Distinct Neurodegenerative Pathways in Two NBIA Subtypes: Inflammatory Activation in C19orf12 but Not in PANK2 Mutation Carriers
Highlights
- A correlation between disease severity and serum biomarkers was observed. In MPAN patients, NfL, Tau, and UCH-L1 levels were significantly associated with disease severity, whereas in PKAN patients, Tau, GFAP, and UCH-L1 were the key correlating markers.
- Despite clinical and pathological similarities between MPAN and PKAN, only MPAN patients showed elevated biomarkers indicating inflammation and blood–brain barrier disruption.
- Serum biomarkers may serve as useful indicators for monitoring disease progression.
- The biomarker profile observed in MPAN suggests active neuroinflammation, supporting consideration of anti-inflammatory therapeutic strategies in this subgroup.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Biomarkers Evaluation
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. Biomarkers of Neurodegeneration
3.3. Biomarkers of the Blood–Brain Barrier
3.4. Biomarkers’ Correlations
3.5. Correlation of Biomarkers and Clinical Status
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhle, J.; Kropshofer, H.; Haering, D.A.; Kundu, U.; Meinert, R.; Barro, C.; Kappos, L. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology 2019, 92, e1007–e1015. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Benkert, P.; Schaedelin, S.; Boscardin, W.J.; Cordano, C.; Oechtering, J.; Findling, O. Neurofilament Light Chain Elevation and Disability Progression in Multiple Sclerosis. JAMA Neurol. 2023, 80, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Cordano, C.; Boscardin, W.J.; Caverzasi, E.; Kuhle, J.; Chan, B.; Green, A.J. Plasma neurofilament light chain levels suggest neuroaxonal stability following therapeutic remyelination in people with multiple sclerosis. J. Neurol. Neurosurg. Psych. 2022, 93, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, C.C.; Ushakova, A.; Alves, G.; Tysnes, O.B.; Blennow, K.; Zetterberg, H.; Lange, J. Serum neurofilament light at diagnosis: A prognostic indicator for accelerated disease progression in Parkinson’s Disease. npj Park. Dis. 2024, 10, 162. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Kuhle, J. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psych. 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Park, Y.; Kc, N.; Paneque, A.; Cole, P.D. Tau, glial fibrillary acidic protein, and neurofilament light chain as brain protein biomarkers in cerebrospinal fluid and blood for diagnosis of neurobiological diseases. Int. J. Mol. Sci. 2024, 25, 6295. [Google Scholar] [CrossRef]
- Holper, S.; Watson, R.; Yassi, N. Tau as a biomarker of neurodegeneration. Int. J. Mol. Sci. 2022, 23, 7307. [Google Scholar] [CrossRef]
- Schoonenboom, N.S.; Reesink, F.E.; Verwey, N.A.; Kester, M.I.; Teunissen, C.E.; Van De Ven, P.M.; Van Der Flier, W.M. Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 2012, 78, 47–54. [Google Scholar] [CrossRef]
- Antos, A.; Czlonkowska, A.; Bembenek, J.; Skowronska, M.; Kurkowska-Jastrzebska, I.; Litwin, T. Blood based biomarkers of central nervous system involvement in Wilson’s Disease. Diagnostics 2023, 13, 1554. [Google Scholar] [CrossRef]
