Next Article in Journal
Viewing Inflammation and Immunoregulation Under the Calpain System Lens
Previous Article in Journal
Impact of SARS-CoV-2 Infection and Vaccination on Pregnancy Outcome and Passive Neonatal Immunity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

The Role of Microbiota in Ovarian Cancer: Implications for Treatment Response and Therapeutic Strategies

by
Jose-Ramon Blanco
1,2,3,*,
Rosa del Campo
4,5,*,
José Avendaño-Ortiz
4,6,
Mariano Laguna-Olmos
1 and
Amancio Carnero
7,8
1
Hospital Universitario San Pedro, 26006 Logroño, Spain
2
Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
3
Grupo de Investigación en Cuidados y Salud (GRUPAC), de la Universidad de La Rioja, 26006 Logroño, Spain
4
Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
5
Facultad Ciencias de la Salud, Universidad de La Rioja, La Rioja, 26006 Logroño, Spain
6
Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
7
Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
8
CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
*
Authors to whom correspondence should be addressed.
Cells 2025, 14(22), 1813; https://doi.org/10.3390/cells14221813
Submission received: 30 September 2025 / Revised: 13 November 2025 / Accepted: 14 November 2025 / Published: 19 November 2025

Abstract

Cancer remains a global health challenge (18.1 million new cases in 2020), with incidence projected to reach 28 million within two decades. Ovarian cancer (OC) is the deadliest gynecologic malignancy, usually diagnosed at advanced stages and with poorly understood etiology. Emerging evidence implicates reproductive tract and gut microbiota in OC biology. Microbiota shape carcinogenesis via turnover, immunity, and metabolism; dysbiosis promotes DNA damage, inflammation, and carcinogenic metabolites, engaging multiple hallmarks of cancer. In OC, microbes may reach tumors by local ascent, translocation, or hematogenous spread, originating from vagina, upper reproductive tract, peritoneal fluid, or gut. Lactobacillus-dominant vaginal communities support mucosal integrity, whereas anaerobes disrupt barriers, increase inflammation, and correlate with OC risk; mouse models show vaginal dysbiosis accelerates tumor progression. Distinct microbial profiles in upper reproductive sites and peritoneal fluid associated with immune remodeling. Gut dysbiosis drives barrier loss, immune imbalance, and estrogen reactivation. Microbial metabolites (lipopolysaccharides, short-chain fatty acids) modulate oncogenic pathways, altering epithelial–mesenchymal transition, immune evasion, and drug resistance. Across cohorts, OC tissues and fluids show Pseudomonadota/Bacteroidota enrichment and Akkermansia depletion; fecal microbiota from OC patients accelerates tumor growth in mice, whereas Akkermansia supplementation restores antitumor immunity. Antibiotic exposure and platinum resistance associate with reduced diversity and expansion of lactate-producing taxa. Microbiome-informed interventions–diet, probiotics/postbiotics, fecal microbiota transfer, and selective antibiotics–may augment chemotherapy and immunotherapy. Overall, the microbiome is a modifiable determinant of OC risk, progression, and treatment response, warranting rigorous, standardized, multi-omics studies.

1. Introduction

In 2020, approximately 18.1 million new cancer cases were reported worldwide, with projections approaching 28.0 million within the next two decades [1]. Ovarian cancer (OC) is the eighth most common malignancy in women and the deadliest gynecologic cancer; nearly 80% of OC cases present at advanced stages, and outcomes remain suboptimal despite therapeutic advances [2,3,4]. OC is heterogeneous, about 90% are epithelial, of which 70–80% are high-grade serous; less common histotypes (endometrioid, clear cell, low-grade serous, mucinous, carcinosarcoma) differ in genetics and therapeutic sensitivity [2,3]. Although its etiopathogenesis remains incompletely defined, accumulating evidence implicates the gastrointestinal and female reproductive-tract microbiota in gynecological tumor initiation, progression, and therapeutic response [5].
Here, we synthesize current evidence on microbiota-OC interactions and propose a unified mechanistic framework integrating immune, metabolic, and endocrine axes. Distinct from prior reviews, we deliver a mechanism-anchored, cross-compartment synthesis with explicit contamination control and actionable trial-design guidance. We then appraise clinical and translational implications for treatment response and resistance and evaluate microbiota-directed interventions—including probiotics and fecal microbiota transplantation (FMT).
This narrative, mechanism-focused review surveyed PubMed, Scopus, and Web of Science through September 2025 using combinations of “ovarian cancer”, “microbiome/microbiota”, “dysbiosis”, “chemotherapy”, “immunotherapy”, “estrobolome”, “probiotics”, and “FMT”. We included peer-reviewed, English-language original studies (preclinical and clinical) employing 16S rDNA gene sequencing or shotgun metagenomics, with complementary metabolomic/transcriptomic analyses, across tumor, peritoneal, fecal, and vaginal specimens; reviews/editorials informed background only. Evidence was synthesized by mechanistic plausibility, reproducibility across cohorts, and translational relevance, with attention to contamination control and low-biomass constraints. We followed PRISMA principles for transparency; no quantitative meta-analysis was performed.

2. Mechanistic Framework: Microbiota–Host Crosstalk in Ovarian Carcinogenesis

The human microbiota modulates host physiology by shaping immune responses, epithelial integrity, metabolism, and endocrine signaling [6,7,8,9,10,11]. Garret [12] outlined three principal mechanisms by which microbes influence carcinogenesis: (1) regulation of host cell proliferation and death, (2) modulation of immunity, and (3) alteration of the metabolism of dietary constituents and host-derived factors.
Microbial dysbiosis can promote tumorigenesis through genotoxicity and chronic inflammation. Mechanistically, bacteria and their products induce DNA damage, impair DNA repair, and generate carcinogenic metabolites; in parallel, barrier disruption sustains mucosal and systemic inflammation, amplifying oncogenic pathways [13,14,15,16,17]. These processes intersect with multiple “hallmarks of cancer”, including sustained proliferative signaling, resistance to cell death, replicative immortality, angiogenesis, and immune evasion [18].
Innate immune pattern-recognition provides a direct link between microbial signals and tumor behavior. Engagement of toll-like receptors (TLR) by microbe-associated molecular patterns, such as lipopolysaccharide (LPS), activates NF-κB, MAPK/ERK, JAK/STAT, and PI3K-Akt signaling cascades that elicit pro-tumorigenic cytokine networks (e.g., IL-6, IL-8, TNF-α, VEGF) and epithelial–mesenchymal transition (EMT), thereby fostering survival, invasion, and chemoresistance [19,20,21,22,23,24,25]. In OC, TLR4 activation by LPS or paclitaxel increases inflammatory mediators and resistance to cell death, while TLR4 silencing restores chemosensitivity [23,24,25].
Converging evidence implicates a gut-vaginal microbiome axis in ovarian carcinogenesis–via estrogen re-metabolism, pro-inflammatory NF-κB/STAT3 signaling, and DNMT (DNA Methyltransferases)-driven epigenetic repression–supporting a multi-omics, machine-learning diagnostic strategy to enhance early detection [26].
An endocrine–microbiome axis further integrates microbial activity with hormone-dependent tumor biology. The estrobolome, a set of β-glucuronidase genes that deconjugate estrogens and enable reabsorption, regulates enterohepatic recycling of estrogens, influencing systemic exposure [27,28,29]. Dysbiosis-associated estrobolome overactivity, often linked to obesity and metabolic dysfunction, has been implicated in estrogen-driven neoplasia and may contribute to OC risk phenotypes, particularly non-serous histology that correlates with elevated levels of unconjugated estradiol [30,31,32,33].
Using an in vitro colonic fermentation model simulating female and male gut environments, hormonal fluctuations across the menstrual cycle were shown to modulate microbial diversity and the abundance of key taxa. In the female model, elevated progesterone and estrogen levels were associated with shifts in Bacteroidota, Bacillota, and Pseudomonadota, as well as shifts in microbial metabolite profiles [34]. These findings highlight the capacity of sex hormones to dynamically shape gut microbiota composition and function, reinforcing endocrine-microbial crosstalk as a mechanistic link in hormone-dependent tumorigenesis.
Microbial metabolites act as bioactive mediators with epigenetic and immunometabolic effects. Short-chain fatty acids (SCFAs)–acetate, propionate, and butyrate–are produced by fermentation of dietary fiber and regulate histone acetylation, T cell differentiation, and epithelial renewal [35,36,37,38,39,40,41,42]. In OC models, butyrate functions as a histone deacetylase inhibitor, inducing apoptosis, suppressing proliferation, and reprogramming epigenetic states [39,43,44,45,46,47]. Beyond SCFAs, secondary bile acids, cadaverine, and enterolignans modulate signaling pathways relevant to tumor progression [35,36,37,38,39,40]. Notably, taxon-specific effects can diverge from expected metabolic profiles; for example, members of the family Lachnospiraceae, a butyrate-producing family implicated in estrogen metabolism, have paradoxically been associated with increased OC risk in some cohorts [48] (Figure 1).

