A New Look at the Role of Radiation-Related Epigenetic Mechanisms in Diagnosis and Anticancer Therapies
Abstract
1. Introduction
2. DNA/RNA Modifications
2.1. RNA Methylation
2.1.1. RNMTs (METTL3 and METTL14)
2.1.2. RNA Demethylases (ALKBH5 and FTO)
2.2. DNA Methylation
2.2.1. ROS and DNA Methylation
2.2.2. DNMT1
2.2.3. DNMT3A/B
2.2.4. DNA and CpG Island Methylation
2.2.5. DNMTis
2.2.6. Radiation-Driven Epigenetic Changes
3. Histone Modifications
3.1. Histone Methylation
3.1.1. X-Ray Irradiation and Histone Methylation
3.1.2. HDMs
3.2. Histone Acetylation
3.2.1. HDACis
3.2.2. HATs
KATs
NAT10
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALKBH5 | alkB homolog 5 |
| Arg1 | arginase 1 |
| ARID1A | AT-rich interacting domain 1 A |
| ASS1 | arginosuccinate synthetase 1 |
| BAF | brahma-related gene 1-associated factor complex |
| BER | base excision repair |
| BRG-1 | brahma-related gene 1 |
| CBP | CREB-binding protein |
| CHK1 | checkpoint kinase 1 |
| CSCs | cancer stem-like cells |
| CTSA | cathepsin A |
| d-2-HG | d-2-hydroxyglutarate |
| DNMTi | DNMT inhibitors |
| DNMTs | DNA methyltransferases |
| DSBs | double-strand breaks |
| E2F6 | E2F transcription factor 6 |
| EGFR | epidermal growth factor receptor |
| ERCC1 | enhances excision repair cross-complementation group 1 |
| ESCC | esophageal squamous cell carcinoma |
| FANCA | FA complementation group A |
| FTO | fat mass and obesity-associated protein |
| GBM | glioblastoma |
| GBMSCs | glioblastoma stem cells |
| H2AFY | H2A histone family, member Y |
| H2AX | H2A histone family member X |
| HATs | histone acetyltransferases |
| HDACis | histone deacetylase inhibitors |
| HDACs | histone deacetylases |
| HDMs | histone demethylases |
| HER2 | human growth factor receptor 2 |
| HMTs | histone methyltransferases |
| HNSCC | HPV head and neck squamous cell carcinoma |
| IDH | isocitrate dehydrogenase |
| IL5RA | interleukin 5 receptor subunit alpha |
| IR | ionizing radiation |
| KAT | lysine acetyltransferase |
| KDM5 | lysine demethylase 5 |
| LTC4S | leukotriene C4 synthase |
| m5C | 5-methylcytosine |
| m6A | N6-methyladenosine |
| m7G | 2’-O-methylation or N7-methylguanosine |
| MBD2 | methyl-CpG binding domain protein 2 |
| me1 | mono-methylation |
| me2 | di-methylation |
| me3 | tri-methylation |
| MeCP2 | methyl-CpG binding protein 2 |
| METTL | methyltransferase-like |
| mRNA | messenger RNA |
| NAT10 | N-acetyltransferase 10 |
| NHA | normal human astrocytes |
| NK | natural killer |
| NKG2D | natural killer group 2 member D |
| NPC | nasopharyngeal carcinoma |
| NSCLC | non-small cell lung cancer |
| OTUB1 | ubiquitin aldehyde binding 1 |
| p300 | E1A binding protein p300 |
| PARP-1 | Poly (ADP-ribose) polymerase |
| PBMC | peripheral blood mononuclear cells |
| PIK3C3 | phosphatidylinositol 3-kinase catalytic subunit type 3 |
| PROTAC | proteolysis-targeting chimeras |
| PET | positron emission tomography |
| PTEN | phosphatase and TENsin homolog |
| RAD51 | RAD51 homolog 1 |
| Rae-1 | ribonucleic acid export 1 |
| RB1 | RB transcriptional corepressor 1 |
| RICVD | radiation-induced cardiovascular disease |
| RMS | rhabdomyosarcoma |
| RNMTs | RNA methyltransferases |
| ROS | reactive oxygen species |
| rRNA | ribosomal RNA |
| SAM | S-adenosylmethionine |
| SLMAP | sarcolemma associated protein |
| snRNA | small nuclear RNA |
| Suv4-20h2 | suppressor of variegation 4-20 homolog 2 |
| TMZ | Temozolomide |
| TPD | targeted protein degradation |
| tRNA | transfer RNA |
| TRIB2 | tribbles pseudokinase 2 |
| TSA | trichostatin A |
| ULBP | UL16-binding protein |
| α-KG | α-ketoglutarate |
| γH2AX | gamma-phosphorylated H2AX |
References
- Ochiai, Y.; Clifton, B.E.; Le Coz, M.; Terenzio, M.; Laurino, P. SUPREM: An engineered non-site-specific m6A RNA methyltransferase with highly improved efficiency. Nucleic Acids Res. 2024, 52, 12158–12172. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Z.; Yang, Y.; Zhang, C.; Liu, H.; Wan, J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int. J. Biol. Macromol. 2023, 253, 126773. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Li, Y.; Robertson, K.D. DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy? Genes Cancer 2011, 2, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Costello, J. DNA methylation: An epigenetic mark of cellular memory. Exp. Mol. Med. 2017, 49, e322. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Chie, E.; DaYoung, P.; Kim, I.; Kim, I. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat. Oncol. 2012, 7, 39. [Google Scholar] [CrossRef]
- Belli, M.; Tabocchini, M.A. Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int. J. Mol. Sci. 2020, 21, 5993. [Google Scholar] [CrossRef]
- Demetriadou, C.; Koufaris, C.; Kirmizis, A. Histone N-alpha terminal modifications: Genome regulation at the tip of the tail. Epigenet. Chromatin 2020, 13, 29. [Google Scholar] [CrossRef]
- Kanwal, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet. 2012, 81, 303–311. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Gao, X.; Chen, X.; Li, L.; Li, G.; Liu, C.; Miao, Y.; Wang, R.; Hu, K. Radiopharmaceuticals and their applications in medicine. Signal Transduct. Target. Ther. 2025, 10, 1. [Google Scholar] [CrossRef]
- Das, S.K.; Menezes, M.E.; Bhatia, S.; Wang, X.; Emdad, L.; Sarkar, D.; Fisher, P.B. Gene Therapies for Cancer: Strategies, Challenges and Successes. J. Cell. Physiol. 2015, 230, 259–271. [Google Scholar] [CrossRef]
- Arechaga-Ocampo, E. Epigenetics as a determinant of radiation response in cancer. Int. Rev. Cell Mol. Biol. 2024, 383, 145–190. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xie, B.; Wang, Q.; Yang, R.; Sun, J.; Hu, C.; Liu, S.; Tao, Y.; Xiao, D. New insights into immune cells in cancer immunotherapy: From epigenetic modification, metabolic modulation to cell communication. MedComm 2024, 5, e551. [Google Scholar] [CrossRef] [PubMed]
- Al Aboud, N.M.; Tupper, C.; Jialal, I. Genetics, Epigenetic Mechanism; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Cui, L.; Ma, R.; Cai, J.; Guo, C.; Chen, Z.; Yao, L.; Wang, Y.; Fan, R.; Wang, X.; Shi, Y. RNA modifications: Importance in immune cell biology and related diseases. Signal Transduct. Target. Ther. 2022, 7, 334. [Google Scholar] [CrossRef]
- Adamopoulos, P.G.; Athanasopoulou, K.; Daneva, G.N.; Scorilas, A. The Repertoire of RNA Modifications Orchestrates a Plethora of Cellular Responses. Int. J. Mol. Sci. 2023, 24, 2387. [Google Scholar] [CrossRef]
