Tolosa, E.; Li, W.; Yasuda, Y.; Wienhold, W.; Denzin, L.K.; Lautwein, A.; Driessen, C.; Schnorrer, P.; Weber, E.; Stevanovic, S.; et al. Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J. Clin. Investig. 2003, 112, 517–526. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Z.; Deng, J.; Song, Y. Cathepsin S: Molecular mechanisms in inflammatory and immunological processes. Front. Immunol. 2025, 16, 1600206. [Google Scholar] [CrossRef]
- Fiebiger, E.; Maehr, R.; Villadangos, J.; Weber, E.; Erickson, A.; Bikoff, E.; Ploegh, H.L.; Lennon-Duménil, A.M. Invariant chain controls the activity of extracellular cathepsin L. J. Exp. Med. 2002, 196, 1263–1269. [Google Scholar] [CrossRef]
- Koch, N.; Hämmerling, G.J. The HLA-D-associated invariant chain binds palmitic acid at the cysteine adjacent to the membrane segment. J. Biol. Chem. 1986, 261, 3434–3440. [Google Scholar] [CrossRef]
- Shi, W.Q.; Chen, D.X.; Du, Z.S.; Liu, C.P.; Zhai, T.T.; Pan, F.; Chen, H.L.; Liao, W.N.; Wang, S.H.; Fu, J.H.; et al. CD74 is a potential biomarker predicting the response to immune checkpoint blockade. Cancer Cell Int. 2024, 24, 340. [Google Scholar] [CrossRef] [PubMed]
- Bevec, T.; Stoka, V.; Pungercic, G.; Dolenc, I.; Turk, V. Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J. Exp. Med. 1996, 183, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, T.H.; Reuken, P.A.; Jansen, C.; Fischer, P.; Bergmann, I.; Backhaus, C.; Emontzpohl, C.; Reißing, J.; Brandt, E.F.; Koenen, M.T.; et al. Balance between macrophage migration inhibitory factor and sCD74 predicts outcome in patients with acute decompensation of cirrhosis. JHEP Rep. 2021, 3, 100221. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.F.; Martinez-Barricarte, R.; Kennedy, J.; Mele, F.; Lazarov, T.; Deenick, E.K.; Ma, C.S.; Breton, G.; Lucero, K.B.; Langlais, D.; et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat. Immunol. 2018, 19, 973–985. [Google Scholar] [CrossRef]
- van Dijk, J.R.; Yamazaki, Y.; Palmer, R.H. Tumour-associated mutations of PA-TM-RING ubiquitin ligases RNF167/RNF13 identify the PA domain as a determinant for endosomal localization. Biochem. J. 2014, 459, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Dolenc, I.; Seemüller, E.; Baumeister, W. Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett. 1998, 434, 357–361. [Google Scholar] [CrossRef]
- Kupke, T.; Klare, J.P.; Brügger, B. Heme binding of transmembrane signaling proteins undergoing regulated intramembrane proteolysis. Commun. Biol. 2020, 3, 73. [Google Scholar] [CrossRef]
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta 2012, 1824, 68–88. [Google Scholar] [CrossRef]
- Dolenc, I.; Turk, B.; Pungercic, G.; Ritonja, A.; Turk, V. Oligomeric structure and substrate induced inhibition of human cathepsin C. J. Biol. Chem. 1995, 270, 21626–21631. [Google Scholar] [CrossRef]
- Dolenc, I.; Štefe, I.; Turk, D.; Taler-Verčič, A.; Turk, B.; Turk, V.; Stoka, V. Human cathepsin X/Z is a biologically active homodimer. Biochim. Biophys. Acta—Proteins Proteom. 2021, 1869, 140567. [Google Scholar] [CrossRef]
- Maheshwari, S.; Patel, B.M. Unravelling the role of cathepsins in cardiovascular diseases. Mol. Biol. Rep. 2024, 51, 579. [Google Scholar] [CrossRef]