- Buneeva, O.; Medvedev, A. Ubiquitin Carboxyl-Terminal Hydrolase L1 and its role in Parkinson’s Disease. Int. J. Mol. Sci. 2024, 25, 1303. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.A.; Dusek, P.; Hardy, J.; Westenberger, A.; Jankovic, J.; Bhatia, K.P. Genetics and pathophysiology of Neurodegeneration with brain Iron Accumulation (NBIA). Curr. Neuropharmacol. 2013, 11, 59–79. [Google Scholar]
- Gregory, A.; Polster, B.J.; Hayflick, S.J. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J. Med. Genet. 2009, 46, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Hayflick, S.J.; Westaway, S.K.; Levinson, B.; Hayflick, S.J.; Westaway, S.K.; Levinson, B.; Zhou, B.; Johnson, M.A.; Ching, K.H.; Gitschier, J. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N. Engl. J. Med. 2003, 348, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Hartig, M.B.; Iuso, A.; Haack, T.; Kmiec, T.; Jurkiewicz, E.; Heim, K.; Prokisch, H. Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 2011, 89, 543–550. [Google Scholar] [CrossRef]
- Gregory, A.; Lotia, M.; Jeong, S.Y.; Fox, R.; Zhen, D.; Sanford, L.; Hayflick, S.J. Autosomal dominant mitochondrial membrane protein-associated neurodegeneration (MPAN). Mol. Genet. Genom. Med. 2019, 7, e00736. [Google Scholar] [CrossRef]
- Wydrych, A.; Pakuła, B.; Jakubek-Olszewska, P.; Janikiewicz, J.; Dobosz, A.M.; Cudna, A.; Wieckowski, M.R. Metabolic alterations in fibroblasts of patients presenting with the MPAN subtype of neurodegeneration with brain iron accumulation (NBIA). Biochim. Biophys. Acta Mol. Basis. Dis. 2025, 1871, 167541. [Google Scholar] [CrossRef]
- Vassilena, I.; Sparber, P.; Rohani, M.; Dusek, P.; Büchner, B.; Karin, I.; Klopstock, T. Phenotype and natural history of mitochondrial membrane protein-associated neurodegeneration. Brain 2024, 147, 1389–1398. [Google Scholar]
- Skowronska, M.; Kmiec, T.; Jurkiewicz, E.; Malczyk, K.; Kurkowska-Jastrzebska, I.; Czlonkowska, A. Evolution and novel radiological changes of neurodegeneration associated with mutations in C19orf12. Park. Relat. Disord. 2017, 39, 71–76. [Google Scholar] [CrossRef]
- Hogarth, P.; Gregory, A.; Kruer, M.C.; Sanford, L.; Wagoner, W.; Natowicz, M.R.; Hayflick, S.J. New NBIA subtype: Genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 2013, 80, 268–275. [Google Scholar] [CrossRef]
- Kruer, M.C.; Hiken, M.; Gregory, A.; Malandrini, A.; Clark, D.; Hogarth, P.; Woltjer, R.L. Novel histopathologic findings in molecularly-confirmed pantothenate kinase-associated neurodegeneration. Brain 2011, 134, 947–958. [Google Scholar] [CrossRef]
- Li, A.; Paudel, R.; Johnson, R.; Courtney, R.; Lees, A.J.; Holton, J.L.; Houlden, H. Pantothenate kinase-associated neurodegeneration is not a synucleinopathy. Neuropathol. Appl. Neurobiol. 2013, 39, 121–131. [Google Scholar] [CrossRef]
- Available online: https://www.movementdisorders.org/Clinical (accessed on 1 January 2020).
- Colombelli, C.; Aoun, M.; Tiranti, V. Defective lipid metabolism in neurodegeneration with brain iron accumulation (NBIA) syndromes: Not only a matter of iron. J. Inherit. Metab. Dis. 2015, 38, 123–136. [Google Scholar] [CrossRef]