3. Microbial Niches and Routes of Dissemination in OC

Microbes associated with tumors can arise from local overgrowth, translocation across disrupted mucosal barriers, contiguous spread from adjacent tissues, or hematogenous dissemination [49]. In OC, plausible sources include the lower reproductive tract (vagina and cervix), the upper reproductive tract (uterus, fallopian tubes, ovaries, and peritoneal fluid), the gut, and the bloodstream [49]. However, whether—and to what extent—the ovarian-tumor microbiota varies across histopathological subtypes remains unclear. Defining these routes is essential to understanding how microbial communities shape tumor microenvironments and treatment responses (Figure 2).

3.1. Lower Reproductive Tract

Vaginal and cervical communities are structured into community state types that are frequently Lactobacillus-dominant in reproductive-age women; lactic acid-mediated acidification maintains a low vaginal pH that restricts pathogen colonization [50,51,52]. Dysbiosis, characterized by Lactobacillus spp. depletion with anaerobic overgrowth, disrupts epithelial barriers, enhances mucosal permeability, and increases susceptibility to ascending infections and pelvic inflammatory disease (PID), and has been linked to persistent HPV infection and gynecological malignancies [52,53,54,55,56,57,58,59].
Mutations in the breast cancer gene (BRCA)1/2 substantially increase the risk of OC [60,61] and may influence host–microbiota–hormone cross-regulation that modulates susceptibility. Women carrying BRCA mutations exhibit depletion of Lactobacillus spp., associated with elevated luteal-phase progesterone levels that reduce vaginal glycogen availability [55]. As Lactobacilli rely on glycogen metabolism, this hormonal environment may contribute to their decline, and reduced Lactobacillus abundance could represent a mechanistic link between endocrine dysregulation and epithelial transformation [55].
Epidemiologically, severe PID associates with increased OC risk, plausibly through chronic inflammation and tissue remodeling [53,54,55]. However, current links between the vaginal microbiota and OC are largely correlational: the ascent hypothesis remains unproven, with substantial confounding (e.g., age, hormones, BRCA genotype). Longitudinal and mechanistic studies are therefore required to establish causality. Clinically, managing vaginal dysbiosis is a pragmatic target for primary prevention [62].
Progesterone’s role in OC is multifaceted and context-dependent. Epidemiologically and experimentally, it is generally regarded as protective, as positive nuclear progesterone receptor (nPR) expression correlates with improved clinical outcomes [63]. Transcriptomic analyses further show that BRCA-mutant fallopian tube epithelia most closely resemble high-grade serous ovarian carcinoma when sampled during the luteal phase, coinciding with peak progesterone concentrations [64]. In vitro, short-term exposure of OC cell lines to progestins reduces viability, suppresses proliferation, and induces cell death, consistent with progesterone’s tumor-suppressive actions [65].

3.2. Upper Reproductive Tract

Microbial DNA and viable bacteria have been detected in the uterus, fallopian tubes, ovaries, and peritoneal fluid, each harboring compositionally distinct communities in OC [66,67,68]. In the fallopian tubes, OC has been associated with reduced alpha-diversity, a higher Pseudomonadota-to-Bacillota ratio, and enrichment of Acinetobacter, Sphingomonas, and Methylobacterium, accompanied by immune transcriptional remodeling [67,69].
However, beyond microbial alterations, mechanistic studies indicate that nPR signaling itself can adopt pro-tumorigenic functions. In vitro and transgenic mouse models demonstrate that an imbalance of nPR isoforms can drive ovarian tumorigenesis [70]. Transcriptomic profiling of these models revealed proliferative gene signatures enriched in PI3K–AKT signaling, cell-cycle control, and DNA recombination pathways, mirroring molecular features of human endometrial and OC [71]. Notably, these tumors arose without engineered genetic mutations, implying that sustained nPR activation alone can initiate oncogenic transcriptional states.
Peritoneal fluid profiles also differ between OC and benign conditions and include gut-derived taxa that may reflect microbial translocation and systematic crosstalk [68,72].
These seemingly paradoxical findings—protective epidemiological associations versus oncogenic mechanistic data—underscore the context dependence of progesterone signaling. In BRCA-mutant carriers, elevated progesterone may contribute to Lactobacillus depletion, yet its causal role in OC risk remains uncertain [73]. Additional factors beyond progesterone likely influence Lactobacillus dynamics and epithelial susceptibility, reflecting a multifactorial interplay among hormonal signaling, microbial ecology, and tissue remodeling within the reproductive tract.
To disentangle progesterone’s dualistic actions, particularly in high-grade serous OC, future studies must account for nPR isoform complexity and its crosstalk with other steroid receptors, including the estrogen receptor and glucocorticoid receptor [74]. Understanding these multilayered interactions is essential to determine whether progesterone acts predominantly as an anti- or pro-tumorigenic factor across OC subtypes.

3.3. Gut and Systemic Sources

The colon harbors the most abundant and functionally diverse human microbiome [75,76], which regulates barrier integrity, immune crosstalk, and tumor-permissive environments [77]. Gut community structure differs between early and late OC stages and correlates with metabolic remodeling [78,79].
Murine xenograft studies show that antibiotic-induced dysbiosis can accelerate OC growth through macrophage activation and inflammatory cytokine release (IL-6, TNF-α) that promotes epithelial–mesenchymal transition, although findings are not universally replicated [80,81].

4. Stage- and Site-Specific Microbiota Alterations in OC: Mechanisms, Biomarkers, and Therapeutic Implications

Distinct microbial niches contribute to OC pathogenesis and progression. In murine OC models, overlapping vaginal and ovarian communities support lower-tract translocation; intravaginal antibiotics reduced tumor burden by around 40% and decreased aggressiveness without overt toxicity [82]. Separately, gut dysbiosis has been shown to accelerate OC via EMT and pro-inflammatory cytokines [80]. Together, these studies suggest site-specific microbial remodeling of the tumor microenvironment through convergent yet distinct mechanisms, revealing multiple therapeutic entry points.
Across cohorts, late-stage epithelial OC exhibits marked differences in gut community structure compared with early-stage disease, including dramatic fold-changes in specific taxa [78,83]. Reductions in Akkermansia are reported consistently; FMT from OC patients into tumor-bearing mice accelerates tumor growth, whereas A. muciniphila supplementation reverses this effect and enhances CD8+ T cell function via IFN-γ production [84,85].
Within Bacteroidota, alterations localize to Bacteroidales, with depletion of Porphyromonadaceae and Rikenellaceae, families associated with SCFA production and metabolic health, and enrichment of Prevotella spp. linked to gynecologic malignancies and coagulopathies [86,87,88,89,90]. Decreases in Bifidobacterium and Bifidobacteriaceae recur across studies [78,83,84].
Host–microbe crosstalk is reflected in tumor transcriptomes. OC tissues harbor bacterial phyla, often dominated by Pseudomonadota, and show enrichment of immune and cancer-related pathways, including JAK–STAT signaling and Th1/Th2 differentiation [91].
Mendelian randomization analysis provides orthogonal support for causal or bidirectional associations between gut taxa and OC risk, implicating genera such as Dialister, Phascolarctobacterium, Bifidobacterium, Oscillibacter, and others; however, many signals do not survive multiple-testing correction and should be interpreted cautiously [92,93,94,95].

5. Intratumoral Microbiota in OC: Distinct Signatures and Oncogenic Pathways

Multiple studies report altered diversity and taxonomic composition within OC tissue compared with adjacent normal or benign tissue, suggesting tumor-specific microbial signatures that may influence behavior and outcomes [96,97,98,99]. Reported enrichment includes Actinomycetales, Acinetobacter, Streptococcus, Pseudomonas, Porphyromonas, Atopobium, and Peptoniphilus, whereas non-tumor samples more often contained Bacillota and Actinobacteriota [96,97,98,99]. Some taxa inversely correlated with serum CA125 or segregate histology, proposing a candidate biomarker [97,98].
A recent systematic review indicates reduced alpha diversity in tumor relative to adjacent tissue, with lower Shannon and Chao1 indices and a modestly higher Simpson index, consistent with dominance by fewer taxa [99].

6. Antibiotics, Dysbiosis, and Therapy Resistance

Antibiotic exposure can reshape microbial communities with consequences for cancer progression and treatment efficacy. Population-based analysis associates antibiotic use near the time of cancer diagnosis with increased mortality across multiple malignancies, including OC, supporting antibiotic stewardship in oncologic care [100].
In high-grade epithelial OC treated with cytoreductive surgery and platinum chemotherapy, antibiotic exposure during chemotherapy has been linked to shorter progression-free and overall survival; anti-Gram-positive regimens appear particularly detrimental [101]. Mechanistic models align with these observations: high-dose antibiotics induced dysbiosis, accelerated OC growth, enhanced TNF-α and IL-6 secretion from tumor-associated macrophages, promoted EMT and angiogenesis, and expanded cancer stem-like cells; dysbiosis also exacerbates cisplatin resistance, whereas FMT from untreated donors restores chemosensitivity [80,102,103].

