Modelling Peroxisomal Disorders in Zebrafish
Abstract
:1. Introduction
2. Visualisation of Peroxisomes in Zebrafish
3. Peroxisomal Protein Inventory and Metabolic Pathways in Zebrafish
4. Zebrafish Models of Peroxisomal Disorders
4.1. Peroxisome Biogenesis Disorders/Zellweger Spectrum Disorders
4.1.1. pex2 Mutant Zebrafish
Human Disorder | Targeted Gene | Method | Studied Tissues | Peroxisomal Phenotypes | Phenotypes Related to Clinical Features | Ref. |
---|---|---|---|---|---|---|
ZSD | pex2 | TALENs- mediated knockout | Liver Brain Eyes Muscles | ↓ Peroxisomal matrix protein import ↓ Catalase and glutathione peroxidase activities ↑ VLCFAs ↓ Ether phospholipids | △ Motor activity Hypotonia ↑ Hepatic lipid △ Neuronal and muscle function △ Gametogenesis ↓ Crystallin genes ↓ Survival | [63] |
ZSD | pex5 | CRISPR/Cas9-mediated knockout | Liver Nervous system Whole larvae | ↓ Peroxisomal matrix protein import ↓ Peroxisome abundance | △ Motor activity Demyelination ↑ Hepatic lipid Edema Deflated swim bladder Shrunken liver ↓ Survival Expedited death under fasting conditions | [69] |
ZSD | pex13 | CRISPR/Cas9-mediated knockout | Liver Whole larvae | ↓ Peroxisomal matrix protein import ↓ Peroxisome abundance ↑ Ubiquitinated PEX5 ↑ Peroxisome-dependent ROS ↑ Pexophagy | △ Motor activity ↑ Hepatic lipid accumulation △ Neuronal function Liver steatosis Laval mortality | [38] |
pex13 | Morpholino- mediated knockout (mosaic) | Liver Pronephric duct Yolk sac | Partial elimination of peroxisomes | Not assessed | [30] | |
ALD | abcd1 | TALENs- mediated knockout | CNS Adrenal glands Whole embryo | ↑ VLCFAs ↑ Cholesterol | △ Motor activity Hypomyelination △ Oligodendrocyte patterning △ CNS development ↑ Apoptosis ↓ Survival | [70] |
Mitchell Syndrome | acox1 | Transient overexpression (N237S) | Brain Spinal cord Whole embryo | ↓ Peroxisome density ↑ Oxidative stress | △ Motor activity Activation of ISR ↓ Survival | [71] |
D-BPD | dbp | Morpholino- mediated knockdown | Whole embryo Liver Pancreas | ↓ beta-oxidation ↓ Ether phospholipids synthesis ↓ pex5 expression | △ Yolk lipid consumption Growth retardation Morphological malformation △ Neuronal, liver, pancreas, cartilage, blood, blood vessels, digestive organ development Abnormal vascular patterning Embryonic lethality | [55] |
Osteoarthritis | fis1 | Morpholino- mediated knockdown | Whole embryo | ↓ Peroxisome abundance ↓ Catalase and glutathione peroxidase activities ↓ beta-oxidation gene expression | ↑ Apoptosis ↑ Lipid ↓ Survival | [37] |
Unspecified | vwa8 | Morpholino- mediated knockdown | Whole embryo | Not assessed | △ Motor activity Developmental delays and defects Light sensitivity Facial dysmorphism ↓ Survival | [72] |
Autosomal-dominant retinitis pigmentosa | vwa8 | Morpholino- mediated knockdown | Retina Photoreceptor layer | Not assessed | △ Visual function Retinal pigment deposition Thinning of the retinal photoreceptor layer | [73] |
4.1.2. pex3 Mutant Zebrafish
4.1.3. pex5 Mutant Zebrafish
4.1.4. pex13 Mutant Zebrafish
4.2. Peroxisomal Single Enzyme Deficiency
Adrenoleukodystrophy (ALD) Model Zebrafish
4.3. Peroxisomal Beta-Oxidation Deficiency
4.3.1. ACOX1 Mutant Disease Model Zebrafish
4.3.2. D-Bifunctional Protein (Dbp) Deficiency Model Zebrafish
4.4. Dually Targeted Peroxisomal/Mitochondrial Protein Deficiency
4.4.1. Fission 1 (FIS1) Deficiency Model Zebrafish
4.4.2. VWA8 Deficiency Model Zebrafish
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhodin, J. Correlation of Ultrastructural Organization and Function in Normal Experimentally Changed Convoluted Tubule Cells of the Mouse Kidney; Aktiebolaget Godvil: Stockholm, Sweden, 1954. [Google Scholar]
- De Duve, C.; Baudhuin, P. Peroxisomes (Microbodies and Related Particles). Physiol. Rev. 1966, 46, 323–357. [Google Scholar] [CrossRef] [PubMed]
- Fransen, M.; Nordgren, M.; Wang, B.; Apanasets, O.; Van Veldhoven, P.P. Aging, Age-Related Diseases and Peroxisomes. Subcell. Biochem. 2013, 69, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Islinger, M.; Voelkl, A.; Fahimi, H.D.; Schrader, M. The Peroxisome: An Update on Mysteries 2.0. Histochem. Cell Biol. 2018, 150, 443–471. [Google Scholar] [CrossRef] [PubMed]