- Hinarejos, I.; Machuca, C.; Sancho, P.; Espinos, C. Mitochondrial dysfunction, oxidative stress and neuroinflammation in neurodegeneration with brain iron accumulation (NBIA). Antioxidants 2020, 9, 1020. [Google Scholar] [CrossRef]
- Liu, Y.; Dou, K.; Xue, L.; Li, X.; Xie, A. Neurofilament light as a biomarker for motor decline in Parkinson’s disease. Front. Neurosci. 2022, 16, 959261. [Google Scholar] [CrossRef]
- Pilotto, A.; Imarisio, A.; Conforti, F.; Scalvini, A.; Masciocchi, S.; Nocivelli, S.; Padovani, A. Plasma NfL, clinical subtypes and motor progression in Parkinson’s disease. Park. Relat. Disord. 2021, 87, 41–47. [Google Scholar] [CrossRef]
- Benussi, A.; Ashton, N.J.; Karikari, T.K.; Gazzina, S.; Premi, E.; Benussi, L.; Borroni, B. Serum glial fibrillary acidic protein (GFAP) is a marker of disease severity in frontotemporal lobar degeneration. J. Alzheimer’s Dis. 2020, 77, 1129–1141. [Google Scholar] [CrossRef]
- Dage, J.L.; Wennberg, A.M.V.; Airey, D.C.; Hagen, C.E.; Knopman, D.S.; Machulda, M.M.; Mielke, M.M. Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimer’s Dement. 2016, 12, 1226–1234. [Google Scholar] [CrossRef]
- Gonçalves, C.A.; Leite, M.C.; Nardin, P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin. Biochem. 2008, 41, 755–763. [Google Scholar] [CrossRef]
- Gayger-Dias, V.; Vizuete, A.F.; Rodrigues, L.; Wartchow, K.M.; Bobermin, L.; Leite, M.C.; Gonçalves, C.A. How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury. Exp. Biol. Med. 2023, 248, 2109–2119. [Google Scholar] [CrossRef]
- Cudna, A.; Bronisz, E.; Jopowicz, A.; Kurkowska-Jastrzębska, I. Changes in serum blood-brain barrier markers after bilateral tonic-clonic seizures. Seizure 2023, 106, 129–137. [Google Scholar] [CrossRef]
- Poniatowski, L.A.; Cudna, A.; Kurczych, K.; Bronisz, E.; Kurkowska-Jastrzebska, I. Kinetics of serum brain-derived neurotrophic factor (BDNF) concentration levels in epileptic patients after generalized tonic-clonic seizures. Epilepsy Res. 2021, 173, 106612. [Google Scholar] [CrossRef]
- Pang, P.T.; Teng, H.K.; Zaitsev, E.; Woo, N.T.; Sakata, K.; Zhen, S.; Lu, B. Cleavage of proBDNF by tPA/Plasmin Is Essential for Long-Term Hippocampal Plasticity. Science 2004, 306, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.K.S.; Ho, C.S.H.; Tam, W.W.S.; Kua, E.H.; Ho, R.C.M. Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 257. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Klingelhuber, F.; Frendo-Cumbo, S.; Omar-Hmeadi, M.; Massier, L.; Kakimoto, P.; Taylor, A.J.; Krahmer, N. Spatiotemporal proteomic map of human adipogenesis. Nat. Metab. 2024, 6, 861–879. [Google Scholar] [CrossRef]
- Bernardes-Silva, M.; Anthony, D.C.; Issekutz, A.C.; Perry, V.H. Recruitment of neutrophils across the blood–brain barrier: The role of E- and P-selectins. J. Cereb. Blood Flow. Metab. 2001, 21, 1115–1124. [Google Scholar] [CrossRef]
- Weekman, E.M.; Wilcock, D.M. Matrix metalloproteinase in blood brain barrier breakdown in dementia. J. Alzheimer`s Dis. 2016, 49, 893–903. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef]



| Patient (Sex) | Mutation | Age of Assessment | Scale I | Scale II | Scale III | Scale IV | Scale V | Scale IV |
|---|---|---|---|---|---|---|---|---|
| 1. (M) | c. 573delC; 1583C>T; p.(Ser191ArgfsX13); (Thr528Met) | 27 | 2 | 1 | 20 | 10 | 21 | 7 |