7. Microbiota and Treatment Response in OC

Standard treatment for OC includes cytoreductive surgery followed by paclitaxel-carboplatin chemotherapy [3]. Chemotherapy may partially restore gut diversity over time, enriching anaerobic taxa such as Bacteroides, Collinsella, Faecalibacterium, Coprococcus, and Blautia, while reducing opportunistic pathogens, including Klebsiella and other Enterobacteriaceae [104]. Preclinical models show that microbial integrity is required for optimal efficacy of platinum agents and innate-immune adjuvants, consistent with the TIMER framework (Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity) that summarizes microbiota-chemotherapy interactions [105,106].
In platinum-resistant OC, low-dose oral cyclophosphamide may be used palliatively; its activity depends on microbiota-mediated immune priming that reshapes the gut microbiota, permits Gram-positive translocation to secondary lymphoid tissues, and triggers Th17/Th1 responses essential for tumor control [107] (Figure 3).
In OC tissues, functional differences in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways may be more informative than taxonomic shifts alone, underscoring the need for multi-omics approaches [72].
Clinical and longitudinal cohorts reveal that platinum-resistant OC is associated with progressive loss of diversity and enrichment of lactate-producing taxa (e.g., Coriobacteriaceae, Bifidobacterium), whereas platinum-sensitive disease maintains more stable, diverse communities enriched in lactate-utilizing Veillonellaceae [86,104]. Together, these findings highlight the chemotherapy–microbiota interplay and its potential for therapeutic intervention.
Vaginal microbiota composition also correlates with treatment response, with Lactobacillus-dominant profiles less frequent in OC, particularly in platinum-resistance disease, while Escherichia-dominated communities associate with inflammation, poor prognosis, and shorter progression-free interval; dominance by Lactobacillus iners has been linked to minimal residual disease [108].
Checkpoint immunotherapy has not yet achieved durable benefits in OC; however, emerging OC-specific multi-omics data indicate a tumor–immune–gut axis associated with exceptional responses to PD-1 therapy [109]. FMT from responders restores PD-1 efficacy in mice, and supplementation with A. muciniphila or Bifidobacterium augments antitumor immunity by promoting dendritic cell activation and CD8+ T cell infiltration [110,111,112,113,114,115].
Targeted agents such as poly (ADP-ribose) polymerase inhibitors (PARPi) may also be modulated by the microbiome: higher fecal abundance of Phascolarctobacterium correlates with longer progression-free survival in BRCA1/2 wild-type patients, plausibly via SCFAs-mediated immunometabolic effects [116]. Emerging modalities such as bacteriophages and oncolytic viruses intersect with the microbiome through delivery, immunogenicity, and host–microbe interactions [117,118,119,120].

8. Therapeutic Potential of the Microbiome Modulation

Pharmacomicrobiomics extends pharmacogenomics by examining how host-microbiome interactions influence drug absorption, distribution, metabolism, excretion, efficacy, and toxicity [121,122,123]. Interindividual variability in microbial composition contributes to heterogeneous responses and adverse effects, suggesting opportunities for microbiome-informed precision oncology.
Probiotics (e.g., Lactobacillus, Bifidobacterium, Saccharomyces) may restore eubiosis (e.g., community structure and function comparable to healthy controls), regulate barrier integrity, and modulate immune responses [124]. Prebiotics, such as inulin and oligosaccharides, selectively enrich beneficial taxa [125]. Both approaches help restore microbial balance, produce metabolites such as SCFAs and vitamins, modulate immune responses, and influence drug metabolism [126]. Postbiotics, non-viable microbial cells or components, offer a favorable safety profile for immunocompromised hosts [40,127,128,129]. Despite promises in preclinical models, controlled OC clinical trials are lacking.
Diet is a principal determinant of microbiome composition and function. Mediterranean-style dietary patterns are associated with reduced all-cause and cancer mortality and may improve OC survival when adhered to before and after diagnosis, improving overall survival [130,131,132]. Intermittent fasting (16 h) has immunostimulatory effects in murine models that may be relevant to therapy synergy [133].
FMT has shown promise in oncology. In OC-bearing mice treated with cisplatin, FMT restored microbial balance, reduced tumor burden, repaired intestinal damage, decreased IL-6, and re-sensitized tumors to chemotherapy [83,103,110,114,134]. Vaginal microbiota transplantation is effective in recurrent bacterial vaginosis and merits exploration as a research tool for gynecologic oncology [135,136]. Microbiota also influences chemotherapy-induced toxicity, including cisplatin-associated cachexia and cardiotoxicity, where Lactobacillus supplementation mitigated damage and inflammation [137].
Given consistent signals that peri-treatment antibiotics correlate with poorer outcomes in OC, strategies that minimize unnecessary exposure and preserve microbial diversity should be prioritized, while prospective studies evaluate causality and mitigation approaches [100,101,138].

9. Challenges, Methodological Constraints, and Future Directions

Robust inference in microbiome-cancer research requires meticulous control for contamination, low biomass, and batch effects; standardized collection, extraction, and sequencing protocols; appropriate negative and positive controls; and multi-omics integration (metagenomics, metatranscriptomics, metabolomics, and host transcriptomics) [11,75,76,77]. Longitudinal designs and causal frameworks (e.g., Mendelian randomization, interventional trials) are needed to disentangle association from causation [92,93,94,95,139].
Large-scale initiatives, such as the ONCOBIOME consortium [140] are advancing the discovery of diagnostic, prognostic, and predictive microbial biomarkers. Early work integrating metagenomic profiling across the female reproductive tract suggests the feasibility of microbiome-informed risk stratification and therapeutic guidance in OC [140,141]. To accelerate it would be recommended: (1) consensus panels for specimen handling and sequencing; (2) harmonized clinical metadata; (3) pre-registered statistical plans; (4) cross-cohort replication; and (5) mechanistic validation.
The current evidence base is geographically narrow, with only a few studies of bacterial microbiota in OC from Denmark [142], Poland [143], India [144], China [69,72,80], and the United States [68,145,146], plus limited multi-center cohorts across Europe [55]. Methodological heterogeneity also constrains inference. Preclinical models from China and the United States [80,82,146] provide mechanistic insights, yet translational validation is scarce.

10. Conclusions

Microorganisms are emerging modulators of cancer biology across initiation, progression, and therapeutic response and may constitute a potential hallmark of cancer. In OC, converging evidence implicates gut and reproductive-tract microbiota in modulating tumor behavior and treatment outcomes. Nonetheless, high interindividual variability, late-stage presentation, and the scarcity of longitudinal multi-omics studies limit causal inference across the disease continuum.
With methodological standardization and rigorous mechanistic studies, validated microbial biomarkers and targeted microbiota interventions could make OC treatments more effective, less toxic, and more precisely tailored to patients.

Author Contributions

Conceptualization: J.-R.B., A.C. and R.d.C.; methodology: J.-R.B.; writing—original draft: J.-R.B., A.C., R.d.C., J.A.-O. and M.L.-O.; writing—review and editing, J.-R.B., A.C., R.d.C., J.A.-O. and M.L.-O. All authors have read and agreed to the published version of the manuscript.

Funding

This work has been financed by MCIU/AEI/FEDER, UE: PID2024-155394OB-I00; CIBER de Cáncer (CB16/12/00275), and DGP_PIDI_2024_00907, from the Regional Ministry of Economic Transformation, Industry, Knowledge and Universities from Junta de Andalucia; and co-financed by the ISCIII-Dirección General Adjunta de Evaluación y Promoción de la Investigación—Fondo Europeo de Desarrollo Regional “A Way of Making Europe”, Instituto de Salud Carlos III FEDER, together with a grant from the Instituto de Salud Carlos III (MePRAM Project, PMP22/00092), Ministerio de Ciencia e Innovación, financed by NextGeneration European Union funds within the framework of the Resilience and Recovery Fund.

Data Availability Statement

No new data were created or analyzed in this study.

