Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Atg5/7 Genes Leads to Cell Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. SCAP Banks
2.2. Lentiviral Infection for Establishment of the Knock-Out (KO) Cell Lines with CRISPR/CAS9 Tools
2.3. Chemical Compound Treatments and Immunolabeling
2.4. Osteogenic Differentiation and Treatments
2.5. Western Blotting
2.6. Quantification of the ALP Signals
2.7. Statistical Analysis
3. Results
3.1. Active Autophagy Flux, Based on LC3 Staining, Is Efficiently Blocked with Verteporfin and Bafilomycin A1 Treatments Without Altering Mitochondrial Structures
3.2. Blocking Autophagy Flux Alters the Detection of Alkaline Phosphatase Activity While Preventing the Formation of Autophagosomes Is Not Deleterious
3.3. Mineralization by SCAPs-Derived Osteoblasts Was Unexpectedly Induced by Bafilomycin A1 or Verteporfin Treatments for Some Donors
3.4. Analysis of Osteoblastic Differentiation Process with CRISPR/CAS9 Knock-Out Strategy
3.5. Osteoblastic Differentiation of the KO Cell Lines: Unexpected Activation of ALP in ATG5-Deficient SCAPs and Presence of Mineralization in Both ATG5 and ATG7- KO Cell Lines
4. Discussion
4.1. Effect of Chemical Repression of Autophagy on Osteogenic Differentiation
4.2. Genetic Repression of Autophagy on Osteogenic Differentiation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, J.; Fan, W.; Deng, Q.; He, H.; Huang, F. Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BioMed Res. Int. 2019, 2019, 6104738. [Google Scholar] [CrossRef]
- Yang, C.; Sun, L.; Li, X.; Xie, L.; Yu, M.; Feng, L.; Jiang, Z.; Guo, W.; Tian, W. The Potential of Dental Stem Cells Differentiating into Neurogenic Cell Lineage after Cultivation in Different Modes in Vitro. Cell. Reprogram. 2014, 16, 379–391. [Google Scholar] [CrossRef]
- Diao, S.; Yang, H.; Cao, Y.; Yang, D.; Fan, Z. IGF2 Enhanced the Osteo-/Dentinogenic and Neurogenic Differentiation Potentials of Stem Cells from Apical Papilla. J. Oral Rehabil. 2020, 47 (Suppl. S1), 55–65. [Google Scholar] [CrossRef]
- Songsaad, A.T.; Thairat, S.; Seemaung, P.; Thongsuk, A.; Balit, T.; Ruangsawasdi, N.; Phruksaniyom, C.; Gonmanee, T.; White, K.L.; Thonabulsombat, C. Characterization of Neural Stem Cells Derived from Human Stem Cells from the Apical Papilla Undergoing Three-Dimensional Neurosphere Induction. J. Appl. Oral Sci. Rev. FOB 2023, 31, e20230209. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Chen, L.; Xu, Y.; Yu, R.; Lu, J.; Ke, Y.; Guo, R.; Gu, T.; Yu, H.; Fang, Y.; et al. Circ-ZNF236 Mediates Stem Cells from Apical Papilla Differentiation by Regulating LGR4-Induced Autophagy. Int. Endod. J. 2024, 57, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, Z.; Wang, Y.; Yan, M.; Wu, J.; Beharee, R.G.; Yu, J. Sodium Fluoride Regulates the Osteo/Odontogenic Differentiation of Stem Cells from Apical Papilla by Modulating Autophagy. J. Cell. Physiol. 2019, 234, 16114–16124. [Google Scholar] [CrossRef]
- Rémy, M.; Ferraro, F.; Le Salver, P.; Rey, S.; Genot, E.; Djavaheri-Mergny, M.; Thébaud, N.; Boiziau, C.; Boeuf, H. Isolation and Culture of Human Stem Cells from Apical Papilla under Low Oxygen Concentration Highlight Original Properties. Cells 2019, 8, 1485–1510. [Google Scholar] [CrossRef] [PubMed]
- Vidoni, C.; Ferraresi, A.; Secomandi, E.; Vallino, L.; Gardin, C.; Zavan, B.; Mortellaro, C.; Isidoro, C. Autophagy Drives Osteogenic Differentiation of Human Gingival Mesenchymal Stem Cells. Cell Commun. Signal. CCS 2019, 17, 98. [Google Scholar] [CrossRef]