- Li, S.; Luo, P.; Fan, J.; Li, Y.; Tu, J.; Long, X. RNA Modifications in Health and Disease. MedComm 2025, 6, e70341. [Google Scholar] [CrossRef]
- Jimeno, S.; Balestra, F.R.; Huertas, P. The Emerging Role of RNA Modifications in DNA Double-Strand Break Repair. Front. Mol. Biosci. 2021, 8, 664872. [Google Scholar] [CrossRef]
- Stixová, L.; Tichý, V.; Bártová, E. RNA-related DNA damage and repair: The role of N7-methylguanosine in the cell nucleus exposed to UV light. Heliyon 2024, 10, e25599. [Google Scholar] [CrossRef]
- Barnes, B.M.; Shyne, A.; Gunn, D.A.; Griffiths, C.E.M.; Watson, R.E.B. Epigenetics and ultraviolet radiation: Implications for skin ageing and carcinogenesis. Skin Health Dis. 2024, 4, e410. [Google Scholar] [CrossRef]
- He, X.; Cai, L.; Tang, H.; Chen, W.; Hu, W. Epigenetic modifications in radiation-induced non-targeted effects and their clinical significance. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2023, 1867, 130386. [Google Scholar] [CrossRef]
- Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, X.; Xiong, Z.; Ihsan, A.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.-R.; Anadón, A.; Wang, X.; et al. Cancer Metabolism: The Role of ROS in DNA Damage and Induction of Apoptosis in Cancer Cells. Metabolites 2023, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.-C.; Zhang, Y.; Wang, Y.; Wei, W.; Zhou, Y.-X.; Xie, Y.; Wang, X.; Qi, Y.-Z.; Chang, L.; Jia, Z.-P.; et al. Quantitative proteomics reveals mitochondrial respiratory chain as a dominant target for carbon ion radiation: Delayed reactive oxygen species generation caused DNA damage. Free Radic. Biol. Med. 2019, 130, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Zulato, E.; Ciccarese, F.; Agnusdei, V.; Pinazza, M.; Nardo, G.; Iorio, E.; Curtarello, M.; Silic-Benussi, M.; Rossi, E.; Venturoli, C.; et al. LKB1 loss is associated with glutathione deficiency under oxidative stress and sensitivity of cancer cells to cytotoxic drugs and γ-irradiation. Biochem. Pharmacol. 2018, 156, 479–490. [Google Scholar] [CrossRef]
- Ma, Y.; Chapman, J.; Levine, M.; Polireddy, K.; Drisko, J.; Chen, Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci. Transl. Med. 2014, 6, 222ra18. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.-L.; Liu, H.-X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021, 11, 4839–4857. [Google Scholar] [CrossRef]
- González, M.J.; Miranda-Massari, J.R.; Mora, E.M.; Guzmán, A.; Riordan, N.H.; Riordan, H.D.; Casciari, J.J.; Jackson, J.A.; Román-Franco, A. Orthomolecular Oncology Review: Ascorbic Acid and Cancer 25 Years Later. Integr. Cancer Ther. 2005, 4, 32–44. [Google Scholar] [CrossRef]
- Attique, I.; Haider, Z.; Khan, M.; Hassan, S.; Soliman, M.M.; Ibrahim, W.N.; Anjum, S. Reactive Oxygen Species: From Tumorigenesis to Therapeutic Strategies in Cancer. Cancer Med. 2025, 14, e70947. [Google Scholar] [CrossRef]
- Chang, C.; Ma, G.; Cheung, E.; Hutchins, A.P. A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. J. Biol. Chem. 2022, 298, 102525. [Google Scholar] [CrossRef]
- Chen, X.; Chen, M.; Gu, X.; Zhou, Q.; Zhao, Y.; Yang, Y.; Zhang, H.; Yang, X. Roles of KDM5 demethylases in therapeutic resistance of cancers. Epigenetics Chromatin 2025, 18, 61. [Google Scholar] [CrossRef]
- Luan, J.; Kopp, J.B.; Zhou, H. N6-methyladenine RNA Methylation Epigenetic Modification and Kidney Diseases. Kidney Int. Rep. 2023, 8, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Yin, H.; Hong, M.; Wang, Y.; Yu, T.; Teng, Y.; Li, T.; Wu, Q. RNA methylation in hematological malignancies and its interactions with other epigenetic modifications. Leukemia 2021, 35, 1243–1257. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Wang, H. RNA modifications in long non-coding RNAs and their implications in cancer biology. Bioorg. Med. Chem. 2024, 113, 117922. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, B.; Nie, Z.; Duan, L.; Xiong, Q.; Jin, Z.; Yang, C.; Chen, Y. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther. 2021, 6, 74. [Google Scholar] [CrossRef]
- Zhuang, H.; Yu, B.; Tao, D.; Xu, X.; Xu, Y.; Wang, J.; Jiao, Y.; Wang, L. The role of m6A methylation in therapy resistance in cancer. Mol. Cancer. 2023, 22, 91. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, L.; Cheng, L.; Lv, G.; Sun, B.; Wang, G.; Tang, Q. The roles of N6-methyladenosine and its target regulatory noncoding RNAs in tumors: Classification, mechanisms, and potential therapeutic implications. Exp. Mol. Med. 2023, 55, 487–501. [Google Scholar] [CrossRef]
- Wang, L.; Dou, X.; Chen, S.; Yu, X.; Huang, X.; Zhang, L.; Chen, Y.; Wang, J.; Yang, K.; Bugno, J.; et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell 2023, 41, 1294–1308.e8. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N. The role of RNA methyltransferase METTL3 in gynecologic cancers: Results and mechanisms. Front. Pharmacol. 2023, 14, 1156629. [Google Scholar] [CrossRef]
- Wang, P.; Doxtader, K.A.; Nam, Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol. Cell 2016, 63, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Feng, R.; Lu, T.; Chen, X.; Zhou, X.; Wang, X. Novel insights into the m6A-RNA methyltransferase METTL3 in cancer. Biomark. Res. 2021, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Laurent, B.; Hsu, C.-H.; Nachtergaele, S.; Lu, Z.; Sheng, W.; Xu, C.; Chen, H.; Ouyang, J.; Wang, S.; et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 2017, 543, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, P.; Huang, Y.; Shi, W.; Mao, J.; Ma, N.; Kong, L.; Guo, L.; Liu, J.; Chen, J.; et al. METTL3-mediated m6A mRNA contributes to the resistance of carbon-ion radiotherapy in non-small-cell lung cancer. Cancer Sci. 2023, 114, 105–114. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, K.; Gu, S.; Wang, W.; Xie, S.; Lu, T.; Li, L.; Dong, C.; Wang, X.; Zhou, Y. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin. Transl. Med. 2021, 11, e545. [Google Scholar] [CrossRef]
- Fang, Y.; Zekiy, A.O.; Ghaedrahmati, F.; Timoshin, A.; Farzaneh, M.; Anbiyaiee, A.; Khoshnam, S.E. Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions. Cell Commun. Signal. 2021, 19, 41. [Google Scholar] [CrossRef]
- Bai, X.; Liu, J.; Zhou, S.; Wu, L.; Feng, X.; Zhang, P. METTL14 suppresses the expression of YAP1 and the stemness of triple-negative breast cancer. J. Exp. Clin. Cancer Res. 2024, 43, 307. [Google Scholar] [CrossRef]