Acknowledgments

The authors acknowledge the use of ChatGPT (OpenAI, GPT-5) solely for language editing and style refinement of the English text. The scientific content, study design, data analysis, and conclusions are entirely the authors’ own.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. International Agency for Research on Cancer. Available online: https://gco.iarc.who.int/en (accessed on 30 June 2025).
  2. Webb, P.M.; Jordan, S.J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 2024, 21, 389–400. [Google Scholar] [CrossRef] [PubMed]
  3. Caruso, G.; Weroha, S.J.; Cliby, W. Ovarian Cancer: A Review. JAMA 2025, 334, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
  4. Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X.S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A.; et al. Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015, 385, 977–1010. [Google Scholar] [CrossRef]
  5. Wu, J.; Li, J.; Yan, M.; Xiang, Z. Gut and oral microbiota in gynecological cancers: Interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024, 10, 104. [Google Scholar] [CrossRef]
  6. Cani, P.D.; van Hul, M. Gut microbiota in overweight and obesity: Crosstalk with adipose tissue. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 164–183. [Google Scholar] [CrossRef]
  7. de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef]
  8. Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
  9. Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
  10. Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
  11. Joos, R.; Boucher, K.; Lavelle, A.; Arumugam, M.; Blaser, M.J.; Claesson, M.J.; Clarke, G.; Cotter, P.D.; De Sordi, L.; Dominguez-Bello, M.G.; et al. Examining the healthy human microbiome concept. Nat. Rev. Microbiol. 2025, 23, 192–205. [Google Scholar] [CrossRef] [PubMed]
  12. Garrett, W.S. Cancer and the microbiota. Science 2015, 348, 80–86. [Google Scholar] [CrossRef]
  13. Ray, D.; Kidane, D. Gut Microbiota Imbalance and Base Excision Repair Dynamics in Colon Cancer. J. Cancer 2016, 7, 1421–1430. [Google Scholar] [CrossRef]
  14. Klimesova, K.; Kverka, M.; Zakostelska, Z.; Hudcovic, T.; Hrncir, T.; Stepankova, R.; Rossmann, P.; Ridl, J.; Kostovcik, M.; Mrazek, J.; et al. Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. Inflamm. Bowel Dis. 2013, 19, 1266–1277. [Google Scholar] [CrossRef]
  15. Sepich-Poore, G.D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J.A.; Knight, R. The microbiome and human cancer. Science 2021, 371, eabc4552. [Google Scholar] [CrossRef] [PubMed]
  16. Chalif, J.; Wang, H.; Spakowicz, D.; Quick, A.; Arthur, E.K.; O’Malley, D.; Chambers, L.M. The microbiome and gynecologic cancer: Cellular mechanisms and clinical applications. Int. J. Gynecol. Cancer 2023, 34, 317–327. [Google Scholar] [CrossRef] [PubMed]
  17. Xie, X.; Yang, M.; Ding, Y.; Chen, J. Microbial infection, inflammation and epithelial ovarian cancer. Oncol. Lett. 2017, 14, 1911–1919. [Google Scholar] [CrossRef]
  18. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
  19. Zhang, H.; Fu, L.; Leiliang, X.; Qu, C.; Wu, W.; Wen, R.; Huang, N.; He, Q.; Cheng, Q.; Liu, G.; et al. Beyond the Gut: The intratumoral microbiome’s influence on tumorigenesis and treatment response. Cancer Commun. 2024, 44, 1130–1167. [Google Scholar] [CrossRef]
  20. Hsiao, Y.C.; Liu, C.W.; Chi, L.; Yang, Y.; Lu, K. Effects of Gut Microbiome on Carcinogenic DNA Damage. Chem. Res. Toxicol. 2020, 33, 2130–2138. [Google Scholar] [CrossRef] [PubMed]
  21. Wang, D.; Li, L.; Zhang, Y.; Ye, K. Lipopolysaccharide-Educated Cancer-Associated Fibroblasts Facilitate Malignant Progression of Ovarian Cancer Cells via the NF-kB/IL-6/JAK2 Signal Transduction. Mol. Biotechnol. 2024, 67, 317–328. [Google Scholar] [CrossRef]
  22. Matson, V.; Chervin, C.S.; Gajewski, T.F. Cancer and the Microbiome-Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology 2021, 160, 600–613. [Google Scholar] [CrossRef] [PubMed]
  23. Szajnik, M.; Szczepanski, M.J.; Czystowska, M.; Elishaev, E.; Mandapathil, M.; Nowak-Markwitz, E.; Spaczynski, M.; Whiteside, T.L. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 2009, 28, 4353–4363. [Google Scholar] [CrossRef] [PubMed]
  24. Park, G.B.; Kim, D. TLR5/7-mediated PI3K activation triggers epithelial-mesenchymal transition of ovarian cancer cells through WAVE3-dependent mesothelin or OCT4/SOX2 expression. Oncol. Rep. 2017, 38, 3167–3176. [Google Scholar] [CrossRef]
  25. Park, G.B.; Chung, Y.H.; Kim, D. Induction of galectin-1 by TLR-dependent PI3K activation enhances epithelial-mesenchymal transition of metastatic ovarian cancer cells. Oncol. Rep. 2017, 37, 3137–3145. [Google Scholar] [CrossRef]
  26. Lin, H.; Zeng, Z.; Zhang, H.; Jia, Y.; Pang, J.; Chen, J.; Zhang, H. Gut-Vaginal Microbiome Crosstalk in Ovarian Cancer: Implications for Early Diagnosis. Pathogens 2025, 14, 635. [Google Scholar] [CrossRef]
  27. Plottel, C.S.; Blaser, M.J. Microbiome and malignancy. Cell Host Microbe 2011, 10, 324–335. [Google Scholar] [CrossRef]
  28. Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef]
  29. Mert, I.; Walther-Antonio, M.; Mariani, A. Case for a role of the microbiome in gynecologic cancers: Clinician’s perspective. J. Obstet. Gynaecol. Res. 2018, 44, 1693–1704. [Google Scholar] [CrossRef]
  30. Collaborative Group On Epidemiological Studies Of Ovarian, C.; Beral, V.; Gaitskell, K.; Hermon, C.; Moser, K.; Reeves, G.; Peto, R. Menopausal hormone use and ovarian cancer risk: Individual participant meta-analysis of 52 epidemiological studies. Lancet 2015, 385, 1835–1842. [Google Scholar] [CrossRef] [PubMed]
  31. Yoon, K.; Kim, N. Roles of Sex Hormones and Gender in the Gut Microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314–325. [Google Scholar] [CrossRef]
  32. Flores, R.; Shi, J.; Fuhrman, B.; Xu, X.; Veenstra, T.D.; Gail, M.H.; Gajer, P.; Ravel, J.; Goedert, J.J. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: A cross-sectional study. J. Transl. Med. 2012, 10, 253. [Google Scholar] [CrossRef] [PubMed]
  33. Trabert, B.; Coburn, S.B.; Falk, R.T.; Manson, J.E.; Brinton, L.A.; Gass, M.L.; Kuller, L.H.; Rohan, T.E.; Pfeiffer, R.M.; Qi, L.; et al. Circulating estrogens and postmenopausal ovarian and endometrial cancer risk among current hormone users in the Women’s Health Initiative Observational Study. Cancer Causes Control 2019, 30, 1201–1211. [Google Scholar] [CrossRef]
  34. Leao, L.; Esmail, G.A.; Miri, S.; Mottawea, W.; Hammami, R. In vitro modeling of the female gut microbiome: Effects of sex hormones and psychotropic drugs. Microbiol. Spectr. 2025, e0235025. [Google Scholar] [CrossRef]
  35. Sipos, A.; Ujlaki, G.; Mikó, E.; Maka, E.; Szabó, J.; Uray, K.; Krasznai, Z.; Bai, P. The role of the microbiome in ovarian cancer: Mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol. Med. 2021, 27, 33. [Google Scholar] [CrossRef]
  36. Yang, R.; Qian, L. Research on Gut Microbiota-Derived Secondary Bile Acids in Cancer Progression. Integr. Cancer Ther. 2022, 21, 15347354221114100. [Google Scholar] [CrossRef]
  37. Kovacs, T.; Miko, E.; Vida, A.; Sebo, E.; Toth, J.; Csonka, T.; Boratko, A.; Ujlaki, G.; Lente, G.; Kovacs, P.; et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci. Rep. 2019, 9, 1300. [Google Scholar] [CrossRef] [PubMed]
