Spatial Distribution and Temporal Dynamics of Neomycin-Induced Neuromast Cell Damage and Regeneration in the Mexican tetra (Astyanax mexicanus)
Highlights
- Neuromast cells in the Astyanax mexicanus lateral line system are sensitive to neomycin (Aminoglycosides).
- Neuromast cells disappeared within 24 h of neomycin treatment and returned to baseline levels by 72 h post-exposure.
- Gene expression levels of fgf1 and axin2 showed a slight increase during neuromast cell regeneration following neomycin exposure, whereas sox2 expression remained relatively unchanged.
Abstract
1. Introduction
2. Materials and Methods
2.1. Mexican tetra Fish Rearing and Breeding
2.2. Neomycin Treatment
2.3. DASPEI (2-[4-(dimethylamino)styryl]-N-ethylpyridinium iodide) Staining and Imaging
2.4. Primer Design
2.5. RNA Isolation/QPCR Analysis
2.6. Phylogenetic Analysis
2.7. Statistical Analysis
3. Results
3.1. Phylogenetic Analysis Data
3.2. Effect of Neomycin Exposure on Neuromast Cells Within Infraorbital Bone3
3.3. Effect of Neomycin Exposure on Trunk Neuromast Cells
3.4. Gene Expression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Windsor, S.P.; McHenry, M.J. The Influence of Viscous Hydrodynamics on the Fish Lateral-Line System. Integr. Comp. Biol. 2009, 49, 691–701. [Google Scholar] [CrossRef]
- Webb, J.F.; Shirey, J.E. Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2003, 228, 370–385. [Google Scholar] [CrossRef]
- Webb, J. Hearing and Lateral Line|Lateral Line Structure. In Encyclopedia of Fish Physiology; Farrell, A.P., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 336–346. ISBN 978-0-08-092323-9. Available online: https://www.sciencedirect.com/science/article/pii/B9780123745538000101 (accessed on 29 July 2025).
- Rodríguez-Morales, R. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of Astyanax mexicanus. Ecol Evol. 2024, 14, e11286. [Google Scholar] [CrossRef]
- Thomas, E.D.; Cruz, I.A.; Hailey, D.W.; Raible, D.W. There and Back Again: Development and Regeneration of the Zebrafish Lateral Line System. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 1–16. [Google Scholar] [CrossRef]
- Lahlou, H.; Zhu, H.; Zhou, W.; Edge, A.S.B. Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function. J. Clin. Investig. 2024, 134, 181201. [Google Scholar] [CrossRef]
- Ali, S.; Isabel, K.; Bea, F.R.; Elizabeth, M.A.; Julian, S.S.; Colin, Q.L.; Nicolas, D.; Lazaro, C. Neural stem cells induce the formation of their physical niche during organogenesis. eLife 2017, 6, e29173. [Google Scholar] [CrossRef]
- Jeffery, W.R. Astyanax surface and cave fish morphs. EvoDevo 2020, 11, 14. [Google Scholar] [CrossRef]
- Atukorallaya, D.; Bhatia, V.; Gonzales, J. Divergent tooth development mechanisms of Mexican tetra fish (Astyanax mexicanus) of Pachón cave origin. Cells Dev. 2023, 173, 203823. [Google Scholar] [CrossRef]
- Atukorala, A.D.S.; Bhatia, V.; Ratnayake, R. Craniofacial skeleton of Mexican tetra (Astyanax mexicanus): As a bone disease model. Dev. Dyn. 2019, 248, 153–161. [Google Scholar] [CrossRef]
- Atukorala, A.D.S.; Franz-Odendaal, T.A. Chapter 11—Evolution and Development of the Cavefish Oral Jaws: Adaptations for Feeding. In Biology and Evolution of the Mexican Cavefish; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 209–225. [Google Scholar]
- Yoshizawa, M.; Jeffery, W.R.; van Netten, S.M.; McHenry, M.J. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus). J. Exp. Biol. 2014, 217, 886–895. [Google Scholar] [CrossRef]