- Qu, J.; Yan, H.; Hou, Y.; Cao, W.; Liu, Y.; Zhang, E.; He, J.; Cai, Z. RNA demethylase ALKBH5 in cancer: From mechanisms to therapeutic potential. J. Hematol. Oncol. 2022, 15, 8. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Shi, Y.; Liu, J.; Lin, L.; Chen, X. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am. J. Transl. Res. 2019, 11, 6084–6092. [Google Scholar]
- Kowalski-Chauvel, A.; Lacore, M.G.; Arnauduc, F.; Delmas, C.; Toulas, C.; Cohen-Jonathan-Moyal, E.; Seva, C. The m6A RNA Demethylase ALKBH5 Promotes Radioresistance and Invasion Capability of Glioma Stem Cells. Cancers 2020, 13, 40. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Z.; Aili, D.; Wang, L.; Liu, T. Exploration of the carcinogenetic and immune role of CHK1 in human cancer. J. Cancer 2024, 15, 5927–5941. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jia, R.; Wang, L.; Yang, Q.; Hu, X.; Fu, Q.; Zhang, X.; Li, W.; Ren, Y. The Emerging Roles of Rad51 in Cancer and Its Potential as a Therapeutic Target. Front. Oncol. 2022, 12, 935593. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Bai, Z.; Xia, D.; Zhao, Z.; Zhao, R.; Wang, Y.; Zhe, H. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol. Carcinog. 2018, 57, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-M.; Li, Z.-X.; Wu, Y.-H.; Shi, Z.-L.; Mi, J.-L.; Hu, K.; Wang, R.-S. m6A demethylase FTO renders radioresistance of nasopharyngeal carcinoma via promoting OTUB1-mediated anti-ferroptosis. Transl. Oncol. 2023, 27, 101576. [Google Scholar] [CrossRef]
- Saldana, M.; VanderVorst, K.; Berg, A.L.; Lee, H.; Carraway, K.L. Otubain 1: A non-canonical deubiquitinase with an emerging role in cancer. Endocr. Relat. Cancer. 2019, 26, R1–R14. [Google Scholar] [CrossRef]
- Ji, L.; Pu, L.; Wang, J.; Cao, H.; Melemenidis, S.; Sinha, S.; Guan, L.; Laseinde, E.E.; von Eyben, R.; Richter, S.A.; et al. FTO inhibition enhances the therapeutic index of radiation therapy in head and neck cancer. JCI Insight 2025, 10, e184968. [Google Scholar] [CrossRef]
- Lanata, C.M.; Chung, S.A.; Criswell, L.A. DNA methylation 101: What is important to know about DNA methylation and its role in SLE risk and disease heterogeneity. Lupus Sci. Med. 2018, 5, e000285. [Google Scholar] [CrossRef]
- Sallustio, F.; Gesualdo, L.; Gallone, A. New findings showing how DNA methylation influences diseases. World J. Biol. Chem. 2019, 10, 1–6. [Google Scholar] [CrossRef]
- Dhingra, R.; Nwanaji-Enwerem, J.C.; Samet, M.; Ward-Caviness, C.K. DNA Methylation Age—Environmental Influences, Health Impacts, and Its Role in Environmental Epidemiology. Curr. Environ. Health Rep. 2018, 5, 317–327. [Google Scholar] [CrossRef]
- Maleknia, M.; Ahmadirad, N.; Golab, F.; Katebi, Y.; Haj Mohamad Ebrahim Ketabforoush, A. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors. Epigenet. Insights 2023, 16, 25168657231199892. [Google Scholar] [CrossRef]
- Maier, P.; Hartmann, L.; Wenz, F.; Herskind, C. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int. J. Mol. Sci. 2016, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.-C.; Tsai, C.-Y.; Tsai, M.-M.; Yeh, C.-T.; Lin, K.-H. Roles of Long Noncoding RNAs in Recurrence and Metastasis of Radiotherapy-Resistant Cancer Stem Cells. Int. J. Mol. Sci. 2017, 18, 1903. [Google Scholar] [CrossRef]
- Chi, H.-C.; Tsai, C.-Y.; Tsai, M.-M.; Lin, K.-H. Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. Int. J. Mol. Sci. 2018, 19, 555. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Chen, P.; Huang, H.-W.; Liu, L.-P.; Zhao, F. Reactive oxygen species downregulate ARID1A expression via its promoter methylation during the pathogenesis of endometriosis. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4509–4515. [Google Scholar] [PubMed]
- Winarto, H.; Tan, M.; Sadikin, M.; Wanandi, S. Expression is Down-Regulated by Oxidative Stress in Endometriosis and Endometriosis-Associated Ovarian Cancer. Transl. Oncogenom. 2017, 9, 1177272716689818. [Google Scholar] [CrossRef]
- Pogribny, I.; Koturbash, I.; Tryndyak, V.; Hudson, D.; Stevenson, S.M.L.; Sedelnikova, O.; Bonner, W.; Kovalchuk, O. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol. Cancer Res. 2005, 3, 553–561. [Google Scholar] [CrossRef]
- Peng, Q.; Weng, K.; Li, S.; Xu, R.; Wang, Y.; Wu, Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front. Cell Dev. Biol. 2021, 9, 624312. [Google Scholar] [CrossRef]
- Tryndyak, V.P.; Kovalchuk, O.; Pogribny, I.P. Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol. Ther. 2006, 5, 65–70. [Google Scholar] [CrossRef]
- Megiorni, F.; Camero, S.; Ceccarelli, S.; McDowell, H.P.; Mannarino, O.; Marampon, F.; Pizer, B.; Shukla, R.; Pizzuti, A.; Marchese, C.; et al. DNMT3B in vitro knocking-down is able to reverse embryonal rhabdomyosarcoma cell phenotype through inhibition of proliferation and induction of myogenic differentiation. Oncotarget 2016, 7, 79342–79356. [Google Scholar] [CrossRef]
- Camero, S.; Vitali, G.; Pontecorvi, P.; Ceccarelli, S.; Anastasiadou, E.; Cicchetti, F.; Flex, E.; Pomella, S.; Cassandri, M.; Rota, R.; et al. DNMT3A and DNMT3B Targeting as an Effective Radiosensitizing Strategy in Embryonal Rhabdomyosarcoma. Cells 2021, 10, 2956. [Google Scholar] [CrossRef]
- Yan, J.; Chen, S.; Yi, Z.; Zhao, R.; Zhu, J.; Ding, S.; Wu, J. The role of p21 in cellular senescence and aging-related diseases. Mol. Cells 2024, 47, 100113. [Google Scholar] [CrossRef]
- Wu, C.; Guo, E.; Ming, J.; Sun, W.; Nie, X.; Sun, L.; Peng, S.; Luo, M.; Liu, D.; Zhang, L.; et al. Radiation-Induced DNMT3B Promotes Radioresistance in Nasopharyngeal Carcinoma through Methylation of p53 and p21. Mol. Ther. Oncolytics. 2020, 17, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Ren, Z.; Chen, Y.; Zhu, J.; Du, Y.; Pan, D.; Li, X.; Hu, B. A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett. 2015, 361, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Hajji, N.; Garcia-Revilla, J.; Soto, M.S.; Perryman, R.; Symington, J.; Quarles, C.C.; Healey, D.R.; Guo, Y.; Orta-Vázquez, M.L.; Mateos-Cordero, S.; et al. Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors. J. Clin. Investig. 2022, 132, e142137. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, D.; Parracho, R.T.; Corujo, D.; Xie, M.; Kutkaite, G.; Olsen, T.K.; Rubies Bedos, M.; Salehi, M.; Baryawno, N.; Menden, M.P.; et al. Epigenetic regulation of cell state by H2AFY governs immunogenicity in high-risk neuroblastoma. J. Clin. Investig. 2024, 134, e175310. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.; Wang, Y.; Nie, Q.; Zhang, X.; Yang, Y.; Mao, G. Cathepsin a upregulation in glioma: A potential therapeutic target associated with immune infiltration. J. Med. Biochem. 2022, 41, 459–465. [Google Scholar] [CrossRef]