- Shinn, J.; Kwon, N.; Lee, S.A.; Lee, Y. Smart pH-responsive nanomedicines for disease therapy. J. Pharm. Investig. 2022, 52, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.Y.; Brissette, W.H.; Lira, P.D.; Griffiths, R.J.; Petrushova, N.; Stock, J.; McNeish, J.D.; Eastman, S.E.; Howard, E.D.; Clarke, S.R.; et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 1999, 10, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Villadangos, J.A.; Bryant, R.A.; Deussing, J.; Driessen, C.; Lennon-Duménil, A.M.; Riese, R.J.; Roth, W.; Saftig, P.; Shi, G.P.; Chapman, H.A.; et al. Proteases involved in MHC class II antigen presentation. Immunol. Rev. 1999, 172, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Rückrich, T.; Brandenburg, J.; Cansier, A.; Müller, M.; Stevanović, S.; Schilling, K.; Wiederanders, B.; Beck, A.; Melms, A.; Reich, M.; et al. Specificity of human cathepsin S determined by processing of peptide substrates and MHC class II-associated invariant chain. Biol. Chem. 2006, 387, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Kawakubo, T.; Yasukochi, A.; Tsukuba, T. Emerging roles of cathepsin E in host defense mechanisms. Biochim. Biophys. Acta 2012, 1824, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Balce, D.R.; Allan, E.R.O.; McKenna, N.; Yates, R.M. γ-Interferon-inducible lysosomal thiol reductase (GILT) maintains phagosomal proteolysis in alternatively activated macrophages. J. Biol. Chem. 2014, 289, 31891–31904. [Google Scholar] [CrossRef]
- Busch, R.; Rinderknecht, C.H.; Roh, S.; Lee, A.W.; Harding, J.J.; Burster, T.; Hornell, T.M.; Mellins, E.D. Achieving stability through editing and chaperoning: Regulation of MHC class II peptide binding and expression. Immunol. Rev. 2005, 207, 242–260. [Google Scholar] [CrossRef]
- Zhang, T.; Maekawa, Y.; Yasutomo, K.; Ishikawa, H.; Fawzy Nashed, B.; Dainichi, T.; Hisaeda, H.; Sakai, T.; Kasai, M.; Mizuochi, T.; et al. Pepstatin A-sensitive aspartic proteases in lysosome are involved in degradation of the invariant chain and antigen-processing in antigen presenting cells of mice infected with Leishmania major. Biochem. Biophys. Res. Commun. 2000, 276, 693–701. [Google Scholar] [CrossRef]
- Kozak, A.; Mikhaylov, G.; Khodakivskyi, P.; Goun, E.; Turk, B.; Vasiljeva, O. A New Cathepsin D Targeting Drug Delivery System Based on Immunoliposomes Functionalized with Lipidated Pepstatin A. Pharmaceutics 2023, 15, 2464. [Google Scholar] [CrossRef]
- Rebmann, V.; Dornmair, K.; Grosse-Wilde, H. Biochemical analysis of plasma-soluble invariant chains and their complex formation with soluble HLA-DR. Tissue Antigens 1997, 49, 438–442. [Google Scholar] [CrossRef]
- Soppert, J.; Kraemer, S.; Beckers, C.; Averdunk, L.; Möllmann, J.; Denecke, B.; Goetzenich, A.; Marx, G.; Bernhagen, J.; Stoppe, C. Soluble CD74 Reroutes MIF/CXCR4/AKT-Mediated Survival of Cardiac Myofibroblasts to Necroptosis. J. Am. Heart Assoc. 2018, 7, e009384. [Google Scholar] [CrossRef]
- Wu, G.; Sun, Y.; Wang, K.; Chen, Z.; Wang, X.; Chang, F.; Li, T.; Feng, P.; Xia, Z. Relationship between elevated soluble CD74 and severity of experimental and clinical ALI/ARDS. Sci. Rep. 2016, 6, 30067. [Google Scholar] [CrossRef]