- Fan, C.; Zou, S.; Wang, J.; Zhang, B.; Song, J. Neomycin damage and regeneration of hair cells in both mechanoreceptor and electroreceptor lateral line organs of the larval Siberian sturgeon (Acipenser baerii). J. Comp. Neurol. 2016, 524, 1443–1456. [Google Scholar] [CrossRef]
- Montalbano, G.; Abbate, F.; Levanti, M.B.; Germanà, G.P.; Laurà, R.; Ciriaco, E.; Vega, J.A.; Germanà, A. Topographical and drug specific sensitivity of hair cells of the zebrafish larvae to aminoglycoside-induced toxicity. Ann. Anat. 2014, 196, 236–240. [Google Scholar] [CrossRef]
- d’Alençon, C.A.; Peña, O.A.; Wittmann, C.; Gallardo, V.E.; Jones, R.A.; Loosli, F.; Liebel, U.; Grabher, C.; Allende, M.L. A high-throughput chemically induced inflammation assay in zebrafish. BMC Biol. 2010, 8, 151. [Google Scholar] [CrossRef]
- Lush, M.E.; Piotrowski, T. Sensory hair cell regeneration in the zebrafish lateral line. Dev. Dyn. Off Publ. Am. Assoc. Anat. 2014, 243, 1187–1202. [Google Scholar] [CrossRef]
- Hernández, P.P.; Moreno, V.; Olivari, F.A.; Allende, M.L. Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear. Res. 2006, 213, 1–10. [Google Scholar] [CrossRef]
- Froehlicher, M.; Liedtke, A.; Groh, K.J.; Neuhauss, S.C.F.; Segner, H.; Eggen, R.I.L. Zebrafish (Danio rerio) neuromast: Promising biological endpoint linking developmental and toxicological studies. Aquat. Toxicol. 2009, 95, 307–319. [Google Scholar] [CrossRef]
- Murakami, S.L.; Cunningham, L.L.; Werner, L.A.; Bauer, E.; Pujol, R.; Raible, D.W.; Rubel, E.W. Developmental differences in susceptibility to neomycin-induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio). Hear. Res. 2003, 186, 47–56. [Google Scholar] [CrossRef]
- Ou, H.; Simon, J.A.; Rubel, E.W.; Raible, D.W. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hear. Res. 2012, 288, 58–66. [Google Scholar] [CrossRef]
- König, D.; Dagenais, P.; Senk, A.; Djonov, V.; Aegerter, C.M.; Jaźwińska, A. Distribution and Restoration of Serotonin-Immunoreactive Paraneuronal Cells During Caudal Fin Regeneration in Zebrafish. Front. Mol. Neurosci. 2019, 12, 227. [Google Scholar] [CrossRef]
- Esterberg, R.; Linbo, T.; Pickett, S.B.; Wu, P.; Ou, H.C.; Rubel, E.W.; Raible, D.W. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J. Clin. Investig. 2016, 126, 3556–3567. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Liu, D.; Duan, X.; Zhang, Q.; Wang, D.; Zheng, Q.; Bai, X.; Lu, Z. Naringin attenuates cisplatin- and aminoglycoside-induced hair cell injury in the zebrafish lateral line via multiple pathways. J. Cell. Mol. Med. 2021, 25, 975–989. [Google Scholar] [CrossRef]
- Harris, J.A.; Cheng, A.G.; Cunningham, L.L.; MacDonald, G.; Raible, D.W.; Rubel, E.W. Neomycin-Induced Hair Cell Death and Rapid Regeneration in the Lateral Line of Zebrafish (Danio rerio). J. Assoc. Res. Otolaryngol. 2003, 4, 219–234. [Google Scholar] [CrossRef]
- Hernández, P.P.; Olivari, F.A.; Sarrazin, A.F.; Sandoval, P.C.; Allende, M.L. Regeneration in zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker sox2 and proliferation-dependent and-independent mechanisms of hair cell renewal. Dev. Neurobiol. 2007, 67, 637–654. [Google Scholar] [CrossRef]
- Ma, E.Y.; Rubel, E.W.; Raible, D.W. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 2261–2273. [Google Scholar] [CrossRef]
- Hardy, K.; Amariutei, A.E.; De Faveri, F.; Hendry, A.; Marcotti, W.; Ceriani, F. Functional development and regeneration of hair cells in the zebrafish lateral line. J. Physiol. 2021, 599, 3913–3936. [Google Scholar] [CrossRef]
- Burns, J.C.; Corwin, J.T. Responses to Cell Loss Become Restricted as the Supporting Cells in Mammalian Vestibular Organs Grow Thick Junctional Actin Bands That Develop High Stability. J. Neurosci. 2014, 34, 1998–2011. [Google Scholar] [CrossRef]