- Pratama, A.M.; Sharma, M.; Naidu, S.; Bömmel, H.; Prabhuswamimath, S.C.; Madhusudhan, T.; Wihadmadyatami, H.; Bachhuka, A.; Karnati, S. Peroxisomes and PPARs: Emerging Role as Master Regulators of Cancer Metabolism. Mol. Metab. 2024, 90, 102044. [Google Scholar] [CrossRef] [PubMed]
- Fransen, M.; Lismont, C. Peroxisomal Hydrogen Peroxide Signaling: A New Chapter in Intracellular Communication Research. Curr. Opin. Chem. Biol. 2024, 78, 102426. [Google Scholar] [CrossRef]
- Lismont, C.; Revenco, I.; Fransen, M. Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int. J. Mol. Sci. 2019, 20, 3673. [Google Scholar] [CrossRef]
- Dixit, E.; Boulant, S.; Zhang, Y.; Lee, A.S.Y.; Odendall, C.; Shum, B.; Hacohen, N.; Chen, Z.J.; Whelan, S.P.; Fransen, M.; et al. Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity. Cell 2010, 141, 668–681. [Google Scholar] [CrossRef]
- Weinhofer, I.; Buda, A.; Kunze, M.; Palfi, Z.; Traunfellner, M.; Hesse, S.; Villoria-Gonzalez, A.; Hofmann, J.; Hametner, S.; Regelsberger, G.; et al. Peroxisomal Very Long-Chain Fatty Acid Transport Is Targeted by Herpesviruses and the Antiviral Host Response. Commun. Biol. 2022, 5, 944. [Google Scholar] [CrossRef]
- Pellegrino, E.; Aylan, B.; Bussi, C.; Fearns, A.; Bernard, E.M.; Athanasiadi, N.; Santucci, P.; Botella, L.; Gutierrez, M.G. Peroxisomal ROS Control Cytosolic Mycobacterium Tuberculosis Replication in Human Macrophages. J. Cell Biol. 2023, 222, e202303066. [Google Scholar] [CrossRef]
- Di Cara, F.; Savary, S.; Kovacs, W.J.; Kim, P.; Rachubinski, R.A. The Peroxisome: An up-and-Coming Organelle in Immunometabolism. Trends Cell Biol. 2023, 33, 70–86. [Google Scholar] [CrossRef]
- Wanders, R.J.A.; Waterham, H.R. Biochemistry of Mammalian Peroxisomes Revisited. Annu. Rev. Biochem. 2006, 75, 295–332. [Google Scholar] [CrossRef] [PubMed]
- Wanders, R.J.A.; Baes, M.; Ribeiro, D.; Ferdinandusse, S.; Waterham, H.R. The Physiological Functions of Human Peroxisomes. Physiol. Rev. 2023, 103, 957–1024. [Google Scholar] [CrossRef] [PubMed]
- Schrader, M.; Costello, J.; Godinho, L.F.; Islinger, M. Peroxisome-Mitochondria Interplay and Disease. J. Inherit. Metab. Dis. 2015, 38, 681–702. [Google Scholar] [CrossRef] [PubMed]
- Wanders, R.J.A.; Vaz, F.M.; Waterham, H.R.; Ferdinandusse, S. Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders. Adv. Exp. Med. Biol. 2020, 1299, 55–70. [Google Scholar] [CrossRef]
- Dorninger, F.; Werner, E.R.; Berger, J.; Watschinger, K. Regulation of Plasmalogen Metabolism and Traffic in Mammals: The Fog Begins to Lift. Front. Cell Dev. Biol. 2022, 10, 946393. [Google Scholar] [CrossRef]
- Silva, B.S.C.; DiGiovanni, L.; Kumar, R.; Carmichael, R.E.; Kim, P.K.; Schrader, M. Maintaining Social Contacts: The Physiological Relevance of Organelle Interactions. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118800. [Google Scholar] [CrossRef]
- Costello, J.L.; Castro, I.G.; Hacker, C.; Schrader, T.A.; Metz, J.; Zeuschner, D.; Azadi, A.S.; Godinho, L.F.; Costina, V.; Findeisen, P.; et al. ACBD5 and VAPB Mediate Membrane Associations between Peroxisomes and the ER. J. Cell Biol. 2017, 216, 331–342. [Google Scholar] [CrossRef]
- Kors, S.; Hacker, C.; Bolton, C.; Maier, R.; Reimann, L.; Kitchener, E.J.A.; Warscheid, B.; Costello, J.L.; Schrader, M. Regulating Peroxisome–ER Contacts via the ACBD5-VAPB Tether by FFAT Motif Phosphorylation and GSK3β. J. Cell Biol. 2022, 221, e202003143. [Google Scholar] [CrossRef]
- Kumar, R.; Islinger, M.; Worthy, H.; Carmichael, R.; Schrader, M. The Peroxisome: An Update on Mysteries 3.0. Histochem. Cell Biol. 2024, 161, 99–132. [Google Scholar] [CrossRef]
- Kamoshita, M.; Kumar, R.; Anteghini, M.; Kunze, M.; Islinger, M.; Martins Dos Santos, V.; Schrader, M. Insights into the Peroxisomal Protein Inventory of Zebrafish. Front. Physiol. 2022, 13, 822509. [Google Scholar] [CrossRef]
- Steinberg, S.J.; Raymond, G.V.; Braverman, N.E.; Moser, A.B. Zellweger Spectrum Disorder. In GeneReviews®; University of Washington: Seattle, WA, USA, 2020. [Google Scholar]
- Engelen, M. Peroxisomal Leukodystrophy. Handb. Clin. Neurol. 2024, 204, 139–145. [Google Scholar] [CrossRef]
- Kocherlakota, S.; Swinkels, D.; Van Veldhoven, P.P.; Baes, M. Mouse Models to Study Peroxisomal Functions and Disorders: Overview, Caveats, and Recommendations. Methods Mol. Biol. 2023, 2643, 469–500. [Google Scholar] [CrossRef] [PubMed]