- Fujimori, K.; Uno, S.; Kuroda, K.; Matsumoto, C.; Maehara, T. Leukotriene C4 synthase is a novel PPARγ target gene, and leukotriene C4 and D4 activate adipogenesis through cysteinyl LT1 receptors in adipocytes. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2022, 1869, 119203. [Google Scholar] [CrossRef]
- Laffey, K.G.; Du, J.; Schrum, A.G.; Ackerman, S.J. Transcriptional Regulation of the Human IL5RA Gene through Alternative Promoter Usage during Eosinophil Development. Int. J. Mol. Sci. 2021, 22, 10245. [Google Scholar] [CrossRef]
- Berry, J.L.; Polski, A.; Cavenee, W.K.; Dryja, T.P.; Murphree, A.L.; Gallie, B.L. The RB1 Story: Characterization and Cloning of the First Tumor Suppressor Gene. Genes 2019, 10, 879. [Google Scholar] [CrossRef]
- Halvorsen, A.R.; Helland, Å.; Fleischer, T.; Haug, K.M.; Grenaker Alnæs, G.I.; Nebdal, D.; Syljuåsen, R.G.; Touleimat, N.; Busato, F.; Tost, J.; et al. Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy. Int. J. Cancer. 2014, 135, 2085–2095. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Hassan, A.M.E.; Ali, A.A.; Hassan, N.M.; Yousif, A.A.; Elbashir, F.E.; Omer, A.; Abdalla, O.M. Detection of Radiation-Induced DNA Damage in Breast Cancer Patients by Using Gamma H2AX Biomarker: A Possible Correlation with Their Body Mass Index. Genome Integr. 2022, 13, 1. [Google Scholar]
- Wee, C.W.; Kim, J.H.; Kim, H.J.; Kang, H.-C.; Suh, S.Y.; Shin, B.S.; Ma, E.; Kim, I.H. Radiosensitization of Glioblastoma Cells by a Novel DNA Methyltransferase-inhibiting Phthalimido-Alkanamide Derivative. Anticancer Res. 2019, 39, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Benotmane, M.A.; Baatout, S.; Guns, P.-J.; Aerts, A. Radiation-induced cardiovascular disease: An overlooked role for DNA methylation? Epigenetics 2022, 17, 59–80. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Mysara, M.; Benotmane, M.A.; Tamarat, R.; Santos, S.C.R.; Crijns, A.P.G.; Spoor, D.; Van Nieuwerburgh, F.; Deforce, D.; Baatout, S.; et al. DNA Methylation Alterations in Fractionally Irradiated Rats and Breast Cancer Patients Receiving Radiotherapy. Int. J. Mol. Sci. 2022, 23, 16214, Correction in Int. J. Mol. Sci. 2023, 24, 17590. https://doi.org/10.3390/ijms242417590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tojjari, A.; Giles, F.J.; Vilbert, M.; Saeed, A.; Cavalcante, L. SLAM Modification as an Immune-Modulatory Therapeutic Approach in Cancer. Cancers 2023, 15, 4808. [Google Scholar] [CrossRef]
- Dahlet, T.; Truss, M.; Frede, U.; Al Adhami, H.; Bardet, A.F.; Dumas, M.; Vallet, J.; Chicher, J.; Hammann, P.; Kottnik, S.; et al. E2F6 initiates stable epigenetic silencing of germline genes during embryonic development. Nat. Commun. 2021, 12, 3582. [Google Scholar] [CrossRef]
- Molenaar, R.J.; Radivoyevitch, T.; Maciejewski, J.P.; van Noorden, C.J.F.; Bleeker, F.E. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim. Biophys. Acta 2014, 1846, 326–341. [Google Scholar] [CrossRef]
- Molenaar, R.J.; Botman, D.; Smits, M.A.; Hira, V.V.; van Lith, S.A.; Stap, J.; Henneman, P.; Khurshed, M.; Lenting, K.; Mul, A.N.; et al. Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198. Cancer Res. 2015, 75, 4790–4802. [Google Scholar] [CrossRef]
- Baumert, B.G.; Hegi, M.E.; van den Bent, M.J.; von Deimling, A.; Gorlia, T.; Hoang-Xuan, K.; Brandes, A.A.; Kantor, G.; Taphoorn, M.J.B.; Hassel, M.B.; et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): A randomised, open-label, phase 3 intergroup study. Lancet Oncol. 2016, 17, 1521–1532. [Google Scholar] [CrossRef]
- Ma, X.; Fan, W.; Zhang, T.; Luo, L.; Wang, K. The interplay between oxidative stress and epigenetic reprogramming in cancer. Int. J. Cancer 2025, 157, 2004–2018. [Google Scholar] [CrossRef]
- Williamson, E.A.; Wray, J.W.; Bansal, P.; Hromas, R. Overview for the histone codes for DNA repair. Prog. Mol. Biol. Transl. Sci. 2012, 110, 207–227. [Google Scholar] [CrossRef]
- Méndez-Acuña, L.; Di Tomaso, M.V.; Palitti, F.; Martínez-López, W. Histone post-translational modifications in DNA damage response. Cytogenet. Genome Res. 2010, 128, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Averbeck, N.B.; Durante, M. Protein acetylation within the cellular response to radiation. J. Cell Physiol. 2011, 226, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zheng, S. Epigenomics and Radiopharmaceuticals in Preoperative Chemoradiotherapy: Advancing Personalized Cancer Treatment Protocols. Cancer Biother. Radiopharm. 2025. [Google Scholar] [CrossRef]
- Pippa, S.; Mannironi, C.; Licursi, V.; Bombardi, L.; Colotti, G.; Cundari, E.; Mollica, A.; Coluccia, A.; Naccarato, V.; La Regina, G.; et al. Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Over-expressing JARID1B. Molecules 2019, 24, 1739. [Google Scholar] [CrossRef]
- Wang, X.; Gu, M.; Ju, Y.; Zhou, J. Overcoming radio-resistance in esophageal squamous cell carcinoma via hypermethylation of PIK3C3 promoter region mediated by KDM5B loss. J. Radiat. Res. 2022, 63, 331–341. [Google Scholar] [CrossRef]
- Xu, L.-M.; Yu, H.; Yuan, Y.-J.; Zhang, J.; Ma, Y.; Cao, X.-C.; Wang, J.; Zhao, L.-J.; Wang, P. Overcoming of Radioresistance in Non-small Cell Lung Cancer by microRNA-320a Through HIF1α-Suppression Mediated Methylation of PTEN. Front. Cell Dev. Biol. 2020, 8, 553733. [Google Scholar] [CrossRef]
- Everix, L.; Seane, E.N.; Ebenhan, T.; Goethals, I.; Bolcaen, J. Introducing HDAC-Targeting Radiopharmaceuticals for Glio-blastoma Imaging and Therapy. Pharmaceuticals 2023, 16, 227. [Google Scholar] [CrossRef]
- Zhou, M.; Yuan, M.; Zhang, M.; Lei, C.; Aras, O.; Zhang, X.; An, F. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur. J. Med. Chem. 2021, 226, 113825. [Google Scholar] [CrossRef]
- Antrobus, J.; Mackinnon, B.; Melia, E.; Hughes, J.R.; Parsons, J.L. HDAC Inhibitors Can Enhance Radiosensitivity of Head and Neck Cancer Cells Through Suppressing DNA Repair. Cancers 2024, 16, 4108. [Google Scholar] [CrossRef]