- Arai, J.; Otoyama, Y.; Nozawa, H.; Kato, N.; Yoshida, H. The immunological role of ADAMs in the field of gastroenterological chronic inflammatory diseases and cancers: A review. Oncogene 2023, 42, 549–558. [Google Scholar] [CrossRef]
- Mochizuki, S.; Ao, T.; Sugiura, T.; Yonemura, K.; Shiraishi, T.; Kajiwara, Y.; Okamoto, K.; Shinto, E.; Okada, Y.; Ueno, H. Expression and Function of a Disintegrin and Metalloproteinases in Cancer-Associated Fibroblasts of Colorectal Cancer. Digestion 2020, 101, 18–24. [Google Scholar] [CrossRef]
- Seegar, T.C.M.; Killingsworth, L.B.; Saha, N.; Meyer, P.A.; Patra, D.; Zimmerman, B.; Janes, P.W.; Rubinstein, E.; Nikolov, D.B.; Skiniotis, G.; et al. Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10. Cell 2017, 171, 1638–1648.e7. [Google Scholar] [CrossRef]
- Mihelic, M.; Dobersek, A.; Guncar, G.; Turk, D. Inhibitory fragment from the p41 form of invariant chain can regulate activity of cysteine cathepsins in antigen presentation. J. Biol. Chem. 2008, 283, 14453–14460. [Google Scholar] [CrossRef] [PubMed]
- Lindner, R. Invariant Chain Complexes and Clusters as Platforms for MIF Signaling. Cells 2017, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Hitzel, C.; Kanzler, H.; König, A.; Kummer, M.P.; Brix, K.; Herzog, V.; Koch, N. Thyroglobulin type-I-like domains in invariant chain fusion proteins mediate resistance to cathepsin L digestion. FEBS Lett. 2000, 485, 67–70. [Google Scholar] [CrossRef]
- Turk, B.; Dolenc, I.; Turk, V.; Bieth, J.G. Kinetics of the pH-induced inactivation of human cathepsin L. Biochemistry 1993, 32, 375–380. [Google Scholar] [CrossRef]
- Turk, B.; Dolenc, I.; Lenarcic, B.; Krizaj, I.; Turk, V.; Bieth, J.G.; Björk, I. Acidic pH as a physiological regulator of human cathepsin L activity. Eur. J. Biochem. 1999, 259, 926–932. [Google Scholar] [CrossRef]
- Turk, B.; Bieth, J.G.; Björk, I.; Dolenc, I.; Turk, D.; Cimerman, N.; Kos, J.; Colic, A.; Stoka, V.; Turk, V. Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol. Chem. Hoppe Seyler 1995, 376, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Ogrinc, T.; Dolenc, I.; Ritonja, A.; Turk, V. Purification of the complex of cathepsin L and the MHC class II-associated invariant chain fragment from human kidney. FEBS Lett. 1993, 336, 555–559. [Google Scholar] [CrossRef]
- Wilkinson, R.D.; Magorrian, S.M.; Williams, R.; Young, A.; Small, D.M.; Scott, C.J.; Burden, R.E. CCL2 is transcriptionally controlled by the lysosomal protease cathepsin S in a CD74-dependent manner. Oncotarget 2015, 6, 29725–29739. [Google Scholar] [CrossRef]
- Beswick, E.J.; Pinchuk, I.V.; Minch, K.; Suarez, G.; Sierra, J.C.; Yamaoka, Y.; Reyes, V.E. The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production. Infect. Immun. 2006, 74, 1148–1155. [Google Scholar] [CrossRef]
- Zhou, C.; Lu, L.; Tan, S.; Jiang, S.; Chen, Y.H. HIV-1 glycoprotein 41 ectodomain induces activation of the CD74 protein-mediated extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to enhance viral infection. J. Biol. Chem. 2011, 286, 44869–44877. [Google Scholar] [CrossRef]
- Hussain, A.; Wesley, C.; Khalid, M.; Chaudhry, A.; Jameel, S. Human immunodeficiency virus type 1 Vpu protein interacts with CD74 and modulates major histocompatibility complex class II presentation. J. Virol. 2008, 82, 893–902. [Google Scholar] [CrossRef]