| 2. (M) | c. 573delC; 1274T>C; p.(Ser191ArgfsX13); (Leu425Pro) | 28 | 3 | 0 | 27 | 22 | 24 | 12 |
| 3. (F) | c. 573delC; 911_913delTCT; p. (Ser191ArgfsX13); (F304del) | 28 | 2 | 0 | 27 | 25 | 30 | 11 |
| 4. (F) | c. 793G>A; 1203delC; p.(Asp265Asn); (Asp403IlefsX47); c.377G>C; 377G>C; p.(Gly126Ala); (Gly126Ala)-non pat. | 29 | 1 | 1 | 27 | 20 | 30 | 13 |
| 5. (F) | c. 1561G>A; del exons 3 and 4; p. (Gly521Arg); x | 22 | 2 | 0 | 31 | 16 (+1UR) | 28 | 16 |
| 6. (F) | c. 573delC; 863C>G; p.(Ser191ArgfsX13); (Pro288Arg) | 28 | 3 | 0 | 24 | 22 | 32 | 13 |
| 7. (F) | c. 1583C>T; 1561G>A; p.(Thr528Met); (Gly521Arg) | 24 | 2 | 2 | 27 | 17 | 27 | 8 |
| 8. (F) | c. 1561G>A; 1561G>A; p.(Gly521Arg); (Gly521Arg) | 20 | 4 | 1 | 34 | 16 (+2UR) | 37 | 16 |
| 9. (F) | c.1561G>A; 1561G>A; p.(Gly521Arg); (Gly521Arg) | 17 | 3 | 0 | 29 | 17 (+1UR) | 34 | 14 |
| 10. (F) | c. 573delC; 1561G>A; p. (Ser191ArgfsX13); (Gly521Arg) | 25 | 1 | 3 | 17 | 21 | 19 | 8 |
| 11. (F) | c. 1583C>T; 1561G>A; p. (Thr528Met); (Gly521Arg); c. 377G>C; 377G>C; p.(Gly126Ala); (Gly126Ala)-non pat. | 25 | 2 | 2 | 17 | 14 | 21 | 6 |
| 12. (F) | c. 573delC; 863C>G; p.(Ser191ArgfsX13); (Pro288Arg) | 35 | 2 | 2 | 29 | 18 | 21 | 6 |
| Patient (Sex) | Mutation | Age of Assessment | Scale I | Scale II | Scale III | Scale IV | Scale V | Scale VI |
|---|---|---|---|---|---|---|---|---|
| 1. (F) | H | 15 | 3 | 4 | 2 | 0 | 6 | 2 |
| 2. (M) | c.32C>T; 204_214del; p.(Thr11Met); (Gly69Argfs*10) | 27 | 27 | 10 | 2 | 16 | 12 | 20 |
| 3. (M) | H | 19 | 35 | 11 | 15 | 12 | 8 | 19 |
| 4. (M) | H | 24 | 32 | 20 | 16 | 18 | 14 | 45 |
| 5. (F) | H | 16 | 16 | 5 | 7 | 14 | 10 | 16 |
| 6. (F) | c.68T>C; 204_214del11; p.(Leu23Pro); (Gly69Argfs*10) | 21 | 19 | 14 | 13 | 13 | 15 | 14 |
| 7. (F) | c.68T>C; 204_214del11; p.(Leu23Pro); (Gly69Argfs*10) | 21 | 13 | 5 | 10 | 9 | 14 | 12 |
| 8. (M) | c.204_214del11; 205G>A; p.(Gly69Argfs*10); (Gly65Arg) | 14 | 21 | 2 | 3 | 2 | 10 | 7 |
| 9. (F) | H | 21 | 16 | 6 | 14 | 10 | 10 | 23 |
| 10. (M) | H | 19 | 15 | 5 | 17 | 12 | 8 | 19 |
| 11. (M) | H | 28 | 24 | 7 | 15 | 14 | 11 | 24 |
| 12. (M) | H | 26 | 23 | 9 | 21 | 16 | 12 | 34 |
| 13. (M) | H | 24 | 19 | 9 | 13 | 13 | 10 | 29 |
| 14. (M) | c.161delG; 204_214del11 p.(Gly54Valfs*19); (Gly69Argfs*10) | 15 | 10 | 2 | 6 | 3 | 10 | 14 |
| 15. (M) | H | 24 | 35 | 18 | 16 | 16 | 14 | 27 |
| 16. (M) | H | 29 | 25 | 15 | 7 | 11 | 14 | 40 |
| 17. (M) | H | 19 | 25 | 8 | 19 | 14 | 10 | 29 |
| 18. (M) | H | 15 | 9 | 5 | 9 | 15 | 6 | 19 |
| 19. (F) | c.204_214del11; 424A>G p.(Gly69Argfs*10); (Lys142Glu) | 16 | 8 | 4 | 9 | 9 | 8 | 10 |
| 20. (F) | H | 22 | 17 | 12 | 4 | 10 | 8 | 15 |
| 21. (M) | H | 26 | 38 | 20 | 25 | 18 | 18 | 43 |
| 22. (M) | H | 13 | 14 | 3 | 6 | 9 | 10 | 17 |
| 23. (F) | c.244_245dup;# p.(Pro83Serfs*7);# | 17 | 22 | 4 | 8 | 7 | 12 | 19 |
| 24. (F) | c.205G>A; 424A>G; p.(Gly65Glu); (Lys142Glu) | 24 | 36 | 20 | 16 | 20 | 22 | 44 |
| 25. (M) | H | 25 | 38 | 15 | 21 | 15 | 14 | 37 |
| MPAN | p 1 | PKAN | p 1 | p 2 | Control | |
|---|---|---|---|---|---|---|
| Number of patients F/M | 25 (9/16) | - | 12 (8/4) | - | - | 30 (14/16) |
| Age mean ± SD; years (range) | 20.8 ± 4.8 (14–29) | 0.16 | 25.5 ± 4.9 (17–35) | 0.7 | 0.02 | 23.6 ± 4.9 (13–33) |