- Hölttä-Vuori, M.; Salo, V.T.V.; Nyberg, L.; Brackmann, C.; Enejder, A.; Panula, P.; Ikonen, E. Zebrafish: Gaining Popularity in Lipid Research. Biochem. J. 2010, 429, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Turchini, G.M.; Francis, D.S.; Du, Z.-Y.; Olsen, R.E.; Ringø, E.; Tocher, D.R. The Lipids. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 2022; pp. 303–467. [Google Scholar]
- Dawes, M.L.; Soeller, C.; Scholpp, S. Studying Molecular Interactions in the Intact Organism: Fluorescence Correlation Spectroscopy in the Living Zebrafish Embryo. Histochem. Cell Biol. 2020, 154, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Raas, Q.; van de Beek, M.-C.; Forss-Petter, S.; Dijkstra, I.M.; Deschiffart, A.; Freshner, B.C.; Stevenson, T.J.; Jaspers, Y.R.; Nagtzaam, L.; Wanders, R.J.; et al. Metabolic Rerouting via SCD1 Induction Impacts X-Linked Adrenoleukodystrophy. J. Clin. Investig. 2021, 131, e142500. [Google Scholar] [CrossRef] [PubMed]
- Braunbeck, T.; Storch, V.; Bresch, H. Species-Specific Reaction of Liver Ultrastructure in Zebrafish (Brachydanio Rerio) and Trout (Salmo Gairdneri) after Prolonged Exposure to 4-Chloroaniline. Arch. Environ. Contam. Toxicol. 1990, 19, 405–418. [Google Scholar] [CrossRef]
- Krysko, O.; Stevens, M.; Langenberg, T.; Fransen, M.; Espeel, M.; Baes, M. Peroxisomes in Zebrafish: Distribution Pattern and Knockdown Studies. Histochem. Cell Biol. 2010, 134, 39–51. [Google Scholar] [CrossRef]
- Dariush Fahimi, H. Peroxisomes: 40 Years of Histochemical Staining, Personal Reminiscences. Histochem. Cell Biol. 2009, 131, 437–440. [Google Scholar] [CrossRef]
- Venkatachalam, A.B.; Lall, S.P.; Denovan-Wright, E.M.; Wright, J.M. Tissue-Specific Differential Induction of Duplicated Fatty Acid-Binding Protein Genes by the Peroxisome Proliferator, Clofibrate, in Zebrafish (Danio Rerio). BMC Evol. Biol. 2012, 12, 112. [Google Scholar] [CrossRef]
- Ortiz-Zarragoitia, M.; Trant, J.M.; Cajaravillet, M.P. Effects of Dibutylphthalate and Ethynylestradiol on Liver Peroxisomes, Reproduction, and Development of Zebrafish (Danio Rerio). Environ. Toxicol. Chem. 2006, 25, 2394–2404. [Google Scholar] [CrossRef]
- Olivares-Rubio, H.F.; Vega-López, A. Fatty Acid Metabolism in Fish Species as a Biomarker for Environmental Monitoring. Environ. Pollut. 2016, 218, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Cancio, I.; Cajaraville, M. Cell Biology of Peroxisomes and Their Characteristics in Aquatic Organisms. Int. Rev. Cytol. 2000, 199, 201–293. [Google Scholar] [CrossRef] [PubMed]
- Den Broeder, M.J.; Kopylova, V.A.; Kamminga, L.M.; Legler, J. Zebrafish as a Model to Study the Role of Peroxisome Proliferating-Activated Receptors in Adipogenesis and Obesity. PPAR Res. 2015, 2015, 358029. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Song, J.; Kang, Y.; Park, S.; Kim, Y.-I.; Kwak, S.; Lim, D.; Park, R.; Chun, C.-H.; Choe, S.-K.; et al. Fis1 Depletion in Osteoarthritis Impairs Chondrocyte Survival and Peroxisomal and Lysosomal Function. J. Mol. Med. 2016, 94, 1373–1384. [Google Scholar] [CrossRef]
- Demers, N.D.; Riccio, V.; Jo, D.S.; Bhandari, S.; Law, K.B.; Liao, W.; Kim, C.; McQuibban, G.A.; Choe, S.-K.; Cho, D.-H.; et al. PEX13 Prevents Pexophagy by Regulating Ubiquitinated PEX5 and Peroxisomal ROS. Autophagy 2023, 19, 1781–1802. [Google Scholar] [CrossRef]
- Pap, E.H.; Dansen, T.B.; Wirtz, K.W. Peptide-Based Targeting of Fluorophores to Peroxisomes in Living Cells. Trends Cell Biol. 2001, 11, 10–12. [Google Scholar] [CrossRef]
- Korotkova, D.; Borisyuk, A.; Guihur, A.; Bardyn, M.; Kuttler, F.; Reymond, L.; Schuhmacher, M.; Amen, T. Fluorescent Fatty Acid Conjugates for Live Cell Imaging of Peroxisomes. Nat. Commun. 2024, 15, 4314. [Google Scholar] [CrossRef]
- Amaral, I.; Antunes, S.C.; Rebelo, D.; Carvalho, A.P.; Rodrigues, S. Biopesticide Spinosad: Unraveling Ecotoxicological Effects on Zebrafish, Danio Rerio. Environ. Toxicol. Pharmacol. 2024, 108, 104458. [Google Scholar] [CrossRef]
- Hagey, L.R.; Møller, P.R.; Hofmann, A.F.; Krasowski, M.D. Diversity of Bile Salts in Fish and Amphibians: Evolution of a Complex Biochemical Pathway. Physiol. Biochem. Zool. 2010, 83, 308–321. [Google Scholar] [CrossRef]
- Islinger, M.; Cardoso, M.J.R.; Schrader, M. Be Different—The Diversity of Peroxisomes in the Animal Kingdom. Biochim. Biophys. Acta 2010, 1803, 881–897. [Google Scholar] [CrossRef]