- Lush, M.E.; Diaz, D.C.; Koenecke, N.; Baek, S.; Boldt, H.; St Peter, M.K.; Gaitan-Escudero, T.; Romero-Carvajal, A.; Busch-Nentwich, E.M.; Perera, A.G.; et al. scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. eLife 2019, 8, e44431. [Google Scholar] [CrossRef]
- Kelly, M.C.; Chang, Q.; Pan, A.; Lin, X.; Chen, P. Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 6699–6710. [Google Scholar] [CrossRef]
- Franz-Odendaal, T.A.; Hall, B.K. Modularity and sense organs in the blind cavefish, Astyanax mexicanus. Evol. Dev. 2006, 8, 94–100. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Gorički, Š.; Soares, D.; Jeffery, W.R. Evolution of a Behavioral Shift Mediated by Superficial Neuromasts Helps Cavefish Find Food in Darkness. Curr. Biol. 2010, 20, 1631–1636. [Google Scholar] [CrossRef]
- Jiang, L.; Romero-Carvajal, A.; Haug, J.S.; Seidel, C.W.; Piotrowski, T. Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proc. Natl. Acad. Sci. USA 2014, 111, E1383–E1392. [Google Scholar] [CrossRef]
- He, Y.; Cai, C.; Sun, S.; Wang, X.; Li, W.; Li, H. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae. Oncotarget 2016, 7, 51640–51650. [Google Scholar] [CrossRef]
- Lee, S.G.; Huang, M.; Obholzer, N.D.; Sun, S.; Li, W.; Petrillo, M.; Dai, P.; Zhou, Y.; Cotanche, D.A.; Megason, S.G.; et al. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration. PLoS ONE 2016, 11, e0157768. [Google Scholar] [CrossRef]
- Tang, D.; He, Y.; Li, W.; Li, H. Wnt/β-catenin interacts with the FGF pathway to promote proliferation and regenerative cell proliferation in the zebrafish lateral line neuromast. Exp. Mol. Med. 2019, 51, 1–16. [Google Scholar] [CrossRef]
- Millimaki, B.B.; Sweet, E.M.; Riley, B.B. Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear. Dev. Biol. 2010, 338, 262–269. [Google Scholar] [CrossRef]
- Thomas, E.D.; Raible, D.W. Distinct progenitor populations mediate regeneration in the zebrafish lateral line. eLife 2019, 8, e43736. [Google Scholar] [CrossRef]






| fgf1a (XM_007258578.4) | Forward primer | GGCACGAGACCGGACGTTTC |
| Reverse primer | GCCGTTCTTTGTCTGCCCAC | |
| axin2 (XR_007427266.1) | Forward primer | GCGCGGATCGATGGTAAATA |
| Reverse primer | CCCTGTTCATGGCTCGGG | |
| sox2 (NM_001319965.1) | Forward primer | TCATCGGCTCTTCGGAGGTTT |
| Reverse primer | ACATCCTCCCATGCACCTGTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goel, G.; Sanghai, N.; Tranmer, G.K.; Atukorallaya, D. Spatial Distribution and Temporal Dynamics of Neomycin-Induced Neuromast Cell Damage and Regeneration in the Mexican tetra (Astyanax mexicanus). Cells 2025, 14, 1680. https://doi.org/10.3390/cells14211680
Goel G, Sanghai N, Tranmer GK, Atukorallaya D. Spatial Distribution and Temporal Dynamics of Neomycin-Induced Neuromast Cell Damage and Regeneration in the Mexican tetra (Astyanax mexicanus). Cells. 2025; 14(21):1680. https://doi.org/10.3390/cells14211680
Chicago/Turabian StyleGoel, Gandhrav, Nitesh Sanghai, Geoffrey K. Tranmer, and Devi Atukorallaya. 2025. "Spatial Distribution and Temporal Dynamics of Neomycin-Induced Neuromast Cell Damage and Regeneration in the Mexican tetra (Astyanax mexicanus)" Cells 14, no. 21: 1680. https://doi.org/10.3390/cells14211680
APA StyleGoel, G., Sanghai, N., Tranmer, G. K., & Atukorallaya, D. (2025). Spatial Distribution and Temporal Dynamics of Neomycin-Induced Neuromast Cell Damage and Regeneration in the Mexican tetra (Astyanax mexicanus). Cells, 14(21), 1680. https://doi.org/10.3390/cells14211680