| Disease rating scales | MPAN scale | PKAN DRS | ||||
| Mean ± SD (range) total | 89.1 ± 37.3 (17–162) | 82.3 ± 12.8 (61–97) | ||||
| Subscale 1 | 21.6 ± 9.9 (3–38) | 2.27 ± 0.9 (1–4) | ||||
| Subscale 2 | 9.3 ± 5.9 (2–20) | 1.0 ± 1.1 (0–3) | ||||
| Subscale 3 | 11.7 ± 6.4 (2–25) | 26.2 ± 5.2 (17–34) | ||||
| Subscale 4 | 11.4 ± 5.0 (0–20) | 19.5 ± 3.4 (14–22) | ||||
| Subscale 5 | 11.4 ± 3.7 (6–22) | 27.5 ± 5.8 (19–37) | ||||
| Subscale 6 | 23.1 ± 11.8 (2–44) | 11.2 ± 3.7 (6–16) | ||||
| Biomarkers | mean ± SD | p 1 | mean ± SD | p 1 | p 2 | mean ± SD |
| NfL pg/mL | 40.11 ± 52.7 | 4.3 × 10−9 | 23.8 ± 12.8 | 8.8 × 10−5 | 7.4 × 10−1 | 7.8 ± 5.1 |
| GFAP pg/mL | 175.64 ± 78.6 | 5.8 × 10−8 | 96.7 ± 24.5 * | 9.2 × 10−1 | 8.4 × 10−3 | 87.6 ± 33.2 |
| Tau pg/mL | 3.26 ± 1.14 | 2.9 × 10−2 | 5.4 ± 5.2 | 6.6 × 10−3 | 7.4 × 10−1 | 3.0 ± 3.4 |
| UCH-L1 pg/mL | 42.97 ± 57.3 | 1.8 × 10−6 | 25.1 ± 39.8 | 5.5 × 10−1 | 5.3 × 10−5 | 11.9 ± 16.4 |
| MMP-9 ng/mL | 874.10 ± 277.7 | 1.5 × 10−5 | 795.5 ± 487.3 | 1.7 × 10−1 | 0.4 | 517.5 ± 299.5 |
| ICAM-1 ng/mL | 260.20 ± 90.5 | 6.3 × 10−3 | 265.2 ± 164.7 | 8.7 × 10−2 | 5.8 × 10−1 | 192.8 ± 81.8 |
| E-selectin ng/mL | 56.78 ± 22.87 | 7.7 × 10−6 | 36.1 ± 10.9 | 2.4 × 10−2 | 9.4 × 10−3 | 28.3 ± 24.9 |
| P-selectin ng/mL | 553.70 ± 465.1 | 1.8 × 10−7 | 420.8 ± 454.7 | 0.1 × 10−1 | 2.8 × 10−1 | 100.8 ± 124.7 |
| S100B ng/mL | 4.93 ± 1.88 | 2.3 × 10−10 | 0.7 ± 0.5 | 2.9 × 10−1 | 4.3 × 10−9 | 0.5 ± 0.4 |
| BDNF ng/mL | 56.53 ± 15.6 | 0.8 | 41.99 ± 12.1 | 7.2 × 10−2 | 6.9 × 10−3 | 62.3 ± 31.38 |
| α-synuclein pg/mL | 1299.10 ± 518.7 | 2.3 × 10−10 | 104.8 ± 79.2 | 5.3 × 10−4 | 2.9 × 10−7 | 40.7 ± 47.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skowrońska, M.; Cudna, A.; Pakuła, B.; Lebiedzińska-Arciszewska, M.; Janikiewicz, J.; Dobosz, A.M.; Jakubek-Olszewska, P.; Wydrych, A.; Cwyl, M.; Dobrzyń, A.; et al. Distinct Neurodegenerative Pathways in Two NBIA Subtypes: Inflammatory Activation in C19orf12 but Not in PANK2 Mutation Carriers. Cells 2025, 14, 1801. https://doi.org/10.3390/cells14221801
Skowrońska M, Cudna A, Pakuła B, Lebiedzińska-Arciszewska M, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Wydrych A, Cwyl M, Dobrzyń A, et al. Distinct Neurodegenerative Pathways in Two NBIA Subtypes: Inflammatory Activation in C19orf12 but Not in PANK2 Mutation Carriers. Cells. 2025; 14(22):1801. https://doi.org/10.3390/cells14221801
Chicago/Turabian StyleSkowrońska, Marta, Agnieszka Cudna, Barbara Pakuła, Magdalena Lebiedzińska-Arciszewska, Justyna Janikiewicz, Aneta M. Dobosz, Patrycja Jakubek-Olszewska, Agata Wydrych, Maciej Cwyl, Agnieszka Dobrzyń, and et al. 2025. "Distinct Neurodegenerative Pathways in Two NBIA Subtypes: Inflammatory Activation in C19orf12 but Not in PANK2 Mutation Carriers" Cells 14, no. 22: 1801. https://doi.org/10.3390/cells14221801
APA StyleSkowrońska, M., Cudna, A., Pakuła, B., Lebiedzińska-Arciszewska, M., Janikiewicz, J., Dobosz, A. M., Jakubek-Olszewska, P., Wydrych, A., Cwyl, M., Dobrzyń, A., Więckowski, M. R., & Kurkowska-Jastrzębska, I. (2025). Distinct Neurodegenerative Pathways in Two NBIA Subtypes: Inflammatory Activation in C19orf12 but Not in PANK2 Mutation Carriers. Cells, 14(22), 1801. https://doi.org/10.3390/cells14221801