- Hayashi, S.; Fujiwara, S.; Noguchi, T. Degradation of Uric Acid in Fish Liver Peroxisomes. Intraperoxisomal Localization of Hepatic Allantoicase and Purification of Its Peroxisomal Membrane-Bound Form. J. Biol. Chem. 1989, 264, 3211–3215. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Fujiwara, S.; Noguchi, T. Evolution of Urate-Degrading Enzymes in Animal Peroxisomes. Cell Biochem. Biophys. 2000, 32, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R. Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Yang, G.; Sun, S.; He, J.; Wang, Y.; Ren, T.; He, H.; Gao, J. Enoyl-CoA Hydratase/3-Hydroxyacyl CoA Dehydrogenase Is Essential for the Production of DHA in Zebrafish. J. Lipid Res. 2023, 64, 100326. [Google Scholar] [CrossRef]
- Ferdinandusse, S.; Denis, S.; Van Roermund, C.W.T.; Wanders, R.J.A.; Dacremont, G. Identification of the Peroxisomal Beta-Oxidation Enzymes Involved in the Degradation of Long-Chain Dicarboxylic Acids. J. Lipid Res. 2004, 45, 1104–1111. [Google Scholar] [CrossRef]
- Houten, S.M.; Denis, S.; Argmann, C.A.; Jia, Y.; Ferdinandusse, S.; Reddy, J.K.; Wanders, R.J.A. Peroxisomal L-Bifunctional Enzyme (Ehhadh) Is Essential for the Production of Medium-Chain Dicarboxylic Acids. J. Lipid Res. 2012, 53, 1296–1303. [Google Scholar] [CrossRef]
- Ranea-Robles, P.; Violante, S.; Argmann, C.; Dodatko, T.; Bhattacharya, D.; Chen, H.; Yu, C.; Friedman, S.L.; Puchowicz, M.; Houten, S.M. Murine Deficiency of Peroxisomal L-Bifunctional Protein (EHHADH) Causes Medium-Chain 3-Hydroxydicarboxylic Aciduria and Perturbs Hepatic Cholesterol Homeostasis. Cell. Mol. Life Sci. 2021, 78, 5631–5646. [Google Scholar] [CrossRef]
- Klootwijk, E.D.; Reichold, M.; Helip-Wooley, A.; Tolaymat, A.; Broeker, C.; Robinette, S.L.; Reinders, J.; Peindl, D.; Renner, K.; Eberhart, K.; et al. Mistargeting of Peroxisomal EHHADH and Inherited Renal Fanconi’s Syndrome. N. Engl. J. Med. 2014, 370, 129–138. [Google Scholar] [CrossRef]
- Ranea-Robles, P.; Portman, K.; Bender, A.S.; Lee, K.; He, J.; Mulholland, D.; Argmann, C.; Houten, S. Peroxisomal L-Bifunctional Protein Deficiency Causes Male-Specific Kidney Hypertrophy and Proximal Tubular Injury in Mice. Kidney360 2021, 2, 1441–1454. [Google Scholar] [CrossRef]
- Baes, M.; Huyghe, S.; Carmeliet, P.; Declercq, P.E.; Collen, D.; Mannaerts, G.P.; Van Veldhoven, P.P. Inactivation of the Peroxisomal Multifunctional Protein-2 in Mice Impedes the Degradation of Not Only 2-Methyl-Branched Fatty Acids and Bile Acid Intermediates but Also of Very Long Chain Fatty Acids. J. Biol. Chem. 2000, 275, 16329–16336. [Google Scholar] [CrossRef]
- Ferdinandusse, S.; Denis, S.; Overmars, H.; Van Eeckhoudt, L.; Van Veldhoven, P.P.; Duran, M.; Wanders, R.J.A.; Baes, M. Developmental Changes of Bile Acid Composition and Conjugation in L- and D-Bifunctional Protein Single and Double Knockout Mice. J. Biol. Chem. 2005, 280, 18658–18666. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-I.; Bhandari, S.; Lee, J.N.; Yoo, K.-W.; Kim, S.-J.; Oh, G.-S.; Kim, H.-J.; Cho, M.; Kwak, J.-Y.; So, H.-S.; et al. Developmental Roles of D-Bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction. Mol. Cells 2014, 37, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Klouwer, F.C.C.; Berendse, K.; Ferdinandusse, S.; Wanders, R.J.A.; Engelen, M.; Poll-The, B.T. Zellweger Spectrum Disorders: Clinical Overview and Management Approach. Orphanet J. Rare Dis. 2015, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Platta, H.W.; El Magraoui, F.; Bäumer, B.E.; Schlee, D.; Girzalsky, W.; Erdmann, R. Pex2 and Pex12 Function as Protein-Ubiquitin Ligases in Peroxisomal Protein Import. Mol. Cell. Biol. 2009, 29, 5505–5516. [Google Scholar] [CrossRef]
- Fujiki, Y.; Abe, Y.; Imoto, Y.; Tanaka, A.J.; Okumoto, K.; Honsho, M.; Tamura, S.; Miyata, N.; Yamashita, T.; Chung, W.K.; et al. Recent Insights into Peroxisome Biogenesis and Associated Diseases. J. Cell Sci. 2020, 133, jcs236943. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Imanaka, T. Peroxisome Biogenesis. In Peroxisomes: Biogenesis, Function, and Role in Human Disease; Springer: Singapore, 2019; pp. 15–42. ISBN 9789811511684. [Google Scholar]
- Faust, P.L.; Hatten, M.E. Targeted Deletion of the PEX2 Peroxisome Assembly Gene in Mice Provides a Model for Zellweger Syndrome, a Human Neuronal Migration Disorder. J. Cell Biol. 1997, 139, 1293–1305. [Google Scholar] [CrossRef]