- Zhu, C.S.; Qiang, X.; Chen, W.; Li, J.; Lan, X.; Yang, H.; Gong, J.; Becker, L.; Wang, P.; Tracey, K.J.; et al. Identification of procathepsin L (pCTS-L)-neutralizing monoclonal antibodies to treat potentially lethal sepsis. Sci. Adv. 2023, 9, eadf4313. [Google Scholar] [CrossRef]
- Tokarzewicz, A.; Romanowicz, L.; Sankiewicz, A.; Hermanowicz, A.; Sobolewski, K.; Gorodkiewicz, E. A New Analytical Method for Determination of Cathepsin L Based on the Surface Plasmon Resonance Imaging Biosensor. Int. J. Mol. Sci. 2019, 20, 2166. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Baverel, V.; Chaumonnot, K.; Bourragat, A.; Bellenger, J.; Bellenger, S.; Zhou, W.; Narce, M.; Garrido, C.; Kohli, E. The endoplasmic reticulum stress protein GRP94 modulates cathepsin L activity in M2 macrophages in conditions of obesity-associated inflammation and contributes to their pro-inflammatory profile. Int. J. Obes. 2024, 48, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Guo, J.; Zhang, X.; Sukhova, G.K.; Libby, P.; Shi, G.P. Cysteine protease cathepsins in cardiovascular disease: From basic research to clinical trials. Nat. Rev. Cardiol. 2018, 15, 351–370. [Google Scholar] [CrossRef]
- Feldreich, T.; Carlsson, A.C.; Risérus, U.; Larsson, A.; Lind, L.; Ärnlöv, J. The association between serum cathepsin L and mortality in older adults. Atherosclerosis 2016, 254, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, W.; Yu, X.; Hu, D.; Bao, M.; Liu, H.; Zhou, J.; Jiang, H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020, 80, 639–645. [Google Scholar] [CrossRef]
- Moccia, F.; Gerbino, A.; Lionetti, V.; Miragoli, M.; Munaron, L.M.; Pagliaro, P.; Pasqua, T.; Penna, C.; Rocca, C.; Samaja, M.; et al. COVID-19-associated cardiovascular morbidity in older adults: A position paper from the Italian Society of Cardiovascular Researches. Geroscience 2020, 42, 1021–1049. [Google Scholar] [CrossRef]
- Sattar, N.; McInnes, I.B.; McMurray, J.J.V. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation 2020, 142, 4–6. [Google Scholar] [CrossRef]
- Borghese, F.; Clanchy, F.I. CD74: An emerging opportunity as a therapeutic target in cancer and autoimmune disease. Expert Opin. Ther. Targets 2011, 15, 237–251. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, X.; Chen, Y.; Ma, Y.; Deng, J.; Gao, X.; Guan, S.; Pan, F. Anti-CD74 antibodies in spondyloarthritis: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2021, 51, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, C.; Liang, L.; Zhang, C.; Li, Y.; Xiao, J.; Zeng, R.; Li, J.; Lin, Z.; Huang, Q.; et al. Single-cell RNA sequencing analysis revealed the immunosuppressive remodeling of tumor-associated macrophages mediated by the MIF-CD74 axis in gastric cancer. Sci. Rep. 2025, 15, 26883. [Google Scholar] [CrossRef] [PubMed]
- Bararia, D.; Hildebrand, J.A.; Stolz, S.; Haebe, S.; Alig, S.; Trevisani, C.P.; Osorio-Barrios, F.; Bartoschek, M.D.; Mentz, M.; Pastore, A.; et al. Cathepsin S Alterations Induce a Tumor-Promoting Immune Microenvironment in Follicular Lymphoma. Cell Rep. 2020, 31, 107522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Elfarra, A.A. Identification and characterization of a series of nucleoside adducts formed by the reaction of 2′-deoxyguanosine and 1,2,3,4-diepoxybutane under physiological conditions. Chem. Res. Toxicol. 2003, 16, 1606–1615. [Google Scholar] [CrossRef]