- Sharda, A.; Rashid, M.; Shah, S.G.; Sharma, A.K.; Singh, S.R.; Gera, P.; Chilkapati, M.K.; Gupta, S. Elevated HDAC activity and altered histone phospho-acetylation confer acquired radio-resistant phenotype to breast cancer cells. Clin. Epigenet. 2020, 12, 4. [Google Scholar] [CrossRef]
- Xiao, X.-S.; Cai, M.-Y.; Chen, J.-W.; Guan, X.-Y.; Kung, H.-F.; Zeng, Y.-X.; Xie, D. High Expression of p300 in Human Breast Cancer Correlates with Tumor Recurrence and Predicts Adverse Prognosis. Chin. J. Cancer Res. 2011, 23, 201–207. [Google Scholar] [CrossRef]
- Gao, Y.; Geng, J.; Hong, X.; Qi, J.; Teng, Y.; Yang, Y.; Qu, D.; Chen, G. Expression of p300 and CBP is associated with poor prognosis in small cell lung cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 760–767. [Google Scholar] [PubMed]
- Oike, T.; Ogiwara, H.; Torikai, K.; Nakano, T.; Yokota, J.; Kohno, T. Garcinol, a histone acetyltransferase inhibitor, radiosensi-tizes cancer cells by inhibiting non-homologous end joining. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.S.Z.; Stagni, V.; Iuzzolino, A.; Rotili, D.; Mai, A.; Del Bufalo, D.; Lavia, P.; Degrassi, F.; Trisciuoglio, D. Pharmaco-logical targeting of CBP/p300 drives a redox/autophagy axis leading to senescence-induced growth arrest in non-small cell lung cancer cells. Cancer Gene Ther. 2023, 30, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yang, B.; Liu, X.; Zhang, X.D.; Zhang, L.; Liu, T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics 2022, 12, 4935–4948. [Google Scholar] [CrossRef]
- Wang, H.; Guan, T.; Hu, R.; Huang, Z.; Liang, Z.; Lin, X.; Qiu, Y.; Liao, P.; Guo, X.; Ke, Y.; et al. Targeting KAT7 inhibits the progression of colorectal cancer. Theranostics 2025, 15, 1478–1495. [Google Scholar] [CrossRef]
- Wang, M.; Mu, G.; Qiu, B.; Wang, S.; Tao, C.; Mao, Y.; Zhao, X.; Liu, J.; Chen, K.; Li, Z.; et al. Competitive antagonism of KAT7 crotonylation against acetylation affects procentriole formation and colorectal tumorigenesis. Nat. Commun. 2025, 16, 2379. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Ding, T.; Zhang, H.; Zhang, Q.; Dai, H.; Zhang, H.; Tang, J.; Wang, X. KAT7 promotes radioresistance through upregulating PI3K/AKT signaling in breast cancer. J. Radiat. Res. 2023, 64, 448–456. [Google Scholar] [CrossRef]
- Ito, S.; Horikawa, S.; Suzuki, T.; Kawauchi, H.; Tanaka, Y.; Suzuki, T.; Suzuki, T. Human NAT10 Is an ATP-dependent RNA Acetyltransferase Responsible for N4-Acetylcytidine Formation in 18 S Ribosomal RNA (rRNA). J. Biol. Chem. 2014, 289, 35724–35730. [Google Scholar] [CrossRef]
- Rodrigues, P.; Bangali, H.; Ali, E.; Nauryzbaevish, A.S.; Hjazi, A.; Fenjan, M.N.; Alawadi, A.; Alsaalamy, A.; Alasheqi, M.Q.; Mustafa, Y.F. The mechanistic role of NAT10 in cancer: Unraveling the enigmatic web of oncogenic signaling. Pathol. Res. Pract. 2024, 253, 154990. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Du, Y.; Yan, Z.; Gao, J.; Zhang, H.; Wu, Q.; Nian, B.; Huang, X.; Da, M. Acetyltransferase NAT10 promotes gastric cancer progression by regulating the Wnt/β-catenin signaling pathway and enhances chemotherapy resistance. Discov. Oncol. 2025, 16, 173. [Google Scholar] [CrossRef]
- Li, L.; Li, F.; Zhou, C.; Ni, K.; Hu, H.; Wang, M.; Wang, H.; Gao, L. N-acetyltransferase 10 as a novel prognostic biomarker in papillary renal cell carcinoma: A machine learning and experimental validation study. Transl. Cancer Res. 2024, 13, 6364–6380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, Z.; Sun, S.; Xie, S.; Jiang, M.; Chen, B.; Gu, C.; Yang, Y. NAT10 acetylates BCL-XL mRNA to promote the proliferation of multiple myeloma cells through PI3K-AKT pathway. Front. Oncol. 2022, 12, 967811. [Google Scholar] [CrossRef] [PubMed]
- Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, E.; Turberfield, A.H.; Klose, R.J. Histone demethylases in chromatin biology and beyond. EMBO Rep. 2015, 16, 1620–1639. [Google Scholar] [CrossRef]
- Yang, Y.; Luan, Y.; Feng, Q.; Chen, X.; Qin, B.; Ren, K.-D.; Luan, Y. Epigenetics and Beyond: Targeting Histone Methylation to Treat Type 2 Diabetes Mellitus. Front. Pharmacol. 2021, 12, 807413. [Google Scholar] [CrossRef]
- Alam, H.; Gu, B.; Lee, M.G. Histone methylation modifiers in cellular signaling pathways. Cell. Mol. Life Sci. 2015, 72, 4577–4592. [Google Scholar] [CrossRef]
- Hyun, K.; Jeon, J.; Park, K.; Kim, J. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 2017, 49, e324. [Google Scholar] [CrossRef]
- Monaghan, L.; Massett, M.E.; Bunschoten, R.P.; Hoose, A.; Pirvan, P.-A.; Liskamp, R.M.J.; Jørgensen, H.G.; Huang, X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front. Oncol. 2019, 9, 705. [Google Scholar] [CrossRef]
- Gong, F.; Miller, K.M. Histone methylation and the DNA damage response. Mutat. Res. Rev. Mutat. Res. 2019, 780, 37–47. [Google Scholar] [CrossRef]
- McCauley, B.S.; Dang, W. Histone methylation and aging: Lessons learned from model systems. Biochim. Biophys. Acta 2014, 1839, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Friedl, A.A.; Mazurek, B.; Seiler, D.M. Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects. Front. Oncol. 2012, 2, 117. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, P.; Chen, C.; Ding, W.; Tillement, O.; Bai, H.; Zhang, S. Targeting epigenetic regulators as a promising avenue to overcome cancer therapy resistance. Signal Transduct. Target. Ther. 2025, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Ohguchi, Y.; Ohguchi, H. Diverse Functions of KDM5 in Cancer: Transcriptional Repressor or Activator? Cancers 2022, 14, 3270. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Shu, X.; Song, C.-X. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ. 2025, 32, 56–65. [Google Scholar] [CrossRef]
- De-Ugarte, L.; Balcells, S.; Guerri-Fernandez, R.; Grinberg, D.; Diez-Perez, A.; Nogues, X.; Garcia-Giralt, N. Effect of the Tumor Suppressor miR-320a on Viability and Functionality of Human Osteosarcoma Cell Lines Compared to Primary Osteoblasts. Appl. Sci. 2020, 10, 2852. [Google Scholar] [CrossRef]
- Fusco, N.; Sajjadi, E.; Venetis, K.; Gaudioso, G.; Lopez, G.; Corti, C.; Guerini Rocco, E.; Criscitiello, C.; Malapelle, U.; Invernizzi, M. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes 2020, 11, 719. [Google Scholar] [CrossRef]