  38. Buck, K.; Zaineddin, A.K.; Vrieling, A.; Heinz, J.; Linseisen, J.; Flesch-Janys, D.; Chang-Claude, J. Estimated enterolignans, lignan-rich foods, and fibre in relation to survival after postmenopausal breast cancer. Br. J. Cancer 2011, 105, 1151–1157. [Google Scholar] [CrossRef]
  39. Kim, N.; Yang, C. Butyrate as a Potential Modulator in Gynecological Disease Progression. Nutrients 2024, 16, 4196. [Google Scholar] [CrossRef]
  40. Nobels, A.; van Marcke, C.; Jordan, B.F.; Van Hul, M.; Cani, P.D. The gut microbiome and cancer: From tumorigenesis to therapy. Nat. Metab. 2025, 7, 895–917. [Google Scholar] [CrossRef] [PubMed]
  41. Kuwahara, A. Contributions of colonic short-chain Fatty Acid receptors in energy homeostasis. Front. Endocrinol. 2014, 5, 144. [Google Scholar] [CrossRef] [PubMed]
  42. Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science 2018, 362, 776–780. [Google Scholar] [CrossRef]
  43. Bhatt, A.P.; Redinbo, M.R.; Bultman, S.J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 2017, 67, 326–344. [Google Scholar] [CrossRef] [PubMed]
  44. Licciardi, P.V.; Ververis, K.; Karagiannis, T.C. Histone deacetylase inhibition and dietary short-chain Fatty acids. ISRN Allergy 2011, 2011, 869647. [Google Scholar] [CrossRef]
  45. Davie, J.R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 2003, 133, 2485S–2493S. [Google Scholar] [CrossRef] [PubMed]
  46. Zhu, K.; Qu, D.; Sakamoto, T.; Fukasawa, I.; Hayashi, M.; Inaba, N. Telomerase expression and cell proliferation in ovarian cancer cells induced by histone deacetylase inhibitors. Arch. Gynecol. Obstet. 2008, 277, 15–19. [Google Scholar] [CrossRef]
  47. Chao, K.C.; Chang, C.C.; Yen, M.S.; Wang, P.H. Anti-tumor activity of histone deacetylase inhibitors and the effect on ATP-binding cassette in ovarian carcinoma cells. Eur. J. Gynaecol. Oncol. 2010, 31, 402–410. [Google Scholar]
  48. Wu, Z.; Pfeiffer, R.M.; Byrd, D.A.; Wan, Y.; Ansong, D.; Clegg-Lamptey, J.N.; Wiafe-Addai, B.; Edusei, L.; Adjei, E.; Titiloye, N.; et al. Associations of Circulating Estrogens and Estrogen Metabolites with Fecal and Oral Microbiome in Postmenopausal Women in the Ghana Breast Health Study. Microbiol. Spectr. 2023, 11, e0157223. [Google Scholar] [CrossRef]
  49. Xie, Y.; Xie, F.; Zhou, X.; Zhang, L.; Yang, B.; Huang, J.; Wang, F.; Yan, H.; Zeng, L.; Zhang, L.; et al. Microbiota in Tumors: From Understanding to Application. Adv. Sci. 2022, 9, e2200470. [Google Scholar] [CrossRef]
  50. Greenbaum, S.; Greenbaum, G.; Moran-Gilad, J.; Weintraub, A.Y. Ecological dynamics of the vaginal microbiome in relation to health and disease. Am. J. Obstet. Gynecol. 2019, 220, 324–335. [Google Scholar] [CrossRef] [PubMed]
  51. Smith, S.B.; Ravel, J. The vaginal microbiota, host defence and reproductive physiology. J. Physiol. 2017, 595, 451–463. [Google Scholar] [CrossRef]
  52. Muzny, C.A.; Taylor, C.M.; Swords, W.E.; Tamhane, A.; Chattopadhyay, D.; Cerca, N.; Schwebke, J.R. An Updated Conceptual Model on the Pathogenesis of Bacterial Vaginosis. J. Infect. Dis. 2019, 220, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
  53. Piao, J.; Lee, E.J.; Lee, M. Association between pelvic inflammatory disease and risk of ovarian cancer: An updated meta-analysis. Gynecol. Oncol. 2020, 157, 542–548. [Google Scholar] [CrossRef]
  54. Lo, H.W.; Weng, S.F.; Chen, H.S.; Tsai, E.M. Pelvic inflammatory disease is associated with ovarian cancer development in women with endometriosis: A cohort study in Taiwan. Int. J. Gynaecol. Obstet. 2022, 158, 145–152. [Google Scholar] [CrossRef]
  55. Nene, N.R.; Reisel, D.; Leimbach, A.; Franchi, D.; Jones, A.; Evans, I.; Knapp, S.; Ryan, A.; Ghazali, S.; Timms, J.F.; et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: A case-control study. Lancet Oncol. 2019, 20, 1171–1182. [Google Scholar] [CrossRef]
  56. Kroon, S.J.; Ravel, J.; Huston, W.M. Cervicovaginal microbiota, women’s health, and reproductive outcomes. Fertil. Steril. 2018, 110, 327–336. [Google Scholar] [CrossRef]
  57. Mitra, A.; MacIntyre, D.A.; Ntritsos, G.; Smith, A.; Tsilidis, K.K.; Marchesi, J.R.; Bennett, P.R.; Moscicki, A.B.; Kyrgiou, M. The vaginal microbiota associates with the regression of untreated cervical intraepithelial neoplasia 2 lesions. Nat. Commun. 2020, 11, 1999. [Google Scholar] [CrossRef] [PubMed]
  58. Morikawa, A.; Kawabata, A.; Shirahige, K.; Akiyama, T.; Okamoto, A.; Sutani, T. Altered cervicovaginal microbiota in premenopausal ovarian cancer patients. Gene 2022, 811, 146083. [Google Scholar] [CrossRef]
  59. Hemalatha, R.; Mastromarino, P.; Ramalaxmi, B.A.; Balakrishna, N.V.; Sesikeran, B. Effectiveness of vaginal tablets containing lactobacilli versus pH tablets on vaginal health and inflammatory cytokines: A randomized, double-blind study. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3097–3105. [Google Scholar] [CrossRef]
  60. Yoshida, R. Hereditary breast and ovarian cancer (HBOC): Review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer 2021, 28, 1167–1180. [Google Scholar] [CrossRef]
  61. Tschernichovsky, R.; Goodman, A. Risk-Reducing Strategies for Ovarian Cancer in BRCA Mutation Carriers: A Balancing Act. Oncologist 2017, 22, 450–459. [Google Scholar] [CrossRef] [PubMed]
  62. Restaino, S.; Pellecchia, G.; Arcieri, M.; Pericolini, E.; Bogani, G.; Poli, A.; Paparcura, F.; Pregnolato, S.; Armenise, D.; Frossi, B.; et al. The Relationship Between the Vaginal Microbiota and the Ovarian Cancer Microenvironment: A Journey from Ideas to Insights. Cells 2025, 14, 1590. [Google Scholar] [CrossRef]
  63. Sieh, W.; Kobel, M.; Longacre, T.A.; Bowtell, D.D.; deFazio, A.; Goodman, M.T.; Hogdall, E.; Deen, S.; Wentzensen, N.; Moysich, K.B.; et al. Hormone-receptor expression and ovarian cancer survival: An Ovarian Tumor Tissue Analysis consortium study. Lancet Oncol. 2013, 14, 853–862. [Google Scholar] [CrossRef]
  64. Tone, A.A.; Begley, H.; Sharma, M.; Murphy, J.; Rosen, B.; Brown, T.J.; Shaw, P.A. Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma. Clin. Cancer Res. 2008, 14, 4067–4078. [Google Scholar] [CrossRef]
  65. Nguyen, H.; Syed, V. Progesterone inhibits growth and induces apoptosis in cancer cells through modulation of reactive oxygen species. Gynecol. Endocrinol. 2011, 27, 830–836. [Google Scholar] [CrossRef]
  66. Kumar, L.; Dwivedi, M.; Jain, N.; Shete, P.; Solanki, S.; Gupta, R.; Jain, A. The Female Reproductive Tract Microbiota: Friends and Foe. Life 2023, 13, 1313. [Google Scholar] [CrossRef] [PubMed]
  67. Brewster, W.R.; Burkett, W.C.; Ko, E.M.; Bae-Jump, V.; Nicole McCoy, A.; Keku, T.O. An evaluation of the microbiota of the upper reproductive tract of women with and without epithelial ovarian cancer. Gynecol. Oncol. Rep. 2022, 42, 101017. [Google Scholar] [CrossRef] [PubMed]
  68. Miao, R.; Badger, T.C.; Groesch, K.; Diaz-Sylvester, P.L.; Wilson, T.; Ghareeb, A.; Martin, J.A.; Cregger, M.; Welge, M.; Bushell, C.; et al. Assessment of peritoneal microbial features and tumor marker levels as potential diagnostic tools for ovarian cancer. PLoS ONE 2020, 15, e0227707. [Google Scholar] [CrossRef]
  69. Zhou, B.; Sun, C.; Huang, J.; Xia, M.; Guo, E.; Li, N.; Lu, H.; Shan, W.; Wu, Y.; Li, Y.; et al. The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Sci. Rep. 2019, 9, 1691. [Google Scholar] [CrossRef] [PubMed]