- Velcicky, J.; Mathison, C.J.N.; Nikulin, V.; Pflieger, D.; Epple, R.; Azimioara, M.; Cow, C.; Michellys, P.Y.; Rigollier, P.; Beisner, D.R.; et al. Discovery of Orally Active Hydroxyethylamine Based SPPL2a Inhibitors. ACS Med. Chem. Lett. 2019, 10, 887–892. [Google Scholar] [CrossRef]
- Sabnis, R.W. Diazepinone Compounds as Sppl2a Inhibitors for Treating Autoimmune Diseases and Lymphomas. ACS Med. Chem. Lett. 2022, 13, 881–882. [Google Scholar] [CrossRef]
- Mentrup, T.; Loock, A.C.; Fluhrer, R.; Schröder, B. Signal peptide peptidase and SPP-like proteases—Possible therapeutic targets? Biochim. Biophys. Acta—Mol. Cell Res. 2017, 1864, 2169–2182. [Google Scholar] [CrossRef]
- Rot, A.E.; Hrovatin, M.; Bokalj, B.; Lavrih, E.; Turk, B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024, 226, 10–28. [Google Scholar] [CrossRef]
- Senjor, E.; Kos, J.; Nanut, M.P. Cysteine Cathepsins as Therapeutic Targets in Immune Regulation and Immune Disorders. Biomedicines 2023, 11, 476. [Google Scholar] [CrossRef] [PubMed]
- Cianni, L.; Feldmann, C.W.; Gilberg, E.; Gütschow, M.; Juliano, L.; Leitão, A.; Bajorath, J.; Montanari, C.A. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity? J. Med. Chem. 2019, 62, 10497–10525. [Google Scholar] [CrossRef] [PubMed]
- Barchielli, G.; Capperucci, A.; Tanini, D. Therapeutic cysteine protease inhibitors: A patent review (2018–present). Expert Opin. Ther. Pat. 2024, 34, 17–49. [Google Scholar] [CrossRef] [PubMed]
- Petruzzella, A.; Bruand, M.; Santamaria-Martínez, A.; Katanayeva, N.; Reymond, L.; Wehrle, S.; Georgeon, S.; Inel, D.; van Dalen, F.J.; Viertl, D.; et al. Antibody-peptide conjugates deliver covalent inhibitors blocking oncogenic cathepsins. Nat. Chem. Biol. 2024, 20, 1188–1198. [Google Scholar] [CrossRef]
- Berkova, Z.; Tao, R.H.; Samaniego, F. Milatuzumab—A promising new immunotherapeutic agent. Expert Opin. Investig. Drugs 2010, 19, 141–149. [Google Scholar] [CrossRef]
- Wu, S.Y.; Jin, X.; Liu, Y.; Wang, Z.Y.; Zuo, W.J.; Ma, D.; Xiao, Y.; Fu, T.; Xiao, Y.L.; Chen, L.; et al. Mobilizing antigen-presenting mast cells in anti-PD-1-refractory triple-negative breast cancer: A phase 2 trial. Nat. Med. 2025, 31, 2405–2415. [Google Scholar] [CrossRef]
- Cao, L.; Wang, X.; Liu, X.; Meng, W.; Guo, W.; Duan, C.; Liang, X.; Kang, L.; Lv, P.; Lin, Q.; et al. Tumor Necrosis Factor α-Dependent Lung Inflammation Promotes the Progression of Lung Adenocarcinoma Originating from Alveolar Type II Cells by Upregulating MIF-CD74. Lab. Investig. 2023, 103, 100034. [Google Scholar] [CrossRef]
- Yang, L.; Kong, Y.; Ren, H.; Li, M.; Wei, C.J.; Shi, E.; Jin, W.N.; Hao, J.; Vandenbark, A.A.; Offner, H. Upregulation of CD74 and its potential association with disease severity in subjects with ischemic stroke. Neurochem. Int. 2017, 107, 148–155. [Google Scholar] [CrossRef]
- Cohen, S.; Shoshana, O.Y.; Zelman-Toister, E.; Maharshak, N.; Binsky-Ehrenreich, I.; Gordin, M.; Hazan-Halevy, I.; Herishanu, Y.; Shvidel, L.; Haran, M.; et al. The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74. J. Immunol. 2012, 188, 259–269. [Google Scholar] [CrossRef]