- Gujral, P.; Mahajan, V.; Lissaman, A.C.; Ponnampalam, A.P. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod. Biol. Endocrinol. 2020, 18, 84. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Yi, S.-J.; Kim, K. Gene regulation by histone-modifying enzymes under hypoxic conditions: A focus on histone methylation and acetylation. Exp. Mol. Med. 2022, 54, 878–889. [Google Scholar] [CrossRef]
- Hutt, D.M.; Roth, D.M.; Marchal, C.; Bouchecareilh, M. Using Histone Deacetylase Inhibitors to Analyze the Relevance of HDACs for Translation. Methods Mol. Biol. 2017, 1510, 77–91. [Google Scholar] [CrossRef]
- Chen, H.P.; Zhao, Y.T.; Zhao, T.C. Histone deacetylases and mechanisms of regulation of gene expression. Crit. Rev. Oncog. 2015, 20, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Olichwier, A.; Sowka, A.; Balatskyi, V.V.; Gan, A.-M.; Dziewulska, A.; Dobrzyn, P. SCD1-related epigenetic modifications affect hormone-sensitive lipase (Lipe) gene expression in cardiomyocytes. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119608. [Google Scholar] [CrossRef] [PubMed]
- Verza, F.A.; Das, U.; Fachin, A.L.; Dimmock, J.R.; Marins, M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers 2020, 12, 1664. [Google Scholar] [CrossRef] [PubMed]
- Moertl, S.; Payer, S.; Kell, R.; Winkler, K.; Anastasov, N.; Atkinson, M.J. Comparison of Radiosensitization by HDAC Inhibitors CUDC-101 and SAHA in Pancreatic Cancer Cells. Int. J. Mol. Sci. 2019, 20, 3259. [Google Scholar] [CrossRef]
- Gil, J.; Ramírez-Torres, A.; Encarnación-Guevara, S. Lysine acetylation and cancer: A proteomics perspective. J. Proteomics. 2017, 150, 297–309. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Z.; Ding, Y.; Wang, L.; Wang, S.; Wang, H.; Qin, Y. DNA Methylation: From Cancer Biology to Clinical Perspectives. Front. Biosci. (Landmark Ed.) 2022, 27, 326. [Google Scholar] [CrossRef]
- Tang, F.; Choy, E.; Tu, C.; Hornicek, F.; Duan, Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat. Rev. 2017, 59, 33–45. [Google Scholar] [CrossRef]
- Wawruszak, A.; Borkiewicz, L.; Okon, E.; Kukula-Koch, W.; Afshan, S.; Halasa, M. Vorinostat (SAHA) and Breast Cancer: An Overview. Cancers 2021, 13, 4700. [Google Scholar] [CrossRef]
- Blattmann, C.; Oertel, S.; Ehemann, V.; Thiemann, M.; Huber, P.E.; Bischof, M.; Witt, O.; Deubzer, H.E.; Kulozik, A.E.; Debus, J.; et al. Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 237–245. [Google Scholar] [CrossRef]
- Blattmann, C.; Thiemann, M.; Stenzinger, A.; Christmann, A.; Roth, E.; Ehemann, V.; Debus, J.; Kulozik, A.E.; Weichert, W.; Huber, P.E.; et al. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model. Strahlenther. Onkol. 2013, 189, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Olejniczak, S.H.; Hernandez-Ilizaliturri, F.J.; Clements, J.L.; Czuczman, M.S. Acquired resistance to rituximab is associated with chemotherapy resistance resulting from decreased Bax and Bak expression. Clin. Cancer Res. 2008, 14, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; Gu, J.J.; Zhang, Q.; Mavis, C.; Hernandez-Ilizaliturri, F.J.; Czuczman, M.S.; Guo, Y. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. J. Cancer Res. Clin. Oncol. 2016, 142, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Blattmann, C.; Oertel, S.; Thiemann, M.; Dittmar, A.; Roth, E.; Kulozik, A.E.; Ehemann, V.; Weichert, W.; Huber, P.E.; Stenzinger, A.; et al. Histone deacetylase inhibition sensitizes osteosarcoma to heavy ion radiotherapy. Radiat. Oncol. 2015, 10, 146. [Google Scholar] [CrossRef]
- Lv, R.; Shi, P.; Lu, Z.; Wei, T.; Yang, J.; Liao, X.; Yang, B.; Gao, C. The novel platinum(IV) prodrug of cisplatin axially conjugated with cannabidiol induces mitochondrial dysfunction and synergistically enhances anti-tumor effects. J. Inorg. Biochem. 2025, 272, 113003. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Q.; Zhu, Z.; Wang, Q.; Dou, J.; Zhao, Y.; Lv, W.; Zhong, F.; Yao, Y.; Zhang, G.; et al. Cancer Chemoradiotherapy Duo: Nano-Enabled Targeting of DNA Lesion Formation and DNA Damage Response. ACS Appl. Mater. Interfaces 2018, 10, 35734–35744. [Google Scholar] [CrossRef]
- Guo, S.; Yao, Y.; Tang, Y.; Xin, Z.; Wu, D.; Ni, C.; Huang, J.; Wei, Q.; Zhang, T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct. Target. Ther. 2023, 8, 205. [Google Scholar] [CrossRef]
- Galloway, T.J.; Wirth, L.J.; Colevas, A.D.; Gilbert, J.; Bauman, J.E.; Saba, N.F.; Raben, D.; Mehra, R.; Ma, A.W.; Atoyan, R.; et al. A Phase I Study of CUDC-101, a Multitarget Inhibitor of HDACs, EGFR, and HER2, in Combination with Chemoradiation in Patients with Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2015, 21, 1566–1573. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, L.; Li, X.; Lu, W.; Lu, F.; Wang, S.; Wang, Y.; Hua, L.; Cui, C.; Dong, B.; et al. Rae1 drives NKG2D binding-dependent tumor development in mice by activating mTOR and STAT3 pathways in tumor cells. Cancer Sci. 2020, 111, 2234–2247. [Google Scholar] [CrossRef]
- Lee, G.H.; An, H.J.; Kim, T.H.; Kim, G.; Park, K.-S.; Park, H.; Lee, T.H.; Kwon, A.-Y. Clinical Impact of Natural Killer Group 2D Receptor Expression and That of Its Ligand in Ovarian Carcinomas: A Retrospective Study. Yonsei Med. J. 2021, 62, 288. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Chiang, Y.; Hsu, F.-M.; Tsai, C.-L.; Cheng, J.C.-H. Radiosensitization effect by HDAC inhibition improves NKG2D-dependent natural killer cytotoxicity in hepatocellular carcinoma. Front. Oncol. 2022, 12, 1009089. [Google Scholar] [CrossRef]
- Jung, E.K.; Chu, T.-H.; Vo, M.-C.; Nguyen, H.P.Q.; Lee, D.H.; Lee, J.K.; Lim, S.C.; Jung, S.-H.; Yoon, T.-M.; Yoon, M.S.; et al. Natural killer cells have a synergistic anti-tumor effect in combination with chemoradiotherapy against head and neck cancer. Cytotherapy 2022, 24, 905–915. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Z.; Zhang, Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos. EMBO J. 2022, 41, e112012. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Qiao, X.; Fang, Y.; Guo, R.; Bai, P.; Liu, S.; Li, T.; Jiang, Y.; Wei, S.; Na, Z.; et al. Epigenetics-targeted drugs: Current paradigms and future challenges. Signal Transduct. Target. Ther. 2024, 9, 332. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Helin, K. Roles of H3K4 methylation in biology and disease. Trends Cell Biol. 2025, 35, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Paplomata, E.; O’Regan, R. The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers. Ther. Adv. Med. Oncol. 2014, 6, 154–166. [Google Scholar] [CrossRef]
- Hu, Z.; Lu, Y.; Cao, J.; Lin, L.; Chen, X.; Zhou, Z.; Pu, J.; Chen, G.; Ma, X.; Deng, Q.; et al. N-acetyltransferase NAT10 controls cell fates via connecting mRNA cytidine acetylation to chromatin signaling. Sci. Adv. 2024, 10, eadh9871. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, Y.; Kumata, K.; Xie, L.; Kurihara, Y.; Ogawa, M.; Kokufuta, T.; Nengaki, N.; Wang, F.; Zhang, M.-R.R. The N-acetyltransferase 10 inhibitor [11C]remodelin: Synthesis and preliminary positron emission tomography study in mice. EJNMMI Radiopharm. Chem. 2025, 10, 6. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, H.; Wu, J.; Chen, W.; Guan, X. Inhibition of N-acetyltransferase 10 using remodelin attenuates doxorubicin resistance by reversing the epithelial-mesenchymal transition in breast cancer. Am. J. Transl. Res. 2018, 10, 256–264. [Google Scholar]
- Kopytko, P.; Piotrowska, K.; Janisiak, J.; Tarnowski, M. Garcinol-A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug. Int. J. Mol. Sci. 2021, 22, 2828. [Google Scholar] [CrossRef]

| Action Factor/Type of Enzyme | Specific Epigenetic Enzyme | Effect | Model/Cell Line | Citation |
|---|---|---|---|---|
| RNA methylases | METTL3 | tumor progression, invasion, growth, drug resistance | in various cancers | [43] |
| involved in UV-induced DNA damage response; elevated METTL3 recruitment | U2OS and HeLa | [44] | ||
| elevated level | NSCLC | [45] | ||
| METTL3 knockdown impairs the proliferation, migration, and invasion | NSCLC | [45] | ||
| METTL14 | enhance expression of miR-99a-5p, inhibited persistence | CSCs | [46] | |
| enhance expression of miR-99a-5p, reduces the radioresistance | ESCC | [46] | ||
| suppressing TRIB2 expression; facilitating the persistence of CSCs | ESCC | [46] | ||
| METTL14 depletion enhances cell resistance to paclitaxel and doxorubicin; confers radioprotective effects | ALDH+ breast cancer stem cells | [48] | ||
| RNA demethylases | ALKBH5 | downregulated expression ALKBH5, decreased survival in patients after irradiation; defects in DNA damage repair; decreased CHK1 and RAD51 expression | GBMSCs | [51] |
| FTO | promotes resistance to chemoradiotherapy; upregulates β-catenin through mRNA demethylation; enhances ERCC1 activity | CSCC | [54] | |
| upregulated FTO | radioresistant NPC tissues and cells | [55] | ||
| m6A modification of OTUB1; promotes the expression of OTUB1; inhibits radiation-induced ferroptosis | NPC cells | [55] |
| Action Factor/Type of Enzyme | Specific Epigenetic Enzyme | Effect | Model/Cell Line | Citation |
|---|---|---|---|---|
| ROS | ROS decrease ARID1A expression through promoter methylation | ovarian cancers | [65,66] | |
| ROS | DNMTs | ROS affect DNMTs and the expression of oncogenes and tumor suppressor genes | in various cancers, including lung, breast, colorectal, cervical, and prostate cancers | [25,91] |
| CpG island methylation | changes in CpG island methylation, caused by ADI-PEG20 (Arg1 inhibitor) and radiotherapy; complete tumor elimination by promoting macrophages/microglia recruitment and M1 repolarization | ASS1-negative and GBM-positive | [75] | |
| genes methylation | 82 differently methylated genes before and after radiotherapy; correlated degree of methylation with the radiation dose; enriched methylation in genes involved in immune response, proliferation and apoptosis pathways | in inoperable breast cancer patients | [81] | |
| changes in DNA methylation persist up to 7 months after exposure to radiation; DNA methylation alterations in heart-irradiated rats; differential expression of cardiac-relevant differentially methylated regions; higher expression for SLMAP correlated with hypomethylation; E2F6 inversely correlated with a decreased global longitudinal strain | in RICVD | [84,85] | ||
| mutations in IDH1/2 | mutations in IDH1/2 (observed in 80% of glioma) lead to the production of oncometabolite d-2-HG; aberrant in DNA methylation | HCT116 and U251 | [88,89] | |
| DNMTs | DNMT1 | loss of DNA methylation; altered DNMT1, MeCP2 and MBD2 expression | in malignant MDA-MB-231 | [69] |
| low-dose X-ray irradiation increased global DNA hypomethylation; accumulation of DNA damage; reduced expression of DNMTs | in murine thymus | [67] | ||
| affected cellular sensitivity to radiotherapy and DNMT levels | in malignant cancers | [68] | ||
| DNMT3A/B | overexpression of DNMT3A and DNMT3B in primary tumor biopsies | in RMS | [70] | |
| DNMT3A | knockdown of DNMT3A followed by IR exposure increases radiosensitivity; activates the senescence program; upregulated p16 and p21 | in embryonal RMS cells | [71] | |
| DNMT3B | knockdown of DNMT3B followed by IR exposure increases radiosensitivity; induces significant DNA damage; impairs the DNA repair mechanisms | in embryonal RMS cells | [71] | |
| DNMT3B silencing in response to radiation; DNA demethylation; enhanced the activation of cell cycle regulators p53 and p21; G1 phase cell cycle arrest; promoted apoptosis | NPC cells | [73] | ||
| induced DNMT3B expression by X-ray radiation | PC3 | [74] | ||
| DNMTs/CpG island methylation | DNMT3B | downregulation of DNMT3B by miR-145; DNMT3B knockdown increased expression of miR-145 by CpG island promoter hypomethylation; sensitizing cancer cells to radiation | PC3 | [74] |
| Modification | Action Factor/Type of Enzyme | Specific Epigenetic Enzyme | Effect | Model/Cell Line | Citation |
|---|---|---|---|---|---|
| histone modifications | ROS | ROS activate enzymes involved in histone control; modified expression of oncogenes and tumor suppressor genes | in various cancers | [25] | |
| histone methylation | histone H4 methylation | low-dose X-ray irradiation decreased me3 of histone H4; reduced chromatin compactness | in the thymus and in vitro murine model | [67] | |
| decreased H4K20me3 and hyperacetylation of histone H4; lower expression of Suv4-20h2; increased malignant properties | MDA-MB-231 (breast cancer) | [69] | |||
| H3K4-specific histone lysine demethylase | KDM5 | overexpression of KDM5 histone lysine demethylase | in different cancers, including breast, prostate, lung, or bladder carcinomas | [33,96,97] | |
| KDM5B knockdown promotes apoptosis; cell cycle arrest; autophagy; increases sensitivity to radiotherapy | KYSE-150 and TE-10 cells (ESCC) | [53] | |||
| suppressed KDM5B expression; enhanced radioresistance; downregulation of PTEN expression | in NSCLC clinical samples | [98] | |||
| histone acetylation/deacetylation | HDACs/HATs | HDACs and HATs involved in radiosensitization, DNA repair, and gene expression modifications | in various models | [99,100,101] | |
| high HDAC and low HAT activity after irradiation | in radioresistant breast cancer patients | [102] | |||
| histone deacetylation | HDACs | doubled HDAC activity | in patients with invasive grade III breast carcinomas, | [102] | |
| histone acetylation | HATs | CBP/p300 | CBP/p300 overexpressed | in many cancer and drug-resistant cancer cells lung, breast, and small-cell carcinoma | [103,104,105,106] |
| CBP/p300 activate oncogene transcription and induce cancer cell proliferation; survival; tumorigenesis; metastasis; immune evasion; drug-resistance; poor prognostic and linked with increase tumor recurrence | in various cancers | [104,106,107] | |||
| KAT7 | control of cell survival; DNA replication and transcription | in colorectal cancer | [108,109] | ||
| upregulation of KAT7, expression negatively correlated with survival of patients | in multiple breast cancer cell lines | [110] | |||
| KAT7 overexpression enhances the PI3K/AKT signaling pathway; promotes tumor growth, survival, metabolism; contributes to radioresistance | in breast cancers | [110] | |||
| silencing of KAT7 suppress radioresistance in radiation response | in breast cancers | [110] | |||
| NAT10 | modify RNA acetylation in rRNA and mRNA; | in HeLa and HEK293 cells | [111] | ||
| overexpressed in many cancers; associated with tumor progression, resistance to apoptosis, increased cell migration, invasion | in breast, liver, colorectal, lung, bladder, cervical, oral cancers, multiple myeloma | [112,113,114,115] |
| Modification | Blocked Enzyme | Inhibitor | Effect | Model/Cell Line | Citation |
|---|---|---|---|---|---|
| RNA methylation | FTO | FB23-2 | enhanced the sensitivity to radiotherapy | in NPC cells | [77] |
| FTO | genetic and pharmacological inhibition of FTO enhanced the efficiency of radiotherapy, increased DNA damage, reduced efficiency of homologous directed repair, and decreased formation of RAD51 foci, no radiation-induced oral mucositis exacerbation | in head and neck cancer | [57] | ||
| DNA methylation | DNMTs | psammaplin A, 5-aza-2′-deoxycytidine, and zebularine | in combination with radiation, induces radiosensitivity | A549 and U373MG cell lines | [6] |
| psammaplin A | increases the sub-G1 fraction; prolonged γH2AX expression, a marker of radiation-induced DSBs | A549 | [6] | ||
| MA17, phthalimido-alkanamide derivative, | radiosensitized; decreased DNMTs activity; decreased FANCA expression; increased apoptosis, autophagy, and DSBs formation compared to radiotherapy alone | U87MG, U373MG, U138MG, T98G (glioblastoma cell lines) and not affected NHA | [83] | ||
| histone methylation | KDM | RS3195, RS5033, and KDOAM-25, | increased sensitivity of breast cancer cells to IR; enhanced radiation-induced damage | in MCF-7 breast cancer cells overexpressing KDM5B | [96] |
| KDM5B | GSK467 | enhanced the H3K4me3 methylation of PIK3C3 promoter and induced the expression of PIK3C3 | in ESCC patients, presenting overexpression of KDM5B | [97] | |
| histone deacetylation | HDACs | HDACi augments the cellular response to radiation | sarcomas | [139] | |
| radiotherapy and HDACis upregulate Rae-1 and ULBP, increasing NK cell cytotoxicity against cancer cells | [152,153] | ||||
| vorinostat | inhibits the proliferation of various cancer cell types | breast carcinoma | [140] | ||
| sarcomas | [139,141,142] | ||||
| lymphomas | [143,144] | ||||
| vorinostat and radiotherapy | radiosensitization; apoptosis; cell cycle arrest; inhibited cell proliferation and clonogenic survival; inhibited Rad51 and Ku80 expression | in osteosarcoma and RMS cell lines | [142] | ||
| vorinostat with heavy ion radiotherapy | delay of tumor growth; increase rate of apoptosis; elevate expression of p53 and p21; inhibit proliferation and angiogenesis | in osteosarcoma models | [145] | ||
| vorinostat combined with nanoparticles carrying chemotherapeutic drugs | increase DNA damage; impair repair ability; promote radiotherapy effects | EMT-6 cells (mouse mammary carcinoma) | [147,148] | ||
| histone acetylation | CBP/p300, | reduce H3K27ac; downregulate oncogene transcription; induce cancer cell growth inhibition and cell death; activate immune response; overcome drug resistance; suppress tumor progression; enhance the anticancer efficacy of radiotherapy | [107] | ||
| KAT7 | TSA | global loss of H3K14ac; decrease expression of a broad range of genes associated with procentriole formation | HCT116 | [108,109,156] | |
| NAT10 | [11C]remodelin | used to develop PET radiotracers for tumor imaging and theranostic applications | mouse models | [159] | |
| breast cancer patients | [160] | ||||
| HATs | garcinol | blocks chromatin remodeling process and DNA repair pathway; leads to cell death or senescence; senescence and inhibition of proliferation from repairing radiation-induced DSBs | in A549 (lung cancer) and HeLa (cervical carcinoma) | [105,161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olichwier, A.J.; Bruzgo-Grzybko, M.; Kalita, I.S.; Bielicka, N.; Chabielska, E.; Gromotowicz-Poplawska, A. A New Look at the Role of Radiation-Related Epigenetic Mechanisms in Diagnosis and Anticancer Therapies. Cells 2025, 14, 1885. https://doi.org/10.3390/cells14231885
Olichwier AJ, Bruzgo-Grzybko M, Kalita IS, Bielicka N, Chabielska E, Gromotowicz-Poplawska A. A New Look at the Role of Radiation-Related Epigenetic Mechanisms in Diagnosis and Anticancer Therapies. Cells. 2025; 14(23):1885. https://doi.org/10.3390/cells14231885
Chicago/Turabian StyleOlichwier, Adam Jan, Magdalena Bruzgo-Grzybko, Izabela Suwda Kalita, Natalia Bielicka, Ewa Chabielska, and Anna Gromotowicz-Poplawska. 2025. "A New Look at the Role of Radiation-Related Epigenetic Mechanisms in Diagnosis and Anticancer Therapies" Cells 14, no. 23: 1885. https://doi.org/10.3390/cells14231885
APA StyleOlichwier, A. J., Bruzgo-Grzybko, M., Kalita, I. S., Bielicka, N., Chabielska, E., & Gromotowicz-Poplawska, A. (2025). A New Look at the Role of Radiation-Related Epigenetic Mechanisms in Diagnosis and Anticancer Therapies. Cells, 14(23), 1885. https://doi.org/10.3390/cells14231885