- Santos, M.J.; Imanaka, T.; Shio, H.; Small, G.M.; Lazarow, P.B. Peroxisomal Membrane Ghosts in Zellweger Syndrome—Aberrant Organelle Assembly. Science 1988, 239, 1536–1538. [Google Scholar] [CrossRef]
- Trompier, D.; Vejux, A.; Zarrouk, A.; Gondcaille, C.; Geillon, F.; Nury, T.; Savary, S.; Lizard, G. Brain Peroxisomes. Biochimie 2014, 98, 102–110. [Google Scholar] [CrossRef]
- Takashima, S.; Takemoto, S.; Toyoshi, K.; Ohba, A.; Shimozawa, N. Zebrafish Model of Human Zellweger Syndrome Reveals Organ-Specific Accumulation of Distinct Fatty Acid Species and Widespread Gene Expression Changes. Mol. Genet. Metab. 2021, 133, 307–323. [Google Scholar] [CrossRef]
- Lebeaupin, C.; Vallée, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic Reticulum Stress Signalling and the Pathogenesis of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2018, 69, 927–947. [Google Scholar] [CrossRef]
- Han, J.; Kaufman, R.J. The Role of ER Stress in Lipid Metabolism and Lipotoxicity. J. Lipid Res. 2016, 57, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Malhi, H.; Kaufman, R.J. Endoplasmic Reticulum Stress in Liver Disease. J. Hepatol. 2011, 54, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, W.J.; Tape, K.N.; Shackelford, J.E.; Wikander, T.M.; Richards, M.J.; Fliesler, S.J.; Krisans, S.K.; Faust, P.L. Peroxisome Deficiency Causes a Complex Phenotype Because of Hepatic SREBP/Insig Dysregulation Associated with Endoplasmic Reticulum Stress. J. Biol. Chem. 2009, 284, 7232–7245. [Google Scholar] [CrossRef] [PubMed]
- Folz, S.J.; Trobe, J.D. The Peroxisome and the Eye. Surv. Ophthalmol. 1991, 35, 353–368. [Google Scholar] [CrossRef]
- Bhandari, S.; Kim, Y.-I.; Nam, I.-K.; Hong, K.; Jo, Y.; Yoo, K.-W.; Liao, W.; Lim, J.-Y.; Kim, S.-J.; Um, J.-Y.; et al. Loss of Pex5 Sensitizes Zebrafish to Fasting due to Deregulated Mitochondria, MTOR, and Autophagy. Cell. Mol. Life Sci. 2023, 80, 69. [Google Scholar] [CrossRef]
- Strachan, L.R.; Stevenson, T.J.; Freshner, B.; Keefe, M.D.; Miranda Bowles, D.; Bonkowsky, J.L. A Zebrafish Model of X-Linked Adrenoleukodystrophy Recapitulates Key Disease Features and Demonstrates a Developmental Requirement for Abcd1 in Oligodendrocyte Patterning and Myelination. Hum. Mol. Genet. 2017, 26, 3600–3614. [Google Scholar] [CrossRef]
- Raas, Q.; Wood, A.; Stevenson, T.J.; Swartwood, S.; Liu, S.; Kannan, R.M.; Kannan, S.; Bonkowsky, J.L. Generation and Characterization of a Zebrafish Gain-of-Function ACOX1 Mitchell Disease Model. Front. Pediatr. 2024, 12, 1326886. [Google Scholar] [CrossRef]
- Umair, M.; Farooq Khan, M.; Aldrees, M.; Nashabat, M.; Alhamoudi, K.M.; Bilal, M.; Alyafee, Y.; Al Tuwaijri, A.; Aldarwish, M.; Al-Rumayyan, A.; et al. Mutated VWA8 Is Associated with Developmental Delay, Microcephaly, and Scoliosis and Plays a Novel Role in Early Development and Skeletal Morphogenesis in Zebrafish. Front. Cell Dev. Biol. 2021, 9, 736960. [Google Scholar] [CrossRef]
- Kong, L.; Chu, G.; Ma, W.; Liang, J.; Liu, D.; Liu, Q.; Wei, X.; Jia, S.; Gu, H.; He, Y.; et al. Mutations in VWA8 Cause Autosomal-Dominant Retinitis Pigmentosa via Aberrant Mitophagy Activation. J. Med. Genet. 2023, 60, 939–950. [Google Scholar] [CrossRef]
- Fujiki, Y.; Okumoto, K.; Mukai, S.; Honsho, M.; Tamura, S. Peroxisome Biogenesis in Mammalian Cells. Front. Physiol. 2014, 5, 307. [Google Scholar] [CrossRef]
- Muntau, A.C.; Mayerhofer, P.U.; Paton, B.C.; Kammerer, S.; Roscher, A.A. Defective Peroxisome Membrane Synthesis due to Mutations in Human PEX3 Causes Zellweger Syndrome, Complementation Group G. Am. J. Hum. Genet. 2000, 67, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Soukupova, M.; Sprenger, C.; Gorgas, K.; Kunau, W.H.; Dodt, G. Identification and Characterization of the Human Peroxin PEX3. Eur. J. Cell Biol. 1999, 78, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Shimozawa, N.; Zhang, Z.; Suzuki, Y.; Imamura, A.; Tsukamoto, T.; Osumi, T.; Fujiki, Y.; Orii, T.; Barth, P.G.; Wanders, R.J.; et al. Functional Heterogeneity of C-Terminal Peroxisome Targeting Signal 1 in PEX5-Defective Patients. Biochem. Biophys. Res. Commun. 1999, 262, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Baes, M.; Gressens, P.; Baumgart, E.; Carmeliet, P.; Casteels, M.; Fransen, M.; Evrard, P.; Fahimi, D.; Declercq, P.E.; Collen, D.; et al. A Mouse Model for Zellweger Syndrome. Nat. Genet. 1997, 17, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, E.; Vanhorebeek, I.; Grabenbauer, M.; Borgers, M.; Declercq, P.E.; Fahimi, H.D.; Baes, M. Mitochondrial Alterations Caused by Defective Peroxisomal Biogenesis in a Mouse Model for Zellweger Syndrome (PEX5 Knockout Mouse). Am. J. Pathol. 2001, 159, 1477–1494. [Google Scholar] [CrossRef]
- Peeters, A.; Fraisl, P.; van den Berg, S.; Ver Loren van Themaat, E.; Van Kampen, A.; Rider, M.H.; Takemori, H.; van Dijk, K.W.; Van Veldhoven, P.P.; Carmeliet, P.; et al. Carbohydrate Metabolism Is Perturbed in Peroxisome-Deficient Hepatocytes due to Mitochondrial Dysfunction, AMP-Activated Protein Kinase (AMPK) Activation, and Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (PGC-1α) Suppression. J. Biol. Chem. 2011, 286, 42162–42179. [Google Scholar] [CrossRef]
- Tanaka, H.; Okazaki, T.; Aoyama, S.; Yokota, M.; Koike, M.; Okada, Y.; Fujiki, Y.; Gotoh, Y. Peroxisomes Control Mitochondrial Dynamics and the Mitochondrion-Dependent Apoptosis Pathway. J. Cell Sci. 2019, 132, jcs224766. [Google Scholar] [CrossRef]
- Jiang, C.; Okazaki, T. Control of Mitochondrial Dynamics and Apoptotic Pathways by Peroxisomes. Front. Cell Dev. Biol. 2022, 10, 938177. [Google Scholar] [CrossRef]
- Elgersma, Y.; Kwast, L.; Klein, A.; Voorn-Brouwer, T.; van den Berg, M.; Metzig, B.; America, T.; Tabak, H.F.; Distel, B. The SH3 Domain of the Saccharomyces Cerevisiae Peroxisomal Membrane Protein Pex13p Functions as a Docking Site for Pex5p, a Mobile Receptor for the Import PTS1-Containing Proteins. J. Cell Biol. 1996, 135, 97–109. [Google Scholar] [CrossRef]
- Gould, S.J.; Kalish, J.E.; Morrell, J.C.; Bjorkman, J.; Urquhart, A.J.; Crane, D.I. Pex13p Is an SH3 Protein of the Peroxisome Membrane and a Docking Factor for the Predominantly Cytoplasmic PTs1 Receptor. J. Cell Biol. 1996, 135, 85–95. [Google Scholar] [CrossRef]
- Krause, C.; Rosewich, H.; Woehler, A.; Gärtner, J. Functional Analysis of PEX13 Mutation in a Zellweger Syndrome Spectrum Patient Reveals Novel Homooligomerization of PEX13 and Its Role in Human Peroxisome Biogenesis. Hum. Mol. Genet. 2013, 22, 3844–3857. [Google Scholar] [CrossRef] [PubMed]
- Gaussmann, S.; Peschel, R.; Ott, J.; Zak, K.M.; Sastre, J.; Delhommel, F.; Popowicz, G.M.; Boekhoven, J.; Schliebs, W.; Erdmann, R.; et al. Modulation of Peroxisomal Import by the PEX13 SH3 Domain and a Proximal FxxxF Binding Motif. Nat. Commun. 2024, 15, 3317. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Skowyra, M.L.; Feng, P.; Rapoport, T.A. Protein Import into Peroxisomes Occurs through a Nuclear Pore-like Phase. Science 2022, 378, eadf3971. [Google Scholar] [CrossRef] [PubMed]
- Barros-Barbosa, A.; Ferreira, M.J.; Rodrigues, T.A.; Pedrosa, A.G.; Grou, C.P.; Pinto, M.P.; Fransen, M.; Francisco, T.; Azevedo, J.E. Membrane Topologies of PEX13 and PEX14 Provide New Insights on the Mechanism of Protein Import into Peroxisomes. FEBS J. 2019, 286, 205–222. [Google Scholar] [CrossRef]
- Meinecke, M.; Cizmowski, C.; Schliebs, W.; Krüger, V.; Beck, S.; Wagner, R.; Erdmann, R. The Peroxisomal Importomer Constitutes a Large and Highly Dynamic Pore. Nat. Cell Biol. 2010, 12, 273–277. [Google Scholar] [CrossRef]
- Maxwell, M.; Bjorkman, J.; Nguyen, T.; Sharp, P.; Finnie, J.; Paterson, C.; Tonks, I.; Paton, B.C.; Kay, G.F.; Crane, D.I. Pex13 Inactivation in the Mouse Disrupts Peroxisome Biogenesis and Leads to a Zellweger Syndrome Phenotype. Mol. Cell. Biol. 2003, 23, 5947–5957. [Google Scholar] [CrossRef]
- Liu, Y.; Björkman, J.; Urquhart, A.; Wanders, R.J.; Crane, D.I.; Gould, S.J. PEX13 Is Mutated in Complementation Group 13 of the Peroxisome-Biogenesis Disorders. Am. J. Hum. Genet. 1999, 65, 621–634. [Google Scholar] [CrossRef]
- Shimozawa, N.; Suzuki, Y.; Zhang, Z.; Imamura, A.; Toyama, R.; Mukai, S.; Fujiki, Y.; Tsukamoto, T.; Osumi, T.; Orii, T.; et al. Nonsense and Temperature-Sensitive Mutations in PEX13 Are the Cause of Complementation Group H of Peroxisome Biogenesis Disorders. Hum. Mol. Genet. 1999, 8, 1077–1083. [Google Scholar] [CrossRef]
- Krause, C.; Rosewich, H.; Thanos, M.; Gärtner, J. Identification of Novel Mutations in PEX2, PEX6, PEX10, PEX12, and PEX13 in Zellweger Spectrum Patients. Hum. Mutat. 2006, 27, 1157. [Google Scholar] [CrossRef]
- Al-Dirbashi, O.Y.; Shaheen, R.; Al-Sayed, M.; Al-Dosari, M.; Makhseed, N.; Abu Safieh, L.; Santa, T.; Meyer, B.F.; Shimozawa, N.; Alkuraya, F.S. Zellweger Syndrome Caused by PEX13 Deficiency: Report of Two Novel Mutations. Am. J. Med. Genet. A 2009, 149, 1219–1223. [Google Scholar] [CrossRef]
- Shih, H.-Y.; Raas, Q.; Bonkowsky, J.L. Progress in Leukodystrophies with Zebrafish. Dev. Growth Differ. 2024, 66, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.; Barbier, M.; Dijkstra, I.M.E.; Schür, R.; de Bie, R.M.A.; Verhamme, C.; Dijkgraaf, M.G.W.; Aubourg, P.A.; Wanders, R.J.A.; van Geel, B.M.; et al. X-Linked Adrenoleukodystrophy in Women: A Cross-Sectional Cohort Study. Brain 2014, 137, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Montoro, R.; Heine, V.M.; Kemp, S.; Engelen, M. Evolution of Adrenoleukodystrophy Model Systems. J. Inherit. Metab. Dis. 2021, 44, 544–553. [Google Scholar] [CrossRef] [PubMed]
- El Hajj, H.I.; Vluggens, A.; Andreoletti, P.; Ragot, K.; Mandard, S.; Kersten, S.; Waterham, H.R.; Lizard, G.; Wanders, R.J.A.; Reddy, J.K.; et al. The Inflammatory Response in Acyl-CoA Oxidase 1 Deficiency (Pseudoneonatal Adrenoleukodystrophy). Endocrinology 2012, 153, 2568–2575. [Google Scholar] [CrossRef]
- Chung, H.-L.; Wangler, M.F.; Marcogliese, P.C.; Jo, J.; Ravenscroft, T.A.; Zuo, Z.; Duraine, L.; Sadeghzadeh, S.; Li-Kroeger, D.; Schmidt, R.E.; et al. Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. Neuron 2020, 106, 589–606.e6. [Google Scholar] [CrossRef]
- Sarkar, C.; Lipinski, M.M. Role and Function of Peroxisomes in Neuroinflammation. Cells 2024, 13, 1655. [Google Scholar] [CrossRef]
- Huang, J.; Viswakarma, N.; Yu, S.; Jia, Y.; Bai, L.; Vluggens, A.; Cherkaoui-Malki, M.; Khan, M.; Singh, I.; Yang, G.; et al. Progressive Endoplasmic Reticulum Stress Contributes to Hepatocarcinogenesis in Fatty Acyl-CoA Oxidase 1-Deficient Mice. Am. J. Pathol. 2011, 179, 703–713. [Google Scholar] [CrossRef]
- Shen, M.; Chen, Q.; Gao, Y.; Yan, H.; Feng, S.; Ji, X.; Zhang, X. A de Novo Heterozygous Variant in ACOX1 Gene Cause Mitchell Syndrome: The First Case in China and Literature Review. BMC Med. Genom. 2023, 16, 156. [Google Scholar] [CrossRef]
- Mehtälä, M.L.; Lensink, M.F.; Pietikäinen, L.P.; Hiltunen, J.K.; Glumoff, T. On the Molecular Basis of D-Bifunctional Protein Deficiency Type III. PLoS ONE 2013, 8, e53688. [Google Scholar] [CrossRef]
- Möller, G.; van Grunsven, E.G.; Wanders, R.J.; Adamski, J. Molecular Basis of D-Bifunctional Protein Deficiency. Mol. Cell. Endocrinol. 2001, 171, 61–70. [Google Scholar] [CrossRef]
- Suzuki, Y.; Jiang, L.L.; Souri, M.; Miyazawa, S.; Fukuda, S.; Zhang, Z.; Une, M.; Shimozawa, N.; Kondo, N.; Orii, T.; et al. D-3-Hydroxyacyl-CoA Dehydratase/D-3-Hydroxyacyl-CoA Dehydrogenase Bifunctional Protein Deficiency: A Newly Identified Peroxisomal Disorder. Am. J. Hum. Genet. 1997, 61, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Van Grunsven, E.G.; van Berkel, E.; Lemonde, H.; Clayton, P.T.; Wanders, R.J. Bifunctional Protein Deficiency: Complementation within the Same Group Suggesting Differential Enzyme Defects and Clues to the Underlying Basis. J. Inherit. Metab. Dis. 1998, 21, 298–301. [Google Scholar] [CrossRef] [PubMed]
- van Grunsven, E.G.; Mooijer, P.A.; Aubourg, P.; Wanders, R.J. Enoyl-CoA Hydratase Deficiency: Identification of a New Type of D-Bifunctional Protein Deficiency. Hum. Mol. Genet. 1999, 8, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Wanders, R.J.A. Metabolic Functions of Peroxisomes in Health and Disease. Biochimie 2014, 98, 36–44. [Google Scholar] [CrossRef]
- Huyghe, S.; Schmalbruch, H.; De Gendt, K.; Verhoeven, G.; Guillou, F.; Van Veldhoven, P.P.; Baes, M. Peroxisomal Multifunctional Protein 2 Is Essential for Lipid Homeostasis in Sertoli Cells and Male Fertility in Mice. Endocrinology 2006, 147, 2228–2236. [Google Scholar] [CrossRef]
- Costello, J.L.; Passmore, J.B.; Islinger, M.; Schrader, M. Multi-Localized Proteins: The Peroxisome-Mitochondria Connection. Subcell. Biochem. 2018, 89, 383–415. [Google Scholar] [CrossRef]
- Schrader, T.A.; Carmichael, R.E.; Islinger, M.; Costello, J.L.; Hacker, C.; Bonekamp, N.A.; Weishaupt, J.H.; Andersen, P.M.; Schrader, M. PEX11β and FIS1 Cooperate in Peroxisome Division Independently of Mitochondrial Fission Factor. J. Cell Sci. 2022, 135, jcs259924. [Google Scholar] [CrossRef]