- Ezaki, A.; Yano, H.; Pan, C.; Fujiwara, Y.; Anami, T.; Ibe, Y.; Motoshima, T.; Yatsuda, J.; Esumi, S.; Miura, Y.; et al. Potential protumor function of CD74 in clear cell renal cell carcinoma. Hum. Cell 2024, 37, 1535–1543. [Google Scholar] [CrossRef]
- Gai, J.W.; Wahafu, W.; Song, L.; Ping, H.; Wang, M.; Yang, F.; Niu, Y.; Qing, W.; Xing, N. Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells. Oncol. Lett. 2018, 15, 7631–7638. [Google Scholar] [CrossRef]
- Loreth, D.; Schuette, M.; Zinke, J.; Mohme, M.; Piffko, A.; Schneegans, S.; Stadler, J.; Janning, M.; Loges, S.; Joosse, S.A.; et al. CD74 and CD44 Expression on CTCs in Cancer Patients with Brain Metastasis. Int. J. Mol. Sci. 2021, 22, 6993. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, S.; Yang, Z.; Yu, C.; Wu, P.; Yang, Y.; Zhang, R.; Li, Q.; Yang, J.; Li, H.; et al. Single-cell transcriptome analysis deciphers the CD74-mediated immune evasion and tumour growth in lung squamous cell carcinoma with chronic obstructive pulmonary disease. Clin. Transl. Med. 2024, 14, e1786. [Google Scholar] [CrossRef] [PubMed]
- Potru, P.S.; Spittau, B. CD74: A prospective marker for reactive microglia? Neural Regen. Res. 2023, 18, 2673–2674. [Google Scholar] [CrossRef] [PubMed]
- Costanza, M.; Giordano, C.; von Brünneck, A.C.; Zhao, J.; Makky, A.; Vinh, K.; Montes-Mojarro, I.A.; Reisinger, F.; Forchhammer, S.; Witalisz-Siepracka, A.; et al. Preclinical in vitro and in vivo evidence for targeting CD74 as an effective treatment strategy for cutaneous T-cell lymphomas. Br. J. Dermatol. 2025, 192, 883–895. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Y.; Ni, H.; Li, M.; Qi, B.; Xu, Y. Macrophage migration inhibitory factor (MIF) inhibitor iSO-1 promotes staphylococcal protein A-induced osteogenic differentiation by inhibiting NF-κB signaling pathway. Int. Immunopharmacol. 2023, 115, 109600. [Google Scholar] [CrossRef]
- Ramezani, A.; Varshosaz, J.; Darash, S.; Ebne-Ali-Heydari, Y. A comprehensive systematic review of Ibudilast as a neuroprotective therapy for progressive multiple sclerosis. Mult. Scler. Relat. Disord. 2025, 104, 106807. [Google Scholar] [CrossRef]
- Tran, T.T.; Sánchez-Zuno, G.A.; Osmani, L.; Caulfield, J.; Valdez, C.N.; Piecychna, M.; Leng, L.; Armstrong, M.E.; Donnelly, S.C.; Bifulco, C.B.; et al. Improving immunotherapy responses by dual inhibition of macrophage migration inhibitory factor and PD-1. JCI Insight 2025, 10, e191539. [Google Scholar] [CrossRef]
- Harrison, N.; Koo, C.Z.; Tomlinson, M.G. Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. Int. J. Mol. Sci. 2021, 22, 6707. [Google Scholar] [CrossRef]
- Okamoto, C.K.; van den Berg, C.W.; Pohl, P.C.; Tambourgi, D.V. Role of the complement system in kidney cell death induced by Loxosceles venom Sphingomyelinases D. Arch. Toxicol. 2024, 98, 1561–1572. [Google Scholar] [CrossRef] [PubMed]



| CD74 Region/ Domain | Key Functions | Known Interacting Proteins/Proteases | Post-Translational Modifications | Functional Significance/Related Diseases |
|---|---|---|---|---|
| Cytoplasmic tail | Endosomal sorting; signaling adaptor; internalization motifs | CD44 [58] | Serine phosphorylation [58,98] | Regulates receptor signaling; involved in immune-cell activation and chronic inflammation [55,99] |