  70. Wetendorf, M.; Li, R.; Wu, S.P.; Liu, J.; Creighton, C.J.; Wang, T.; Janardhan, K.S.; Willson, C.J.; Lanz, R.B.; Murphy, B.D.; et al. Constitutive expression of progesterone receptor isoforms promotes the development of hormone-dependent ovarian neoplasms. Sci. Signal 2020, 13, eaaz9646. [Google Scholar] [CrossRef]
  71. Zakarya, R.; Howell, V.M.; Colvin, E.K. Modelling Epithelial Ovarian Cancer in Mice: Classical and Emerging Approaches. Int. J. Mol. Sci. 2020, 21, 4806. [Google Scholar] [CrossRef]
  72. Wang, Q.; Zhao, L.; Han, L.; Fu, G.; Tuo, X.; Ma, S.; Li, Q.; Wang, Y.; Liang, D.; Tang, M.; et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J. Ovarian Res. 2020, 13, 8. [Google Scholar] [CrossRef]
  73. Choi, S.Y.; Choi, J.H. Ovarian Cancer and the Microbiome: Connecting the Dots for Early Diagnosis and Therapeutic Innovations—A Review. Medicina 2024, 60, 516. [Google Scholar] [CrossRef]
  74. Mauro, L.J.; Spartz, A.; Austin, J.R.; Lange, C.A. Reevaluating the Role of Progesterone in Ovarian Cancer: Is Progesterone Always Protective? Endocr. Rev. 2023, 44, 1029–1046. [Google Scholar] [CrossRef]
  75. Hillman, E.T.; Lu, H.; Yao, T.; Nakatsu, C.H. Microbial Ecology along the Gastrointestinal Tract. Microbes Environ. 2017, 32, 300–313. [Google Scholar] [CrossRef]
  76. Ahlawat, S.; Asha, N.; Sharma, K.K. Gut-organ axis: A microbial outreach and networking. Lett. Appl. Microbiol. 2021, 72, 636–668. [Google Scholar] [CrossRef]
  77. D’Antonio, D.L.; Marchetti, S.; Pignatelli, P.; Piattelli, A.; Curia, M.C. The Oncobiome in Gastroenteric and Genitourinary Cancers. Int. J. Mol. Sci. 2022, 23, 9664. [Google Scholar] [CrossRef] [PubMed]
  78. Asangba, A.E.; Chen, J.; Goergen, K.M.; Larson, M.C.; Oberg, A.L.; Casarin, J.; Multinu, F.; Kaufmann, S.H.; Mariani, A.; Chia, N.; et al. Diagnostic and prognostic potential of the microbiome in ovarian cancer treatment response. Sci. Rep. 2023, 13, 730. [Google Scholar] [CrossRef] [PubMed]
  79. Hu, C.; Xu, B.; Wang, X.; Wan, W.H.; Lu, J.; Kong, D.; Jin, Y.; You, W.; Sun, H.; Mu, X.; et al. Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology 2023, 77, 48–64. [Google Scholar] [CrossRef]
  80. Xu, S.; Liu, Z.; Lv, M.; Chen, Y.; Liu, Y. Intestinal dysbiosis promotes epithelial-mesenchymal transition by activating tumor-associated macrophages in ovarian cancer. Pathog. Dis. 2019, 77, ftz019. [Google Scholar] [CrossRef]
  81. Mahoney, D.E.; Chalise, P.; Rahman, F.; Pierce, J.D. Influences of Gastrointestinal Microbiota Dysbiosis on Serum Proinflammatory Markers in Epithelial Ovarian Cancer Development and Progression. Cancers 2022, 14, 3022. [Google Scholar] [CrossRef] [PubMed]
  82. Li, C.; Feng, Y.; Yang, C.; Wang, D.; Zhang, D.; Luo, X.; Zhang, H.; Huang, H.; Zhang, H.; Jiang, Y.; et al. Association between vaginal microbiota and the progression of ovarian cancer. J. Med. Virol. 2023, 95, e28898. [Google Scholar] [CrossRef]
  83. Hu, X.; Xu, X.; Zeng, X.; Jin, R.; Wang, S.; Jiang, H.; Tang, Y.; Chen, G.; Wei, J.; Chen, T.; et al. Gut microbiota dysbiosis promotes the development of epithelial ovarian cancer via regulating Hedgehog signaling pathway. Gut Microbes 2023, 15, 2221093. [Google Scholar] [CrossRef]
  84. Wang, Z.; Qin, X.; Hu, D.; Huang, J.; Guo, E.; Xiao, R.; Li, W.; Sun, C.; Chen, G. Akkermansia supplementation reverses the tumor-promoting effect of the fecal microbiota transplantation in ovarian cancer. Cell Rep. 2022, 41, 111890. [Google Scholar] [CrossRef]
  85. Ye, Y.; Gao, Y.; Fang, Y.; Xu, L.; He, F. Anticancer Effect of Puerarin on Ovarian Cancer Progression Contributes to the Tumor Suppressor Gene Expression and Gut Microbiota Modulation. J. Immunol. Res. 2022, 2022, 4472509. [Google Scholar] [CrossRef]
  86. D’Amico, F.; Perrone, A.M.; Rampelli, S.; Coluccelli, S.; Barone, M.; Ravegnini, G.; Fabbrini, M.; Brigidi, P.; De Iaco, P.; Turroni, S. Gut Microbiota Dynamics during Chemotherapy in Epithelial Ovarian Cancer Patients Are Related to Therapeutic Outcome. Cancers 2021, 13, 3999. [Google Scholar] [CrossRef] [PubMed]
  87. Lu, Y.; Fan, C.; Li, P.; Lu, Y.; Chang, X.; Qi, K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci. Rep. 2016, 6, 37589. [Google Scholar] [CrossRef]
  88. Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 2009, 57, 5982–5986. [Google Scholar] [CrossRef]
  89. Oki, K.; Toyama, M.; Banno, T.; Chonan, O.; Benno, Y.; Watanabe, K. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol. 2016, 16, 284. [Google Scholar] [CrossRef] [PubMed]
  90. Li, C.; Gu, Y.; He, Q.; Huang, J.; Song, Y.; Wan, X.; Li, Y. Integrated Analysis of Microbiome and Transcriptome Data Reveals the Interplay Between Commensal Bacteria and Fibrin Degradation in Endometrial Cancer. Front. Cell Infect. Microbiol. 2021, 11, 748558. [Google Scholar] [CrossRef] [PubMed]
  91. Li, M.; He, G.; Kong, F.; Wang, P.; Han, C.; Ding, Q.; Jiang, H.; Deng, S. Unraveling the role of tissue colonized microbiome in ovarian cancer progression. Comput. Biol. Med. 2024, 177, 108641. [Google Scholar] [CrossRef]
  92. Chen, J.; Chen, X.; Ma, J. Causal relationships of gut microbiota and blood metabolites with ovarian cancer and endometrial cancer: A Mendelian randomization study. J. Ovarian Res. 2025, 18, 54. [Google Scholar] [CrossRef] [PubMed]
  93. Guo, J.; Wang, C.; Li, H.; Ding, C. Exploring the causal associations of the gut microbiota and plasma metabolites with ovarian cancer: An approach of mendelian randomization analysis combined with network pharmacology and molecular docking. J. Ovarian Res. 2025, 18, 27. [Google Scholar] [CrossRef]
  94. Kong, Y.; Liu, S.; Wang, X.; Qie, R. Associations between gut microbiota and gynecological cancers: A bi-directional two-sample Mendelian randomization study. Medicine 2024, 103, e37628. [Google Scholar] [CrossRef]
  95. Wang, Y.; Gao, S.; Liu, Y.; Li, Y.; Yao, H.; Han, Y.; Liu, X. Association between gut microbiota, plasma metabolites, and ovarian cancer: A Mendelian randomization study. Medicine 2024, 103, e40479. [Google Scholar] [CrossRef]
  96. Gong, W.; Jin, G.; Bao, Y.; Liu, Q.; Ni, M.; Wang, J.; Mao, S.; Zhang, Y.; Zheng, Z. Characteristics and potential diagnostic value of gut microbiota in ovarian tumor patients. Sci. Rep. 2025, 15, 16504. [Google Scholar] [CrossRef]
  97. Xiao, Q.; Chen, W.J.; Wu, F.; Zhang, X.Y.; Li, X.; Wei, J.; Chen, T.T.; Liu, Z.X. Individuality and generality of intratumoral microbiome in the three most prevalent gynecological malignancies: An observational study. Microbiol. Spectr. 2024, 12, e0100424. [Google Scholar] [CrossRef]
  98. Huang, Q.; Wei, X.; Li, W.; Ma, Y.; Chen, G.; Zhao, L.; Jiang, Y.; Xie, S.; Chen, Q.; Chen, T. Endogenous Propionibacterium acnes Promotes Ovarian Cancer Progression via Regulating Hedgehog Signalling Pathway. Cancers 2022, 14, 5178. [Google Scholar] [CrossRef]
  99. Wen, Q.; Wang, S.; Fu, S.; Zhou, X.; Min, Y.; Lang, J.; Chen, M. Intratumoral microbiota composition in women’s cancers: A systematic review and meta-analysis. Front. Oncol. 2025, 15, 1544786. [Google Scholar] [CrossRef]