- Trojani, M.-C.; Santucci-Darmanin, S.; Breuil, V.; Carle, G.F.; Pierrefite-Carle, V. Autophagy and Bone Diseases. Jt. Bone Spine 2022, 89, 105301. [Google Scholar] [CrossRef] [PubMed]
- Pierrefite-Carle, V.; Santucci-Darmanin, S.; Breuil, V.; Camuzard, O.; Carle, G.F. Autophagy in Bone: Self-Eating to Stay in Balance. Ageing Res. Rev. 2015, 24, 206–217. [Google Scholar] [CrossRef]
- Nollet, M.; Santucci-Darmanin, S.; Breuil, V.; Al-Sahlanee, R.; Cros, C.; Topi, M.; Momier, D.; Samson, M.; Pagnotta, S.; Cailleteau, L.; et al. Autophagy in Osteoblasts Is Involved in Mineralization and Bone Homeostasis. Autophagy 2014, 10, 1965–1977. [Google Scholar] [CrossRef]
- Li, H.; Li, D.; Ma, Z.; Qian, Z.; Kang, X.; Jin, X.; Li, F.; Wang, X.; Chen, Q.; Sun, H.; et al. Defective Autophagy in Osteoblasts Induces Endoplasmic Reticulum Stress and Causes Remarkable Bone Loss. Autophagy 2018, 14, 1726–1741. [Google Scholar] [CrossRef]
- Pantovic, A.; Krstic, A.; Janjetovic, K.; Kocic, J.; Harhaji-Trajkovic, L.; Bugarski, D.; Trajkovic, V. Coordinated Time-Dependent Modulation of AMPK/Akt/mTOR Signaling and Autophagy Controls Osteogenic Differentiation of Human Mesenchymal Stem Cells. Bone 2013, 52, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Liu, C.; Zhou, L.; Li, Y.; Wu, D. Osteogenic Effects of Rapamycin on Bone Marrow Mesenchymal Stem Cells via Inducing Autophagy. J. Orthop. Surg. 2023, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.H.; Abudu, Y.P.; Acevedo-Arozena, A.; et al. Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th Edition)1. Autophagy 2021, 17, 1–382. [Google Scholar] [CrossRef] [PubMed]
- Adelipour, M.; Saleth, L.R.; Ghavami, S.; Alagarsamy, K.N.; Dhingra, S.; Allameh, A. The Role of Autophagy in the Metabolism and Differentiation of Stem Cells. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166412. [Google Scholar] [CrossRef]
- D’Arcy, M.S. Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and Molecular Mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef]
- Schaaf, M.B.E.; Keulers, T.G.; Vooijs, M.A.; Rouschop, K.M.A. LC3/GABARAP Family Proteins: Autophagy-(Un)Related Functions. J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016, 30, 3961–3978. [Google Scholar] [CrossRef] [PubMed]
- New, J.; Thomas, S.M. Autophagy-Dependent Secretion: Mechanism, Factors Secreted, and Disease Implications. Autophagy 2019, 15, 1682–1693. [Google Scholar] [CrossRef]
- Kim, Y.C.; Guan, K.-L. mTOR: A Pharmacologic Target for Autophagy Regulation. J. Clin. Investig. 2015, 125, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Morel, E.; Mehrpour, M.; Botti, J.; Dupont, N.; Hamaï, A.; Nascimbeni, A.C.; Codogno, P. Autophagy: A Druggable Process. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 375–398. [Google Scholar] [CrossRef]
- Wei, C.; Li, X. The Role of Photoactivated and Non-Photoactivated Verteporfin on Tumor. Front. Pharmacol. 2020, 11, 557429. [Google Scholar] [CrossRef]
- Donohue, E.; Balgi, A.D.; Komatsu, M.; Roberge, M. Induction of Covalently Crosslinked P62 Oligomers with Reduced Binding to Polyubiquitinated Proteins by the Autophagy Inhibitor Verteporfin. PLoS ONE 2014, 9, e114964. [Google Scholar] [CrossRef]
- Donohue, E.; Tovey, A.; Vogl, A.W.; Arns, S.; Sternberg, E.; Young, R.N.; Roberge, M. Inhibition of Autophagosome Formation by the Benzoporphyrin Derivative Verteporfin. J. Biol. Chem. 2011, 286, 7290–7300. [Google Scholar] [CrossRef] [PubMed]