| Transmembrane domain | Anchors CD74 in membrane; site of intramembrane proteolysis | SPPL2a [100,101,102] | Cleavage by SPPL2a → ICD release [100] | Generates ICD influencing NF-κB/RUNX activity [88] |
| Endolysosomal (intraluminal) domain | Located inside endosomal and lysosomal compartments; chaperone for MHC-II assembly and trafficking; contains CLIP sequence and Tg domain that inhibits cathepsins | MHC-II α/β chains, HLA-DM, cathepsins L and S [8] | Sequential degradation by cathepsins S, L, V [51,103,104]; N-/O-glycosylation [2]; chondroitin-sulfate attachment [52] | Controls antigen presentation and protease inhibition; essential for MHC-II maturation; altered cleavage linked to immune dysfunction and tumorigenesis [99] |
| Cell-surface domain | Receptor for MIF, MIF-2, and TIMP-1; substrate for ectodomain shedding and proteolytic processing | ADAM10/17 [5]; cathepsins S [105] and L [106] TIMP-1 [81] | N-/O-glycosylation [2]; palmitoylation [107]; phosphorylation [55] | Activates ERK1/2, AKT, and NF-κB pathways [6]; regulates cell proliferation and inflammatory responses [6]; overexpressed in cancer and autoimmune diseases [108] |
| Soluble CD74 | Circulating fragment acting as modulator of MIF signaling | MIF [58]; cathepsin L [109] | Proteolytic shedding by ADAM10/17 [5] | Functions as decoy receptor [110]; may attenuate inflammatory or tumor-promoting effects [5] |
| Aspect | Description |
|---|---|
| Upstream Regulation of CD74 expression | Cytokines: IFN-γ, TNF-α, IL-6 → transcriptional upregulation of CD74 [42,43,44,168]. Proteases: Cathepsins S, L, V; ADAM10/17; SPPL2a → post-translational processing [5,30,100]. Inflammatory and stress stimuli enhance CD74 expression [18,25,169]. |
| Functional Hub | Acts as invariant chain (MHC class II chaperone) [8]. Functions as cell-surface receptor for MIF, D-DT, and TIMP1 [4,74,79]. Integrates immune, stress, and proteolytic signaling pathways [6,7,19]. |
| Signaling Pathways and Disease Associations | Signaling: NF-κB, ERK1/2, PI3K/AKT → cell survival and inflammation [6,14,170]. Immune regulation: antigen presentation, macrophage activation [8,9,171]. Cancer: proliferation, metastasis, immune evasion [25,172,173,174]. Autoimmune/Inflammatory diseases [6,14,153]. Neurodegeneration, Alzheimer’s disease [175]. |
| Therapeutic Targeting of CD74 Networks | Anti-CD74 antibodies: milatuzumab, STRO-001 [166,176]. MIF inhibitors: ISO-1, ibudilast, neutralizing antibodies [177,178,179]. Cathepsin S inibitors [105,164]. SPPL2a inhibitors [158]. ADAM 10/17 regulation [180,181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolenc, I. CD74 and Proteases: Impact of Location on Immune and Cellular Functions. Cells 2025, 14, 1960. https://doi.org/10.3390/cells14241960
Dolenc I. CD74 and Proteases: Impact of Location on Immune and Cellular Functions. Cells. 2025; 14(24):1960. https://doi.org/10.3390/cells14241960
Chicago/Turabian StyleDolenc, Iztok. 2025. "CD74 and Proteases: Impact of Location on Immune and Cellular Functions" Cells 14, no. 24: 1960. https://doi.org/10.3390/cells14241960
APA StyleDolenc, I. (2025). CD74 and Proteases: Impact of Location on Immune and Cellular Functions. Cells, 14(24), 1960. https://doi.org/10.3390/cells14241960