  100. Domzaridou, E.; Van Staa, T.; Renehan, A.G.; Cook, N.; Welfare, W.; Ashcroft, D.M.; Palin, V. The Impact of Oral Antibiotics Prior to Cancer Diagnosis on Overall Patient Survival: Findings from an English Population-Based Cohort Study. Curr. Oncol. 2023, 30, 8434–8443. [Google Scholar] [CrossRef] [PubMed]
  101. Chambers, L.M.; Kuznicki, M.; Yao, M.; Chichura, A.; Gruner, M.; Reizes, O.; Debernardo, R.; Rose, P.G.; Michener, C.; Vargas, R. Impact of antibiotic treatment during platinum chemotherapy on survival and recurrence in women with advanced epithelial ovarian cancer. Gynecol. Oncol. 2020, 159, 699–705. [Google Scholar] [CrossRef] [PubMed]
  102. Zhan, X.; Zuo, Q.; Huang, G.; Qi, Z.; Wang, Y.; Zhu, S.; Zhong, Y.; Xiong, Y.; Chen, T.; Tan, B. Tripterygium glycosides sensitizes cisplatin chemotherapeutic potency by modulating gut microbiota in epithelial ovarian cancer. Front. Cell Infect. Microbiol. 2023, 13, 1236272. [Google Scholar] [CrossRef] [PubMed]
  103. Chambers, L.M.; Esakov Rhoades, E.L.; Bharti, R.; Braley, C.; Tewari, S.; Trestan, L.; Alali, Z.; Bayik, D.; Lathia, J.D.; Sangwan, N.; et al. Disruption of the Gut Microbiota Confers Cisplatin Resistance in Epithelial Ovarian Cancer. Cancer Res. 2022, 82, 4654–4669. [Google Scholar] [CrossRef] [PubMed]
  104. Tong, J.; Zhang, X.; Fan, Y.; Chen, L.; Ma, X.; Yu, H.; Li, J.; Guan, X.; Zhao, P.; Yang, J. Changes of Intestinal Microbiota in Ovarian Cancer Patients Treated with Surgery and Chemotherapy. Cancer Manag. Res. 2020, 12, 8125–8135. [Google Scholar] [CrossRef]
  105. Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342, 967–970. [Google Scholar] [CrossRef]
  106. Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 356–365. [Google Scholar] [CrossRef]
  107. Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillere, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013, 342, 971–976. [Google Scholar] [CrossRef]
  108. Jacobson, D.; Moore, K.; Gunderson, C.; Rowland, M.; Austin, R.; Honap, T.P.; Xu, J.; Warinner, C.; Sankaranarayanan, K.; Lewis, C.M., Jr. Shifts in gut and vaginal microbiomes are associated with cancer recurrence time in women with ovarian cancer. PeerJ 2021, 9, e11574. [Google Scholar] [CrossRef] [PubMed]
  109. Rosario, S.R.; Long, M.D.; Chilakapati, S.; Gomez, E.C.; Battaglia, S.; Singh, P.K.; Wang, J.; Wang, K.; Attwood, K.; Hess, S.M.; et al. Integrative multi-omics analysis uncovers tumor-immune-gut axis influencing immunotherapy outcomes in ovarian cancer. Nat. Commun. 2024, 15, 10609. [Google Scholar] [CrossRef]
  110. Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillere, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
  111. Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef]
  112. Derosa, L.; Hellmann, M.D.; Spaziano, M.; Halpenny, D.; Fidelle, M.; Rizvi, H.; Long, N.; Plodkowski, A.J.; Arbour, K.C.; Chaft, J.E.; et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 2018, 29, 1437–1444. [Google Scholar] [CrossRef]
  113. Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef] [PubMed]
  114. Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed]
  115. Tanoue, T.; Morita, S.; Plichta, D.R.; Skelly, A.N.; Suda, W.; Sugiura, Y.; Narushima, S.; Vlamakis, H.; Motoo, I.; Sugita, K.; et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 2019, 565, 600–605. [Google Scholar] [CrossRef]
  116. Okazawa-Sakai, M.; Sakai, S.A.; Hyodo, I.; Horasawa, S.; Sawada, K.; Fujisawa, T.; Yamamoto, Y.; Boku, S.; Hayasaki, Y.; Isobe, M.; et al. Gut microbiome associated with PARP inhibitor efficacy in patients with ovarian cancer. J. Gynecol. Oncol. 2025, 36, e38. [Google Scholar] [CrossRef]
  117. Islam, M.S.; Fan, J.; Pan, F. The power of phages: Revolutionizing cancer treatment. Front. Oncol. 2023, 13, 1290296. [Google Scholar] [CrossRef]
  118. Karimi, M.; Mirshekari, H.; Moosavi Basri, S.M.; Bahrami, S.; Moghoofei, M.; Hamblin, M.R. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev. 2016, 106, 45–62. [Google Scholar] [CrossRef] [PubMed]
  119. Hess, K.L.; Jewell, C.M. Phage display as a tool for vaccine and immunotherapy development. Bioeng. Transl. Med. 2020, 5, e10142. [Google Scholar] [CrossRef] [PubMed]
  120. Zhang, J.; Yang, J.; Luo, J.; Wu, W.; Luo, H.; Wei, W.; Lyu, H.; Wang, Y.; Yi, H.; Zhang, Y.; et al. Lactobacillus acidophilus potentiates oncolytic virotherapy through modulating gut microbiota homeostasis in hepatocellular carcinoma. Nat. Commun. 2025, 16, 3315. [Google Scholar] [CrossRef]
  121. Doestzada, M.; Vila, A.V.; Zhernakova, A.; Koonen, D.P.Y.; Weersma, R.K.; Touw, D.J.; Kuipers, F.; Wijmenga, C.; Fu, J. Pharmacomicrobiomics: A novel route towards personalized medicine? Protein Cell 2018, 9, 432–445. [Google Scholar] [CrossRef]
  122. Cai, W.; Liu, Z.-q.; Miao, L.-L.; Xiang, X. Pharmacogenomics in Precision Medicine: From a Perspective of Ethnic Differences. In Pharmacogenomics in Precision Medicine; Springer: Singapore, 2020. [Google Scholar]
  123. Le Ngoc, K.; Pham, T.T.H.; Nguyen, T.K.; Huong, P.T. Pharmacomicrobiomics in precision cancer therapy: Bench to bedside. Front. Immunol. 2024, 15, 1428420. [Google Scholar] [CrossRef]
  124. Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
  125. Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
  126. Venkidesh, B.S.; Shankar, S.R.; Narasimhamurthy, R.K.; Rao, S.B.S.; Mumbrekar, K.D. Radioprotective potential of probiotics against gastrointestinal and neuronal toxicity: A preclinical study. Clin. Transl. Oncol. 2023, 25, 3165–3173. [Google Scholar] [CrossRef] [PubMed]
  127. Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
  128. Xie, W.; Zhong, Y.S.; Li, X.J.; Kang, Y.K.; Peng, Q.Y.; Ying, H.Z. Postbiotics in colorectal cancer: Intervention mechanisms and perspectives. Front. Microbiol. 2024, 15, 1360225. [Google Scholar] [CrossRef]
  129. Gurunathan, S.; Thangaraj, P.; Kim, J.H. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023, 13, 89. [Google Scholar] [CrossRef]
  130. Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef]
  131. Cao, A.; Esserman, D.A.; Cartmel, B.; Irwin, M.L.; Ferrucci, L.M. Association between diet quality and ovarian cancer risk and survival. J. Natl. Cancer Inst. 2024, 116, 1095–1104. [Google Scholar] [CrossRef]
  132. Chen, Y.H.; Bao, R.H.; Liu, J.C.; Liu, J.X.; Sun, J.N.; Wu, L.; Huang, D.H.; Li, X.Y.; Xiao, Q.; Ni, S.; et al. Association between pre-diagnosis and post-diagnosis Alternate Mediterranean Diet and ovarian cancer survival: Evidence from a prospective cohort study. J. Transl. Med. 2024, 22, 860. [Google Scholar] [CrossRef]
  133. Udumula, M.P.; Singh, H.; Faraz, R.; Poisson, L.; Tiwari, N.; Dimitrova, I.; Hijaz, M.; Gogoi, R.; Swenor, M.; Munkarah, A.; et al. Intermittent Fasting induced ketogenesis inhibits mouse epithelial ovarian tumors by promoting anti-tumor T cell response. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
  134. Perales-Puchalt, A.; Perez-Sanz, J.; Payne, K.K.; Svoronos, N.; Allegrezza, M.J.; Chaurio, R.A.; Anadon, C.; Calmette, J.; Biswas, S.; Mine, J.A.; et al. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. J. Leukoc. Biol. 2018, 103, 799–805. [Google Scholar] [CrossRef]
  135. Lev-Sagie, A.; Goldman-Wohl, D.; Cohen, Y.; Dori-Bachash, M.; Leshem, A.; Mor, U.; Strahilevitz, J.; Moses, A.E.; Shapiro, H.; Yagel, S.; et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat. Med. 2019, 25, 1500–1504. [Google Scholar] [CrossRef]