- Liu-Chittenden, Y.; Huang, B.; Shim, J.S.; Chen, Q.; Lee, S.-J.; Anders, R.A.; Liu, J.O.; Pan, D. Genetic and Pharmacological Disruption of the TEAD-YAP Complex Suppresses the Oncogenic Activity of YAP. Genes Dev. 2012, 26, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Giraud, J.; Molina-Castro, S.; Seeneevassen, L.; Sifré, E.; Izotte, J.; Tiffon, C.; Staedel, C.; Boeuf, H.; Fernandez, S.; Barthelemy, P.; et al. Verteporfin Targeting YAP1/TAZ-TEAD Transcriptional Activity Inhibits the Tumorigenic Properties of Gastric Cancer Stem Cells. Int. J. Cancer 2020, 146, 2255–2267. [Google Scholar] [CrossRef] [PubMed]
- Barrette, A.M.; Ronk, H.; Joshi, T.; Mussa, Z.; Mehrotra, M.; Bouras, A.; Nudelman, G.; Jesu Raj, J.G.; Bozec, D.; Lam, W.; et al. Anti-Invasive Efficacy and Survival Benefit of the YAP-TEAD Inhibitor Verteporfin in Preclinical Glioblastoma Models. Neuro-Oncology 2022, 24, 694–707. [Google Scholar] [CrossRef]
- Cho, Y.-H.; Han, K.-M.; Kim, D.; Lee, J.; Lee, S.-H.; Choi, K.-W.; Kim, J.; Han, Y.-M. Autophagy Regulates Homeostasis of Pluripotency-Associated Proteins in hESCs. Stem Cells Dayt. Ohio 2014, 32, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Offei, E.B.; Yang, X.; Brand-Saberi, B. The Role of Autophagy in Morphogenesis and Stem Cell Maintenance. Histochem. Cell Biol. 2018, 150, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Boya, P.; Codogno, P.; Rodriguez-Muela, N. Autophagy in Stem Cells: Repair, Remodelling and Metabolic Reprogramming. Dev. Camb. Engl. 2018, 145, dev146506. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; García-Cañaveras, J.C.; Guo, L.; Kan, M.; Yu, S.; Blair, I.A.; Rabinowitz, J.D.; Yang, X. Chaperone-Mediated Autophagy Regulates the Pluripotency of Embryonic Stem Cells. Science 2020, 369, 397–403. [Google Scholar] [CrossRef]
- García-Prat, L.; Martínez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodríguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy Maintains Stemness by Preventing Senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Liu, J.; Liu, Y.; Liang, Q. Vitamin K2 Stimulates MC3T3-E1 Osteoblast Differentiation and Mineralization through Autophagy Induction. Mol. Med. Rep. 2019, 19, 3676–3684. [Google Scholar] [CrossRef]
- Gavali, S.; Gupta, M.K.; Daswani, B.; Wani, M.R.; Sirdeshmukh, R.; Khatkhatay, M.I. Estrogen Enhances Human Osteoblast Survival and Function via Promotion of Autophagy. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Kuma, A.; Komatsu, M.; Mizushima, N. Autophagy-Monitoring and Autophagy-Deficient Mice. Autophagy 2017, 13, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, S.R.; Kuma, A.; Mizushima, N. Transgenic Rescue of Atg5-Null Mice from Neonatal Lethality with Neuron-Specific Expression of ATG5: Systemic Analysis of Adult Atg5-Deficient Mice. Autophagy 2017, 13, 763–764. [Google Scholar] [CrossRef]
- Camuzard, O.; Santucci-Darmanin, S.; Carle, G.F.; Pierrefite-Carle, V. Autophagy, a key process in bone homeostasis. Med. Sci. 2017, 33, 221–224. [Google Scholar] [CrossRef]
- Collier, J.J.; Guissart, C.; Oláhová, M.; Sasorith, S.; Piron-Prunier, F.; Suomi, F.; Zhang, D.; Martinez-Lopez, N.; Leboucq, N.; Bahr, A.; et al. Developmental Consequences of Defective ATG7-Mediated Autophagy in Humans. N. Engl. J. Med. 2021, 384, 2406–2417. [Google Scholar] [CrossRef]
- Mavinga, M.; Palmier, M.; Rémy, M.; Jeannière, C.; Lenoir, S.; Rey, S.; Saint-Marc, M.; Alonso, F.; Génot, E.; Thébaud, N.; et al. The Journey of SCAPs (Stem Cells from Apical Papilla), from Their Native Tissue to Grafting: Impact of Oxygen Concentration. Cells 2022, 11, 4098. [Google Scholar] [CrossRef] [PubMed]
- O’Prey, J.; Sakamaki, J.; Baudot, A.D.; New, M.; Van Acker, T.; Tooze, S.A.; Long, J.S.; Ryan, K.M. Application of CRISPR/Cas9 to Autophagy Research. Methods Enzymol. 2017, 588, 79–108. [Google Scholar] [CrossRef] [PubMed]
- Smyrek, I.; Stelzer, E.H.K. Quantitative Three-Dimensional Evaluation of Immunofluorescence Staining for Large Whole Mount Spheroids with Light Sheet Microscopy. Biomed. Opt. Express 2017, 8, 484–499. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Liu, Y.; Maye, P.; Rowe, D.W. Examination of Mineralized Nodule Formation in Living Osteoblastic Cultures Using Fluorescent Dyes. Biotechnol. Prog. 2006, 22, 1697–1701. [Google Scholar] [CrossRef] [PubMed]
- Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine Inhibits Autophagic Flux by Decreasing Autophagosome-Lysosome Fusion. Autophagy 2018, 14, 1435–1455. [Google Scholar] [CrossRef] [PubMed]
- Javaid, H.M.A.; Lim, H.; Shin, S.; Huh, J.Y. Inhibition of Autophagy with Chloroquine Dysregulates Mitochondrial Quality Control and Energetics in Adipocytes. Arch. Pharm. Res. 2022, 45, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.L. The Role of Phosphatases in the Initiation of Skeletal Mineralization. Calcif. Tissue Int. 2013, 93, 299–306. [Google Scholar] [CrossRef]
- Sekaran, S.; Vimalraj, S.; Thangavelu, L. The Physiological and Pathological Role of Tissue Nonspecific Alkaline Phosphatase beyond Mineralization. Biomolecules 2021, 11, 1564. [Google Scholar] [CrossRef] [PubMed]
- Iwayama, T.; Okada, T.; Ueda, T.; Tomita, K.; Matsumoto, S.; Takedachi, M.; Wakisaka, S.; Noda, T.; Ogura, T.; Okano, T.; et al. Osteoblastic Lysosome Plays a Central Role in Mineralization. Sci. Adv. 2019, 5, eaax0672. [Google Scholar] [CrossRef]
- Mahamid, J.; Addadi, L.; Weiner, S. Crystallization Pathways in Bone. Cells Tissues Organs 2011, 194, 92–97. [Google Scholar] [CrossRef]
- Mahamid, J.; Sharir, A.; Gur, D.; Zelzer, E.; Addadi, L.; Weiner, S. Bone Mineralization Proceeds through Intracellular Calcium Phosphate Loaded Vesicles: A Cryo-Electron Microscopy Study. J. Struct. Biol. 2011, 174, 527–535. [Google Scholar] [CrossRef]
- Boonrungsiman, S.; Gentleman, E.; Carzaniga, R.; Evans, N.D.; McComb, D.W.; Porter, A.E.; Stevens, M.M. The Role of Intracellular Calcium Phosphate in Osteoblast-Mediated Bone Apatite Formation. Proc. Natl. Acad. Sci. USA 2012, 109, 14170–14175. [Google Scholar] [CrossRef] [PubMed]
- Montaseri, A.; Giampietri, C.; Rossi, M.; Riccioli, A.; Del Fattore, A.; Filippini, A. The Role of Autophagy in Osteoclast Differentiation and Bone Resorption Function. Biomolecules 2020, 10, 1398. [Google Scholar] [CrossRef]
- Uday, S.; Matsumura, T.; Saraff, V.; Saito, S.; Orimo, H.; Högler, W. Tissue Non-Specific Alkaline Phosphatase Activity and Mineralization Capacity of Bi-Allelic Mutations from Severe Perinatal and Asymptomatic Hypophosphatasia Phenotypes: Results from an in Vitro Mutagenesis Model. Bone 2019, 127, 9–16. [Google Scholar] [CrossRef]
- Vimalraj, S. Alkaline Phosphatase: Structure, Expression and Its Function in Bone Mineralization. Gene 2020, 754, 144855. [Google Scholar] [CrossRef] [PubMed]
- Kong, K.; Chang, Y.; Hu, Y.; Qiao, H.; Zhao, C.; Rong, K.; Zhang, P.; Zhang, J.; Zhai, Z.; Li, H. TiO2 Nanotubes Promote Osteogenic Differentiation Through Regulation of Yap and Piezo1. Front. Bioeng. Biotechnol. 2022, 10, 872088. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, M.; Wang, B.; Liu, X.; Zhang, Z.; Han, G. YAP/WNT5A/FZD4 Axis Regulates Osteogenic Differentiation of Human Periodontal Ligament Cells under Cyclic Stretch. J. Periodontal Res. 2023, 58, 907–918. [Google Scholar] [CrossRef]
- Nishida, Y.; Arakawa, S.; Fujitani, K.; Yamaguchi, H.; Mizuta, T.; Kanaseki, T.; Komatsu, M.; Otsu, K.; Tsujimoto, Y.; Shimizu, S. Discovery of Atg5/Atg7-Independent Alternative Macroautophagy. Nature 2009, 461, 654–658. [Google Scholar] [CrossRef]
- Shimizu, S.; Arakawa, S.; Nishida, Y. Autophagy Takes an Alternative Pathway. Autophagy 2010, 6, 290–291. [Google Scholar] [CrossRef]
- Shimizu, S. Biological Roles of Alternative Autophagy. Mol. Cells 2018, 41, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, K.; Orzechowski, A. The Secrets of Alternative Autophagy. Cells 2021, 10, 3241. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Noguchi, S.; Nakashima, M.; Miyai, M.; Goto, M.; Matsumoto, Y.; Torii, S.; Honda, S.; Shimizu, S. Alternative autophagy dampens UVB-induced NLRP3 inflammasome activation in human keratinocytes. J. Biol Chem 2024, 300, 107173. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, M.; Furuta, N.; Matsuda, A.; Nezu, A.; Yamamoto, A.; Fujita, N.; Oomori, H.; Noda, T.; Haraguchi, T.; Hiraoka, Y.; et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495, 389–393. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Honda, S.; Torii, S.; Shimizu, K.; Katoh, K.; Miyake, K.; Miyake, N.; Fujikake, N.; Sakurai, H.T.; Arakawa, S.; et al. Wipi3 is Essential for Alternative Autophagy and Its Loss Causes Neurodegeneration. Nat. Commun. 2020, 11, 5311. [Google Scholar] [CrossRef]
- Dupont, N.; Jiang, S.; Pilli, M.; Ornatowski, W.; Bhattacharya, D.; Deretic, V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 2011, 30, 4701–4711. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, Q.; Ma, X.; Zhong, Y.; Tang, H.; Mai, S. The mechanism of biomineralization: Progress in mineralization from intracellular generation to extracellular deposition. Jpn. Dent. Sci. Rev. 2023, 59, 181–190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Nihouannen, D.; Boiziau, C.; Rey, S.; Agadzhanian, N.; Dusserre, N.; Cordelières, F.; Priault, M.; Boeuf, H. Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Atg5/7 Genes Leads to Cell Adaptation. Cells 2025, 14, 146. https://doi.org/10.3390/cells14020146
Le Nihouannen D, Boiziau C, Rey S, Agadzhanian N, Dusserre N, Cordelières F, Priault M, Boeuf H. Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Atg5/7 Genes Leads to Cell Adaptation. Cells. 2025; 14(2):146. https://doi.org/10.3390/cells14020146
Chicago/Turabian StyleLe Nihouannen, Damien, Claudine Boiziau, Sylvie Rey, Nicole Agadzhanian, Nathalie Dusserre, Fabrice Cordelières, Muriel Priault, and Helene Boeuf. 2025. "Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Atg5/7 Genes Leads to Cell Adaptation" Cells 14, no. 2: 146. https://doi.org/10.3390/cells14020146
APA StyleLe Nihouannen, D., Boiziau, C., Rey, S., Agadzhanian, N., Dusserre, N., Cordelières, F., Priault, M., & Boeuf, H. (2025). Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Atg5/7 Genes Leads to Cell Adaptation. Cells, 14(2), 146. https://doi.org/10.3390/cells14020146