- Koch, A.; Yoon, Y.; Bonekamp, N.A.; McNiven, M.A.; Schrader, M. A Role for Fis1 in Both Mitochondrial and Peroxisomal Fission in Mammalian Cells. Mol. Biol. Cell 2005, 16, 5077–5086. [Google Scholar] [CrossRef]
- Gandre-Babbe, S.; van der Bliek, A.M. The Novel Tail-Anchored Membrane Protein Mff Controls Mitochondrial and Peroxisomal Fission in Mammalian Cells. Mol. Biol. Cell 2008, 19, 2402–2412. [Google Scholar] [CrossRef]
- Niwa, H.; Miyauchi-Nanri, Y.; Okumoto, K.; Mukai, S.; Noi, K.; Ogura, T.; Fujiki, Y. A Newly Isolated Pex7-Binding, Atypical PTS2 Protein P7BP2 Is a Novel Dynein-Type AAA+ Protein. J. Biochem. 2018, 164, 437–447. [Google Scholar] [CrossRef]
- Wiese, S.; Gronemeyer, T.; Brites, P.; Ofman, R.; Bunse, C.; Renz, C.; Meyer, H.E.; Wanders, R.J.A.; Warscheid, B. Comparative Profiling of the Peroxisomal Proteome of Wildtype and Pex7 Knockout Mice by Quantitative Mass Spectrometry. Int. J. Mass Spectrom. 2012, 312, 30–40. [Google Scholar] [CrossRef]
- Luo, M.; Mengos, A.E.; Ma, W.; Finlayson, J.; Bustos, R.Z.; Xiao Zhu, Y.; Shi, C.-X.; Stubblefield, T.M.; Willis, W.T.; Mandarino, L.J. Characterization of the Novel Protein KIAA0564 (Von Willebrand Domain-Containing Protein 8). Biochem. Biophys. Res. Commun. 2017, 487, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Ma, W.; Sand, Z.; Finlayson, J.; Wang, T.; Brinton, R.D.; Willis, W.T.; Mandarino, L.J. Von Willebrand Factor A Domain-Containing Protein 8 (VWA8) Localizes to the Matrix Side of the Inner Mitochondrial Membrane. Biochem. Biophys. Res. Commun. 2020, 521, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Willis, W.T.; Coletta, D.K.; Langlais, P.R.; Mengos, A.; Ma, W.; Finlayson, J.; Wagner, G.R.; Shi, C.-X.; Mandarino, L.J. Deletion of the Mitochondrial Protein VWA8 Induces Oxidative Stress and an HNF4α Compensatory Response in Hepatocytes. Biochemistry 2019, 58, 4983–4996. [Google Scholar] [CrossRef]
- Luo, M.; Ma, W.; Zapata-Bustos, R.; Willis, W.T.; Mandarino, L.J. Deletion of Von Willebrand A Domain Containing Protein (VWA8) Raises Activity of Mitochondrial Electron Transport Chain Complexes in Hepatocytes. Biochem. Biophys. Rep. 2021, 26, 100928. [Google Scholar] [CrossRef]
- Imanaka, T.; Kawaguchi, K. A Novel Dynein-Type AAA+ Protein with Peroxisomal Targeting Signal Type 2. J. Biochem. 2020, 167, 429–432. [Google Scholar] [CrossRef]
- Key, J.; Gispert, S.; Koepf, G.; Steinhoff-Wagner, J.; Reichlmeir, M.; Auburger, G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int. J. Mol. Sci. 2023, 24, 17503. [Google Scholar] [CrossRef]
- Quiñonez-Silvero, C.; Hübner, K.; Herzog, W. Development of the Brain Vasculature and the Blood-Brain Barrier in Zebrafish. Dev. Biol. 2020, 457, 181–190. [Google Scholar] [CrossRef]
Function/Pathway | Comments | Dr | Hs |
---|---|---|---|
Fatty acid beta-oxidation | Acox2 is absent in zebrafish ACOXL/ACOX4 is present in humans and zebrafish, but not well defined | ||
Bile acid synthesis | Bile acid-CoA:amino acid N-acyltransferase (Baat) is absent in zebrafish | - | |
Fatty acid alpha-oxidation | |||
Saturation of PUFAs | |||
Ether lipid synthesis | |||
Glycolate/ Glyoxylate metabolism | Hydroxyacid oxidase 3 (Hao3) is absent in zebrafish | ||
Amino acid catabolism | D-amino acid oxidases 2 and 3 (Dao2, Dao3) are absent in humans | ||
Amine metabolism | |||
Purine and pyrimidine metabolism | Urate oxidase (Uricase) (Uox), Allantoicase (Allc), Urate (5-hydroxyiso-) hydrolase a (Uraha), Ureidoimidazoline decarboxylase (Urad) are absent or inactivated in humans | - | |
Oxygen metabolism/ Oxidation redox equivalents | |||
Proteases | |||
Carbohydrate metabolism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.S.; Schrader, M. Modelling Peroxisomal Disorders in Zebrafish. Cells 2025, 14, 147. https://doi.org/10.3390/cells14020147
Jiang CS, Schrader M. Modelling Peroxisomal Disorders in Zebrafish. Cells. 2025; 14(2):147. https://doi.org/10.3390/cells14020147
Chicago/Turabian StyleJiang, Chenxing S., and Michael Schrader. 2025. "Modelling Peroxisomal Disorders in Zebrafish" Cells 14, no. 2: 147. https://doi.org/10.3390/cells14020147
APA StyleJiang, C. S., & Schrader, M. (2025). Modelling Peroxisomal Disorders in Zebrafish. Cells, 14(2), 147. https://doi.org/10.3390/cells14020147