  136. Cohen, C.R.; Wierzbicki, M.R.; French, A.L.; Morris, S.; Newmann, S.; Reno, H.; Green, L.; Miller, S.; Powell, J.; Parks, T.; et al. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. N. Engl. J. Med. 2020, 382, 1906–1915. [Google Scholar] [CrossRef]
  137. Zhao, L.; Xing, C.; Sun, W.; Hou, G.; Yang, G.; Yuan, L. Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition. Cancer Chemother. Pharmacol. 2018, 82, 999–1008. [Google Scholar] [CrossRef]
  138. Chambers, L.M.; Michener, C.M.; Rose, P.G.; Reizes, O.; Yao, M.; Vargas, R. Impact of antibiotic treatment on immunotherapy response in women with recurrent gynecologic cancer. Gynecol. Oncol. 2021, 161, 211–220. [Google Scholar] [CrossRef]
  139. Wei, Z.; Yang, B.; Tang, T.; Xiao, Z.; Ye, F.; Li, X.; Wu, S.; Huang, J.G.; Jiang, S. Gut microbiota and risk of five common cancers: A univariable and multivariable Mendelian randomization study. Cancer Med. 2023, 12, 10393–10405. [Google Scholar] [CrossRef]
  140. Zitvogel, L.; Derosa, L.; Routy, B.; Loibl, S.; Heinzerling, L.; de Vries, I.J.M.; Engstrand, L.; Network, O.; Segata, N.; Kroemer, G. Impact of the ONCOBIOME network in cancer microbiome research. Nat. Med. 2025, 31, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
  141. Qin, X.; Zhou, J.; Wang, Z.; Feng, C.; Fan, J.; Huang, J.; Hu, D.; Baban, B.; Wang, S.; Ma, D.; et al. Metagenomic analysis of the microbiome of the upper reproductive tract: Combating ovarian cancer through predictive, preventive, and personalized medicine. EPMA J. 2022, 13, 487–498. [Google Scholar] [CrossRef]
  142. Ingerslev, K.; Hogdall, E.; Skovrider-Ruminski, W.; Schnack, T.H.; Lidang, M.; Hogdall, C.; Blaakaer, J. The prevalence of EBV and CMV DNA in epithelial ovarian cancer. Infect. Agent. Cancer 2019, 14, 7. [Google Scholar] [CrossRef] [PubMed]
  143. Paradowska, E.; Jablonska, A.; Studzinska, M.; Wilczynski, M.; Wilczynski, J.R. Detection and genotyping of CMV and HPV in tumors and fallopian tubes from epithelial ovarian cancer patients. Sci. Rep. 2019, 9, 19935. [Google Scholar] [CrossRef] [PubMed]
  144. Shanmughapriya, S.; Senthilkumar, G.; Vinodhini, K.; Das, B.C.; Vasanthi, N.; Natarajaseenivasan, K. Viral and bacterial aetiologies of epithelial ovarian cancer. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2311–2317. [Google Scholar] [CrossRef]
  145. Banerjee, S.; Tian, T.; Wei, Z.; Shih, N.; Feldman, M.D.; Alwine, J.C.; Coukos, G.; Robertson, E.S. The ovarian cancer oncobiome. Oncotarget 2017, 8, 36225–36245. [Google Scholar] [CrossRef] [PubMed]
  146. Rutkowski, M.R.; Stephen, T.L.; Svoronos, N.; Allegrezza, M.J.; Tesone, A.J.; Perales-Puchalt, A.; Brencicova, E.; Escovar-Fadul, X.; Nguyen, J.M.; Cadungog, M.G.; et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 2015, 27, 27–40. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Immune, metabolic, and hormonal axes linking the gut microbiome to ovarian tumorigenesis. Microbial LPS promotes IL-1-driven chronic inflammation, tumor-derived cytokines foster EMT and genotoxicity; while SCFAs rewire immunometabolism, and estrobolome-derived estrogens cooperate to promote EMT programs in ovarian cancer cells, macrophage polarization, and Treg accrual. EMT: epithelial–mesenchymal transition; IL: interleukin; LPS: lipopolysaccharide; OC: ovarian cancer; SCFA, short-chain fatty acid.
Figure 1. Immune, metabolic, and hormonal axes linking the gut microbiome to ovarian tumorigenesis. Microbial LPS promotes IL-1-driven chronic inflammation, tumor-derived cytokines foster EMT and genotoxicity; while SCFAs rewire immunometabolism, and estrobolome-derived estrogens cooperate to promote EMT programs in ovarian cancer cells, macrophage polarization, and Treg accrual. EMT: epithelial–mesenchymal transition; IL: interleukin; LPS: lipopolysaccharide; OC: ovarian cancer; SCFA, short-chain fatty acid.
Cells 14 01813 g001
Figure 2. Bidirectional gut–peritoneal–ovarian communication and microbial metabolite flux in ovarian cancer. Low-density upper-female-tract microbiota, peritoneal cavity exposure, and gut-derived SCFAs/LPS converge to shape inflammatory mediators (IL-6, TNF) and the ovarian tumor microenvironment, consistent with ascending routes and metabolite crosstalk. IL: interleukin; LPS: lipopolysaccharide; SCFA, short-chain fatty acid; TNF: tumor necrosis factor.
Figure 2. Bidirectional gut–peritoneal–ovarian communication and microbial metabolite flux in ovarian cancer. Low-density upper-female-tract microbiota, peritoneal cavity exposure, and gut-derived SCFAs/LPS converge to shape inflammatory mediators (IL-6, TNF) and the ovarian tumor microenvironment, consistent with ascending routes and metabolite crosstalk. IL: interleukin; LPS: lipopolysaccharide; SCFA, short-chain fatty acid; TNF: tumor necrosis factor.
Cells 14 01813 g002
Figure 3. Gut microbial signatures modulate therapeutic efficacy in ovarian cancer. Gut microbial configurations associated with response vs. resistance to chemotherapy, immune checkpoint blockade (anti-PD-1), PARP inhibition, and emerging therapies. Microbial taxa shape antigen presentation, T-cell infiltration, and tumor immunometabolism, thereby modifying response and rescue potential across modalities. DC: dendritic cells; FMT: fecal microbiota transplantation; ICB: immune-checkpoint blockade; PD-1: programmed cell death-1; PFS: progression-free survival (PFS); SCFA: short-chain fatty acids.
Figure 3. Gut microbial signatures modulate therapeutic efficacy in ovarian cancer. Gut microbial configurations associated with response vs. resistance to chemotherapy, immune checkpoint blockade (anti-PD-1), PARP inhibition, and emerging therapies. Microbial taxa shape antigen presentation, T-cell infiltration, and tumor immunometabolism, thereby modifying response and rescue potential across modalities. DC: dendritic cells; FMT: fecal microbiota transplantation; ICB: immune-checkpoint blockade; PD-1: programmed cell death-1; PFS: progression-free survival (PFS); SCFA: short-chain fatty acids.
Cells 14 01813 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Blanco, J.-R.; del Campo, R.; Avendaño-Ortiz, J.; Laguna-Olmos, M.; Carnero, A. The Role of Microbiota in Ovarian Cancer: Implications for Treatment Response and Therapeutic Strategies. Cells 2025, 14, 1813. https://doi.org/10.3390/cells14221813

AMA Style

Blanco J-R, del Campo R, Avendaño-Ortiz J, Laguna-Olmos M, Carnero A. The Role of Microbiota in Ovarian Cancer: Implications for Treatment Response and Therapeutic Strategies. Cells. 2025; 14(22):1813. https://doi.org/10.3390/cells14221813

Chicago/Turabian Style

Blanco, Jose-Ramon, Rosa del Campo, José Avendaño-Ortiz, Mariano Laguna-Olmos, and Amancio Carnero. 2025. "The Role of Microbiota in Ovarian Cancer: Implications for Treatment Response and Therapeutic Strategies" Cells 14, no. 22: 1813. https://doi.org/10.3390/cells14221813

APA Style

Blanco, J.-R., del Campo, R., Avendaño-Ortiz, J., Laguna-Olmos, M., & Carnero, A. (2025). The Role of Microbiota in Ovarian Cancer: Implications for Treatment Response and Therapeutic Strategies. Cells, 14(22), 1813. https://doi.org/10.3390/cells14221813

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop