Nucleus Reuniens-Elicited Delta Oscillations Disable the Prefrontal Cortex in Schizophrenia
Abstract
1. Introduction
2. Thalamocortical (TC) Functional Dysconnection in Schizophrenia (SZ)
3. The 22q11.2 Deletion Syndrome for SZ—Concentrating on TC Functional Connections
4. Thalamocortical Dysconnection in Sleep: Parallels to TC Dysconnectivity in SZ
5. The Prefrontal Cortex (PFC) Is Disabled in SZ: PFC Delta Activity and Hypofrontality in SZ
5.1. PFC Delta Oscillations in SZ
5.2. Frontal Cortical (FrC) Hypofrontality in SZ: Glucose Metabolism
5.3. Frontal Cortical Hypofrontality in SZ: Blood Flow
6. Neural Substrates for FrC Delta Activity, Hypofrontality and the Thalamocortical Dysconnection of SZ
7. Role of the Nucleus Reuniens (RE) in a Circuitry Producing Delta Oscillations in the Hippocampus and the PFC in the Waking State—With Direct Relevance to SZ
8. Delta Oscillations in the RE-HF-PFC Circuitry: Effects on Cognition with Relevance to SZ—A Brief Description
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jauhar, S.; Johnstone, M.; McKenna, P.J. Schizophrenia. Lancet 2022, 399, 473–486. [Google Scholar] [CrossRef]
- Welsh, R.C.; Chen, A.C.; Taylor, S.F. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr. Bull. 2010, 36, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Marenco, S.; Stein, J.L.; Savostyanova, A.A.; Sambataro, F.; Tan, H.Y.; Goldman, A.L.; Verchinski, B.A.; Barnett, A.S.; Dickinson, D.; Apud, J.A.; et al. Investigation of anatomical thalamo-cortical connectivity and fMRI activation in schizophrenia. Neuropsychopharmacology 2012, 37, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Anticevic, A.; Cole, M.W.; Repovs, G.; Murray, J.D.; Brumbaugh, M.S.; Winkler, A.M.; Savic, A.; Krystal, J.H.; Pearlson, G.D.; Glahn, D.C. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb. Cortex 2014, 24, 3116–3130. [Google Scholar] [CrossRef] [PubMed]
- Anticevic, A.; Haut, K.; Murray, J.D.; Repovs, G.; Yang, G.J.; Diehl, C.; McEwen, S.C.; Bearden, C.E.; Addington, J.; Goodyear, B.; et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry 2015, 72, 882–891. [Google Scholar] [CrossRef]
- Cheng, W.; Palaniyappan, L.; Li, M.; Kendrick, K.M.; Zhang, J.; Luo, Q.; Liu, Z.; Yu, R.; Deng, W.; Wang, Q.; et al. Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophr. 2015, 1, 15016. [Google Scholar] [CrossRef]
- Pergola, G.; Selvaggi, P.; Trizio, S.; Bertolino, A.; Blasi, G. The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci. Biobehav. Rev. 2015, 54, 57–75. [Google Scholar] [CrossRef]
- Tu, P.C.; Lee, Y.C.; Chen, Y.S.; Hsu, J.W.; Li, C.T.; Su, T.P. Network-specific cortico-thalamic dysconnection in schizophrenia revealed by intrinsic functional connectivity analyses. Schizophr. Res. 2014, 166, 137–143. [Google Scholar] [CrossRef]
- Woodward, N.D.; Karbasforoushan, H.; Heckers, S. Thalamocortical dysconnectivity in schizophrenia. Am. J. Psychiatry 2012, 169, 1092–1099. [Google Scholar] [CrossRef]
- Woodward, N.D.; Heckers, S. Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biol. Psychiatry 2016, 79, 1016–1025. [Google Scholar] [CrossRef]
- Giraldo-Chica, M.; Woodward, N.D. Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophr. Res. 2017, 180, 58–63. [Google Scholar] [CrossRef]
- Pratt, J.; Dawson, N.; Morris, B.J.; Grent-’t-Jong, T.; Roux, F.; Uhlhaas, P.J. Thalamo-cortical communication, glutamatergic neurotransmission and neural oscillations: A unique window into the origins of schizophrenia? Schizophr. Res. 2017, 180, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Avram, M.; Brandl, F.; Bäuml, J.; Sorg, C. Cortico-thalamic hypo- and hyperconnectivity extend consistently to basal ganglia in schizophrenia. Neuropsychopharmacology 2018, 43, 2239–2248. [Google Scholar] [CrossRef] [PubMed]
- Skåtun, K.C.; Kaufmann, T.; Brandt, C.L.; Doan, N.T.; Alnæs, D.; Tønnesen, S.; Biele, G.; Vaskinn, A.; Melle, I.; Agartz, I.; et al. Thalamo-cortical functional connectivity in schizophrenia and bipolar disorder. Brain Imaging Behav. 2018, 12, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Steullet, P. Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis. Schizophr. Res. 2020, 226, 147–157. [Google Scholar] [CrossRef]
- Sheffield, J.M.; Huang, A.S.; Rogers, B.P.; Giraldo-Chica, M.; Landman, B.A.; Blackford, J.U.; Heckers, S.; Woodward, N.D. Thalamocortical anatomical connectivity in schizophrenia and psychotic bipolar disorder. Schizophr. Bull. 2020, 46, 1062–1071. [Google Scholar] [CrossRef]
- Fryer, S.L.; Ferri, J.M.; Roach, B.J.; Loewy, R.L.; Stuart, B.K.; Anticevic, A.; Ford, J.M.; Mathalon, D.H. Thalamic dysconnectivity in the psychosis risk syndrome and early illness schizophrenia. Psychol. Med. 2022, 52, 2767–2775. [Google Scholar] [CrossRef]
- Tu, P.C.; Bai, Y.M.; Li, C.T.; Chen, M.H.; Lin, W.C.; Chang, W.C.; Su, T.P. Identification of common thalamocortical dysconnectivity in four major psychiatric disorders. Schizophr. Bull. 2019, 45, 1143–1151. [Google Scholar]
- Cho, K.I.K.; Kwak, Y.B.; Hwang, W.J.; Lee, J.; Kim, M.; Lee, T.Y.; Kwon, J.S. Thalamo-cortical system involving higher-order nuclei in patients with first-episode psychosis. BMB Rep. 2018, 51, 427–428. [Google Scholar] [CrossRef]
- Zhang, M.; Palaniyappan, L.; Deng, M.; Zhang, W.; Pan, Y.; Fan, Z.; Tan, W.; Wu, G.; Liu, Z.; Pu, W. Abnormal thalamocortical circuit in adolescents with early-onset schizophrenia. J. Am. Acad. Child Adolesc. Psychiatry 2021, 60, 479–489. [Google Scholar] [CrossRef]
- Xi, C.; Liu, Z.N.; Yang, J.; Zhang, W.; Deng, M.J.; Pan, Y.Z.; Cheng, Y.Q.; Pu, W.D. Schizophrenia patients and their healthy siblings share decreased prefronto-thalamic connectivity but not increased sensorimotor-thalamic connectivity. Schizophr. Res. 2020, 222, 354–361. [Google Scholar] [CrossRef]
- Ramsay, I.S. An activation likelihood estimate meta-analysis of thalamocortical dysconnectivity in psychosis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2019, 4, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Ferri, J.; Ford, J.M.; Roach, B.J.; Turner, J.A.; van Erp, T.G.; Voyvodic, J.; Preda, A.; Belger, A.; Bustillo, J.; O’Leary, D.; et al. Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychol. Med. 2018, 48, 2492–2499. [Google Scholar] [CrossRef] [PubMed]
- Szeszko, P.R.; Gohel, S.; Vaccaro, D.H.; Chu, K.W.; Tang, C.Y.; Goldstein, K.E.; New, A.S.; Siever, L.J.; McClure, M.; Perez-Rodriguez, M.M.; et al. Frontotemporal thalamic connectivity in schizophrenia and schizotypal personality disorder. Psychiatry Res. Neuroimaging 2022, 322, 111463. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, I.S.; Mueller, B.; Ma, Y.; Shen, C.; Sponheim, S.R. Thalamocortical connectivity and its relationship with symptoms and cognition across the psychosis continuum. Psychol. Med. 2023, 53, 5582–5591. [Google Scholar] [CrossRef]
- Wu, G.; Palaniyappan, L.; Zhang, M.; Yang, J.; Xi, C.; Liu, Z.; Xue, Z.; Ouyang, X.; Tao, H.; Zhang, J.; et al. Imbalance between prefronto-thalamic and sensorimotor-thalamic circuitries associated with working memory deficit in schizophrenia. Schizophr. Bull. 2022, 48, 251–261. [Google Scholar] [CrossRef]
- Green, M.F.; Kern, R.S.; Braff, D.L.; Mintz, J. Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”? Schizophr. Bull. 2000, 26, 119–136. [Google Scholar] [CrossRef]
- Millan, M.J.; Agid, Y.; Brüne, M.; Bullmore, E.T.; Carter, C.S.; Clayton, N.S.; Connor, R.; Davis, S.; Deakin, B.; DeRubeis, R.J.; et al. Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 2012, 11, 141–168. [Google Scholar] [CrossRef]
- Guo, J.Y.; Ragland, J.D.; Carter, C.S. Memory and cognition in schizophrenia. Mol. Psychiatry 2019, 24, 633–642. [Google Scholar] [CrossRef]
- Velthorst, E.; Mollon, J.; Murray, R.M.; de Haan, L.; Germeys, I.M.; Glahn, D.C.; Arango, C.; van der Ven, E.; Di Forti, M.; Bernardo, M.; et al. Cognitive functioning throughout adulthood and illness stages in individuals with psychotic disorders and their unaffected siblings. Mol. Psychiatry 2021, 26, 4529–4543. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Keefe, R.S.E.; McGuire, P.K. Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and treatment. Mol. Psychiatry 2023, 28, 1902–1918. [Google Scholar] [CrossRef]
- Hung, C.C.; Lin, K.H.; Chang, H.A. Exploring cognitive deficits and neuromodulation in schizophrenia: A narrative review. Medicina 2024, 60, 2060. [Google Scholar] [CrossRef]
- Benoit, L.J.; Canetta, S.; Kellendonk, C. Thalamocortical development: A neurodevelopmental framework for schizophrenia. Biol. Psychiatry 2022, 92, 491–500. [Google Scholar] [CrossRef]
- Bergé, D.; Lesh, T.A.; Smucny, J.; Carter, C.S. Improvement in prefrontal thalamic connectivity during the early course of the illness in recent-onset psychosis: A 12-month longitudinal follow-up resting-state fMRI study. Psychol. Med. 2022, 52, 2713–2721. [Google Scholar] [CrossRef]
- McDonald-McGinn, D.M.; Sullivan, K.E.; Marino, B.; Philip, N.; Swillen, A.; Vorstman, J.A.; Zackai, E.H.; Emanuel, B.S.; Vermeesch, J.R.; Morrow, B.E.; et al. 22q11.2 deletion syndrome. Nat. Rev. Dis. Primers 2015, 1, 15071. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Patton, M.H.; Zakharenko, S.S. A case for thalamic mechanisms of schizophrenia: Perspective from modeling 22q11.2 deletion syndrome. Front. Neural Circuits 2021, 15, 769969. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Westmoreland, J.J.; Bayazitov, I.T.; Eddins, D.; Pani, A.K.; Smeyne, R.J.; Yu, J.; Blundon, J.A.; Zakharenko, S.S. Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science 2014, 344, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Du, F.; Westmoreland, J.J.; Han, S.B.; Wang, Y.D.; Eddins, D.; Bayazitov, I.T.; Devaraju, P.; Yu, J.; Mellado Lagarde, M.M.; et al. Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion. Nat. Med. 2017, 23, 39–48. [Google Scholar] [CrossRef]
- Schleifer, C.; Lin, A.; Kushan, L.; Ji, J.L.; Yang, G.; Bearden, C.E.; Anticevic, A. Dissociable disruptions in thalamic and hippocampal resting-state functional connectivity in youth with 22q11.2 deletions. J. Neurosci. 2019, 39, 1301–1319. [Google Scholar] [CrossRef]
- Mancini, V.; Zöller, D.; Schneider, M.; Schaer, M.; Eliez, S. Abnormal development and dysconnectivity of distinct thalamic nuclei in patients with 22q11.2 deletion syndrome experiencing auditory hallucinations. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 875–890. [Google Scholar] [CrossRef]
- Cantonas, L.M.; Mancini, V.; Rihs, T.A.; Rochas, V.; Schneider, M.; Eliez, S.; Michel, C.M. Abnormal auditory processing and underlying structural changes in 22q11.2 deletion syndrome. Schizophr. Bull. 2021, 47, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Mancini, V.; Sandini, C.; Padula, M.C.; Zöller, D.; Schneider, M.; Schaer, M.; Eliez, S. Positive psychotic symptoms are associated with divergent developmental trajectories of hippocampal volume during late adolescence in patients with 22q11DS. Mol. Psychiatry 2020, 25, 2844–2859. [Google Scholar] [CrossRef] [PubMed]
- McKenna, J.T.; Vertes, R.P. Afferent projections to nucleus reuniens of the thalamus. J. Comp. Neurol. 2004, 480, 115–142. [Google Scholar] [CrossRef] [PubMed]
- Vertes, R.P.; Hoover, W.B.; do Valle, A.C.; Sherman, A.; Rodriguez, J.J. Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J. Comp. Neurol. 2006, 499, 768–796. [Google Scholar] [CrossRef]
- Vertes, R.P.; Hoover, W.B.; Szigeti, K.; Leranth, C. Nucleus reuniens of the midline thalamus: Link between the medial prefrontal cortex and the hippocampus. Brain Res. Bull. 2007, 71, 601–609. [Google Scholar] [CrossRef]
- Hoover, W.B.; Vertes, R.P. Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: A single and double retrograde fluorescent labeling study. Brain Struct. Funct. 2012, 217, 191–209. [Google Scholar] [CrossRef]
- Vertes, R.P.; Linley, S.B.; Hoover, W.B. Limbic circuitry of the midline thalamus. Neurosci. Biobehav. Rev. 2015, 54, 89–107. [Google Scholar] [CrossRef]
- Vertes, R.P.; Linley, S.B.; Rojas, A.K.P. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front. Behav. Neurosci. 2022, 16, 964644. [Google Scholar] [CrossRef]
- Latrèche, C.; Maeder, J.; Mancini, V.; Bortolin, K.; Schneider, M.; Eliez, S. Altered developmental trajectories of verbal learning skills in 22q11.2DS: Associations with hippocampal development and psychosis. Psychol. Med. 2023, 53, 4923–4932. [Google Scholar] [CrossRef]
- Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev. 2012, 92, 1087–1187. [Google Scholar] [CrossRef]
- Gent, T.C.; Bassetti, C.; Adamantidis, A.R. Sleep-wake control and the thalamus. Curr. Opin. Neurobiol. 2018, 52, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Picchioni, D.; Pixa, M.L.; Fukunaga, M.; Carr, W.S.; Horovitz, S.G.; Braun, A.R.; Duyn, J.H. Decreased connectivity between the thalamus and the neocortex during human non-rapid eye movement sleep. Sleep 2014, 37, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Hale, J.R.; White, T.P.; Mayhew, S.D.; Wilson, R.S.; Rollings, D.T.; Khalsa, S.; Arvanitis, T.N.; Bagshaw, A.P. Altered thalamocortical and intra-thalamic functional connectivity during light sleep compared with wake. NeuroImage 2016, 125, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.; Velasco, F.; Cepeda, C. A peculiar rhythmic EEG activity from ventrobasal thalamus during paradoxical sleep in man. Electroencephalogr. Clin. Neurophysiol. 1979, 47, 119–125. [Google Scholar] [CrossRef]
- Magnin, M.; Bastuji, H.; Garcia-Larrea, L.; Mauguière, F. Human thalamic medial pulvinar nucleus is not activated during paradoxical sleep. Cereb. Cortex 2004, 14, 858–862. [Google Scholar] [CrossRef]
- Bastuji, H.; Daoud, M.; Magnin, M.; Garcia-Larrea, L. REM sleep remains paradoxical: Sub-states determined by thalamo-cortical and cortico-cortical functional connectivity. J. Physiol. 2024, 602, 5269–5287. [Google Scholar] [CrossRef]
- Sponheim, S.R.; Clementz, B.A.; Iacono, W.G.; Beiser, M. Resting EEG in first-episode and chronic schizophrenia. Psychophysiology 1994, 31, 37–43. [Google Scholar] [CrossRef]
- Sponheim, S.R.; Clementz, B.A.; Iacono, W.G.; Beiser, M. Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia. Biol. Psychiatry 2000, 48, 1088–1097. [Google Scholar] [CrossRef]
- Cañive, J.M.; Lewine, J.D.; Edgar, J.C.; Davis, J.T.; Torres, F.; Roberts, B.; Graeber, D.; Orrison, W.W., Jr.; Tuason, V.B. Magnetoencephalographic assessment of spontaneous brain activity in schizophrenia. Psychopharmacol. Bull. 1996, 32, 741–750. [Google Scholar]
- Fehr, T.; Kissler, J.; Moratti, S.; Wienbruch, C.; Rockstroh, B.; Elbert, T. Source distribution of neuromagnetic slow waves and MEG-delta activity in schizophrenic patients. Biol. Psychiatry 2001, 50, 108–116. [Google Scholar] [CrossRef]
- Fehr, T.; Kissler, J.; Wienbruch, C.; Moratti, S.; Elbert, T.; Watzl, H.; Rockstroh, B. Source distribution of neuromagnetic slow-wave activity in schizophrenic patients—Effects of activation. Schizophr. Res. 2003, 63, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Sperling, W.; Martus, P.; Kober, H.; Bleich, S.; Kornhuber, J. Spontaneous, slow and fast magnetoencephalographic activity in patients with schizophrenia. Schizophr. Res. 2002, 58, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Wienbruch, C.; Moratti, S.; Elbert, T.; Vogel, U.; Fehr, T.; Kissler, J.; Schiller, A.; Rockstroh, B. Source distribution of neuromagnetic slow wave activity in schizophrenic and depressive patients. Clin. Neurophysiol. 2003, 114, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Rockstroh, B.S.; Wienbruch, C.; Ray, W.J.; Elbert, T. Abnormal oscillatory brain dynamics in schizophrenia: A sign of deviant communication in neural network? BMC Psychiatry 2007, 7, 44. [Google Scholar] [CrossRef]
- Boutros, N.N.; Arfken, C.; Galderisi, S.; Warrick, J.; Pratt, G.; Iacono, W. The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr. Res. 2008, 99, 225–237. [Google Scholar] [CrossRef]
- Galderisi, S.; Mucci, A.; Volpe, U.; Boutros, N. Evidence-based medicine and electrophysiology in schizophrenia. Clin. EEG Neurosci. 2009, 40, 62–77. [Google Scholar] [CrossRef]
- Venables, N.C.; Bernat, E.M.; Sponheim, S.R. Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophr. Bull. 2009, 35, 826–839. [Google Scholar] [CrossRef]
- John, J.P.; Rangaswamy, M.; Thennarasu, K.; Khanna, S.; Nagaraj, R.B.; Mukundan, C.R.; Pradhan, N. EEG power spectra differentiate positive and negative subgroups in neuroleptic-naive schizophrenia patients. J. Neuropsychiatry Clin. Neurosci. 2009, 21, 160–172. [Google Scholar] [CrossRef]
- Kikuchi, M.; Koenig, T.; Wada, Y.; Higashima, M.; Koshino, Y.; Strik, W.; Dierks, T. Native EEG and treatment effects in neuroleptic-naïve schizophrenic patients: Time and frequency domain approaches. Schizophr. Res. 2007, 97, 163–172. [Google Scholar] [CrossRef]
- Itoh, T.; Sumiyoshi, T.; Higuchi, Y.; Suzuki, M.; Kawasaki, Y. LORETA analysis of three-dimensional distribution of δ band activity in schizophrenia: Relation to negative symptoms. Neurosci. Res. 2011, 70, 442–448. [Google Scholar] [CrossRef]
- Gattaz, W.F.; Mayer, S.; Ziegler, P.; Platz, M.; Gasser, T. Hypofrontality on topographic EEG in schizophrenia. Correlations with neuropsychological and psychopathological parameters. Eur. Arch. Psychiatry Clin. Neurosci. 1992, 241, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Gerez, M.; Tello, A. Selected quantitative EEG (QEEG) and event-related potential (ERP) variables as discriminators for positive and negative schizophrenia. Biol. Psychiatry 1995, 38, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.W.; Williams, L.; Gordon, E.; Bahramali, H.; Slewa-Younan, S. Different psychopathological models and quantified EEG in schizophrenia. Psychol. Med. 1999, 29, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Winterer, G.; Ziller, M.; Dorn, H.; Frick, K.; Mulert, C.; Wuebben, Y.; Herrmann, W.M. Frontal dysfunction in schizophrenia—A new electrophysiological classifier for research and clinical applications. Eur. Arch. Psychiatry Clin. Neurosci. 2000, 250, 207–214. [Google Scholar] [CrossRef]
- Gross, A.; Joutsiniemi, S.L.; Rimon, R.; Appelberg, B. Correlation of symptom clusters of schizophrenia with absolute powers of main frequency bands in quantitative EEG. Behav. Brain Funct. 2006, 2, 23. [Google Scholar] [CrossRef]
- Gschwandtner, U.; Zimmermann, R.; Pflueger, M.O.; Riecher-Rössler, A.; Fuhr, P. Negative symptoms in neuroleptic-naïve patients with first-episode psychosis correlate with QEEG parameters. Schizophr. Res. 2009, 115, 231–236. [Google Scholar] [CrossRef]
- Zimmermann, R.; Gschwandtner, U.; Wilhelm, F.H.; Pflueger, M.O.; Riecher-Rössler, A.; Fuhr, P. EEG spectral power and negative symptoms in at-risk individuals predict transition to psychosis. Schizophr. Res. 2010, 123, 208–216. [Google Scholar] [CrossRef]
- Lavoie, S.; Schäfer, M.R.; Whitford, T.J.; Benninger, F.; Feucht, M.; Klier, C.M.; Yuen, H.P.; Pantelis, C.; McGorry, P.D.; Amminger, G.P. Frontal delta power associated with negative symptoms in ultra-high risk individuals who transitioned to psychosis. Schizophr. Res. 2012, 138, 206–211. [Google Scholar] [CrossRef]
- van Tricht, M.J.; Ruhrmann, S.; Arns, M.; Müller, R.; Bodatsch, M.; Velthorst, E.; Koelman, J.H.; Bour, L.J.; Zurek, K.; Schultze-Lutter, F.; et al. Can quantitative EEG measures predict clinical outcome in subjects at clinical high risk for psychosis? A prospective multicenter study. Schizophr. Res. 2014, 153, 42–47. [Google Scholar] [CrossRef]
- Chen, Y.H.; Stone-Howell, B.; Edgar, J.C.; Huang, M.; Wootton, C.; Hunter, M.A.; Lu, B.Y.; Sadek, J.R.; Miller, G.A.; Cañive, J.M. Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia. Br. J. Psychiatry 2016, 208, 160–167. [Google Scholar] [CrossRef]
- Sponheim, S.R.; Ramsay, I.S.; Lynn, P.A.; Vinogradov, S. Generalized slowing of resting-state neural oscillations in people with schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2025, 10, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.; Mann, L.; Laws, K.R.; Stephenson, C.M.; Nimmo-Smith, I.; McKenna, P.J. Hypofrontality in schizophrenia: A meta-analysis of functional imaging studies. Acta Psychiatr. Scand. 2004, 110, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Spironelli, C.; Angrilli, A.; Calogero, A.; Stegagno, L. Delta EEG band as a marker of left hypofrontality for language in schizophrenia patients. Schizophr. Bull. 2011, 37, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Pillinger, T.; Selvaggi, P.; Veronese, M.; Turkheimer, F.; Howes, O. Brain glucose metabolism in schizophrenia: A systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol. Med. 2023, 53, 4880–4897. [Google Scholar] [CrossRef]
- Andreasen, N.C.; O’Leary, D.S.; Flaum, M.; Nopoulos, P.; Watkins, G.L.; Boles Ponto, L.L.; Hichwa, R.D. Hypofrontality in schizophrenia: Distributed dysfunctional circuits in neuroleptic-naïve patients. Lancet 1997, 349, 1730–1734. [Google Scholar] [CrossRef]
- Scheef, L.; Manka, C.; Daamen, M.; Kühn, K.U.; Maier, W.; Schild, H.H.; Jessen, F. Resting-state perfusion in nonmedicated schizophrenic patients: A continuous arterial spin-labeling 3.0-T MR study. Radiology 2010, 256, 253–260. [Google Scholar] [CrossRef]
- Pinkham, A.; Loughead, J.; Ruparel, K.; Wu, W.C.; Overton, E.; Gur, R.; Gur, R. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI. Psychiatry Res. 2011, 194, 64–72. [Google Scholar] [CrossRef]
- Ota, M.; Ishikawa, M.; Sato, N.; Okazaki, M.; Maikusa, N.; Hori, H.; Hattori, K.; Teraishi, T.; Ito, K.; Kunugi, H. Pseudo-continuous arterial spin labeling MRI study of schizophrenic patients. Schizophr. Res. 2014, 154, 113–118. [Google Scholar] [CrossRef]
- Kindler, J.; Jann, K.; Homan, P.; Hauf, M.; Walther, S.; Strik, W.; Dierks, T.; Hubl, D. Static and dynamic characteristics of cerebral blood flow during the resting state in schizophrenia. Schizophr. Bull. 2015, 41, 163–170. [Google Scholar] [CrossRef]
- Kindler, J.; Schultze-Lutter, F.; Hauf, M.; Dierks, T.; Federspiel, A.; Walther, S.; Schimmelmann, B.G.; Hubl, D. Increased striatal and reduced prefrontal cerebral blood flow in clinical high risk for psychosis. Schizophr. Bull. 2018, 44, 182–192. [Google Scholar] [CrossRef]
- Zhu, J.; Zhuo, C.; Qin, W.; Xu, Y.; Xu, L.; Liu, X.; Yu, C. Altered resting-state cerebral blood flow and its connectivity in schizophrenia. J. Psychiatr. Res. 2015, 63, 28–35. [Google Scholar] [CrossRef]
- Oliveira, Í.A.F.; Guimarães, T.M.; Souza, R.M.; Dos Santos, A.C.; Machado-de-Sousa, J.P.; Hallak, J.E.C.; Leoni, R.F. Brain functional and perfusional alterations in schizophrenia: An arterial spin labeling study. Psychiatry Res. Neuroimaging 2018, 272, 71–78. [Google Scholar] [CrossRef]
- Selvaggi, P.; Jauhar, S.; Kotoula, V.; Pepper, F.; Veronese, M.; Santangelo, B.; Zelaya, F.; Turkheimer, F.E.; Mehta, M.A.; Howes, O.D. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol. Med. 2023, 53, 5235–5245. [Google Scholar] [CrossRef]
- Selvaggi, P.; Hawkins, P.C.T.; Dipasquale, O.; Rizzo, G.; Bertolino, A.; Dukart, J.; Sambataro, F.; Pergola, G.; Williams, S.C.R.; Turkheimer, F.; et al. Increased cerebral blood flow after single dose of antipsychotics in healthy volunteers depends on dopamine D2 receptor density profiles. NeuroImage 2019, 188, 774–784. [Google Scholar] [CrossRef]
- Kittelberger, K.; Hur, E.E.; Sazegar, S.; Keshavan, V.; Kocsis, B. Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: Relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct. Funct. 2012, 217, 395–409. [Google Scholar] [CrossRef]
- Moghaddam, B.; Javitt, D. From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012, 37, 4–15. [Google Scholar] [CrossRef]
- Adell, A.; Jiménez-Sánchez, L.; López-Gil, X.; Romón, T. Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr. Bull. 2012, 38, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Marquis, K.L.; Paquette, N.C.; Gussio, R.P.; Moreton, J.E. Comparative electroencephalographic and behavioral effects of phencyclidine, (+)-SKF-10,047 and MK-801 in rats. J. Pharmacol. Exp. Ther. 1989, 251, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Sebban, C.; Tesolin-Decros, B.; Ciprian-Ollivier, J.; Perret, L.; Spedding, M. Effects of phencyclidine (PCP) and MK-801 on the EEG in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, alpha(1)- and 5-HT(2A)-receptors. Br. J. Pharmacol. 2002, 135, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Páleníček, T.; Fujáková, M.; Brunovský, M.; Balíková, M.; Horáček, J.; Gorman, I.; Tylš, F.; Tišlerová, B.; Soš, P.; Bubeníková-Valešová, V.; et al. Electroencephalographic spectral and coherence analysis of ketamine in rats: Correlation with behavioral effects and pharmacokinetics. Neuropsychobiology 2011, 63, 202–218. [Google Scholar] [CrossRef]
- Kiss, T.; Hoffmann, W.E.; Scott, L.; Kawabe, T.T.; Milici, A.J.; Nilsen, E.A.; Hajós, M. Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity. Front. Psychiatry 2011, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Kiss, T.; Hoffmann, W.E.; Hajós, M. Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: Modelling NMDA hypofunction of schizophrenia. Int. J. Neuropsychopharmacol. 2011, 14, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yoshida, T.; Katz, D.B.; Lisman, J.E. NMDAR antagonist action in thalamus imposes δ oscillations on the hippocampus. J. Neurophysiol. 2012, 107, 3181–3189. [Google Scholar] [CrossRef] [PubMed]
- Contreras, D.; Steriade, M. Cellular basis of EEG slow rhythms: A study of dynamic corticothalamic relationships. J. Neurosci. 1995, 15, 604–622. [Google Scholar] [CrossRef]
- Steriade, M.; Timofeev, I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 2003, 37, 563–576. [Google Scholar] [CrossRef]
- Goswamee, P.; Rice, R.; Leggett, E.; Zhang, F.; Manicka, S.; Porter, J.H.; McQuiston, A.R. Effects of subanesthetic ketamine and (2R,6R) hydroxynorketamine on working memory and synaptic transmission in the nucleus reuniens in mice. Neuropharmacology 2022, 208, 108965. [Google Scholar] [CrossRef]
- Lisman, J. Excitation, inhibition, local oscillations, or large-scale loops: What causes the symptoms of schizophrenia? Curr. Opin. Neurobiol. 2012, 22, 537–544. [Google Scholar] [CrossRef]
- Hunt, M.J.; Kasicki, S. A systematic review of the effects of NMDA receptor antagonists on oscillatory activity recorded in vivo. J. Psychopharmacol. 2013, 27, 972–986. [Google Scholar] [CrossRef]
- Vukadinovic, Z. NMDA receptor hypofunction and the thalamus in schizophrenia. Physiol. Behav. 2014, 131, 156–159. [Google Scholar] [CrossRef]
- Lisman, J.E.; Pi, H.J.; Zhang, Y.; Otmakhova, N.A. A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol. Psychiatry 2010, 68, 17–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Llinas, R.R.; Lisman, J.E. Inhibition of NMDARs in the nucleus reticularis of the thalamus produces delta frequency bursting. Front. Neural Circuits 2009, 3, 20. [Google Scholar] [CrossRef]
- Zhang, Y.; Buonanno, A.; Vertes, R.P.; Hoover, W.B.; Lisman, J.E. NR2C in the thalamic reticular nucleus; effects of the NR2C knockout. PLoS ONE 2012, 7, e41908. [Google Scholar] [CrossRef] [PubMed]
- Marini, G.; Ceccarelli, P.; Mancia, M. Effects of bilateral microinjections of ibotenic acid in the thalamic reticular nucleus on delta oscillations and sleep in freely-moving rats. J. Sleep Res. 2000, 9, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Cueni, L.; Canepari, M.; Luján, R.; Emmenegger, Y.; Watanabe, M.; Bond, C.T.; Franken, P.; Adelman, J.P.; Lüthi, A. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat. Neurosci. 2008, 11, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, F.; Torres-Vega, M.A.; Marks, G.A.; Joho, R.H. Ablation of Kv3.1 and Kv3.3 potassium channels disrupts thalamocortical oscillations in vitro and in vivo. J. Neurosci. 2008, 28, 5570–5581. [Google Scholar] [CrossRef]
- Lewis, L.D.; Voigts, J.; Flores, F.J.; Schmitt, L.I.; Wilson, M.A.; Halassa, M.M.; Brown, E.N. Thalamic reticular nucleus induces fast and local modulation of arousal state. eLife 2015, 4, e08760. [Google Scholar] [CrossRef]
- Herrera, C.G.; Cadavieco, M.C.; Jego, S.; Ponomarenko, A.; Korotkova, T.; Adamantidis, A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat. Neurosci. 2016, 19, 290–298. [Google Scholar] [CrossRef]
- Uygun, D.S.; Yang, C.; Tilli, E.R.; Katsuki, F.; Hodges, E.L.; McKenna, J.T.; McNally, J.M.; Brown, R.E.; Basheer, R. Knockdown of GABAA_AA α3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nat. Commun. 2022, 13, 2246. [Google Scholar] [CrossRef]
- Vertes, R.P.; Linley, S.B.; Rojas, A.K.P.; Lamothe, K.; Allen, T.A. Diencephalic modulation of the hippocampus in affective and cognitive behavior. Curr. Opin. Behav. Sci. 2024, 57, 101377. [Google Scholar] [CrossRef]
- Vertes, R.P. Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J. Comp. Neurol. 2002, 442, 163–187. [Google Scholar] [CrossRef]
- Varela, C.; Kumar, S.; Yang, J.Y.; Wilson, M.A. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct. Funct. 2014, 219, 911–929. [Google Scholar] [CrossRef]
- Hoover, W.B.; Vertes, R.P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 2007, 212, 149–179. [Google Scholar] [CrossRef]
- Vertes, R.P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 2004, 51, 32–58. [Google Scholar] [CrossRef]
- Laroche, S.; Davis, S.; Jay, T.M. Plasticity at hippocampal to prefrontal cortex synapses: Dual roles in working memory and consolidation. Hippocampus 2000, 10, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 2016, 17, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.A.; Gomes, F.V. The circuitry of dopamine system regulation and its disruption in schizophrenia: Insights into treatment and prevention. Schizophr. Bull. 2019, 45, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Patton, M.H.; Bizup, B.T.; Grace, A.A. The infralimbic cortex bidirectionally modulates mesolimbic dopamine neuron activity via distinct neural pathways. J. Neurosci. 2013, 33, 16865–16873. [Google Scholar] [CrossRef]
- Zimmerman, E.C.; Grace, A.A. The nucleus reuniens of the midline thalamus gates prefrontal-hippocampal modulation of ventral tegmental area dopamine neuron activity. J. Neurosci. 2016, 36, 8977–8984. [Google Scholar] [CrossRef]
- Zimmerman, E.C.; Grace, A.A. Prefrontal cortex modulates firing pattern in the nucleus reuniens of the midline thalamus via distinct corticothalamic pathways. Eur. J. Neurosci. 2018, 48, 3255–3272. [Google Scholar] [CrossRef]
- Thörn, C.W.; Kafetzopoulos, V.; Kocsis, B. Differential effect of dopamine D4 receptor activation on low-frequency oscillations in the prefrontal cortex and hippocampus may bias the bidirectional prefrontal-hippocampal coupling. Int. J. Mol. Sci. 2022, 23, 11705. [Google Scholar] [CrossRef]
- Kuang, J.; Kafetzopoulos, V.; Deth, R.; Kocsis, B. Dopamine D4 receptor agonist drastically increases delta activity in the thalamic nucleus reuniens: Potential role in communication between prefrontal cortex and hippocampus. Int. J. Mol. Sci. 2023, 24, 15289. [Google Scholar] [CrossRef]
- Anaya-Martinez, V.; Martinez-Marcos, A.; Martinez-Fong, D.; Aceves, J.; Erlij, D. Substantia nigra compacta neurons that innervate the reticular thalamic nucleus in the rat also project to striatum or globus pallidus: Implications for abnormal motor behavior. Neuroscience 2006, 143, 477–486. [Google Scholar] [CrossRef] [PubMed]
- García-Cabezas, M.A.; Martínez-Sánchez, P.; Sánchez-González, M.A.; Garzón, M.; Cavada, C. Dopamine innervation in the thalamus: Monkey versus rat. Cereb. Cortex 2009, 19, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Mrzljak, L.; Bergson, C.; Pappy, M.; Huff, R.; Levenson, R.; Goldman-Rakic, P.S. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 1996, 381, 245–248. [Google Scholar] [CrossRef]
- Gasca-Martinez, D.; Hernandez, A.; Sierra, A.; Valdiosera, R.; Anaya-Martinez, V.; Floran, B.; Erlij, D.; Aceves, J. Dopamine inhibits GABA transmission from the globus pallidus to the thalamic reticular nucleus via presynaptic D4 receptors. Neuroscience 2010, 169, 1672–1681. [Google Scholar] [CrossRef]
- Govindaiah, G.; Wang, T.; Gillette, M.U.; Crandall, S.R.; Cox, C.L. Regulation of inhibitory synapses by presynaptic D4 dopamine receptors in thalamus. J. Neurophysiol. 2010, 104, 2757–2765. [Google Scholar] [CrossRef]
- Barrientos, R.; Alatorre, A.; Martínez-Escudero, J.; García-Ramírez, M.; Oviedo-Chávez, A.; Delgado, A.; Querejeta, E. Effects of local activation and blockade of dopamine D4 receptors in the spiking activity of the reticular thalamic nucleus in normal and in ipsilateral dopamine-depleted rats. Brain Res. 2019, 1712, 34–46. [Google Scholar] [CrossRef]
- Vaughn, M.J.; Yellamelli, N.; Burger, R.M.; Haas, J.S. Dopamine receptors D1, D2, and D4 modulate electrical synapses and excitability in the thalamic reticular nucleus. J. Neurophysiol. 2025, 133, 374–387. [Google Scholar] [CrossRef]
- Lahti, R.A.; Evans, D.L.; Stratman, N.C.; Figur, L.M. Dopamine D4 versus D2 receptor selectivity of dopamine receptor antagonists: Possible therapeutic implications. Eur. J. Pharmacol. 1993, 236, 483–486. [Google Scholar] [CrossRef]
- Cassel, J.C.; Pereira de Vasconcelos, A.; Loureiro, M.; Cholvin, T.; Dalrymple-Alford, J.C.; Vertes, R.P. The reuniens and rhomboid nuclei: Neuroanatomy, electrophysiological characteristics and behavioral implications. Prog. Neurobiol. 2013, 111, 34–52. [Google Scholar] [CrossRef]
- Cassel, J.C.; Ferraris, M.; Quilichini, P.; Cholvin, T.; Boch, L.; Stephan, A.; Pereira de Vasconcelos, A. The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neurosci. Biobehav. Rev. 2021, 126, 338–360. [Google Scholar] [CrossRef]
- Dolleman-van der Weel, M.J.; Griffin, A.L.; Ito, H.T.; Shapiro, M.L.; Witter, M.P.; Vertes, R.P.; Allen, T.A. The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learn. Mem. 2019, 26, 191–205. [Google Scholar] [CrossRef]
- Griffin, A.L. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front. Syst. Neurosci. 2015, 9, 29. [Google Scholar] [CrossRef]
- Griffin, A.L. The nucleus reuniens orchestrates prefrontal-hippocampal synchrony during spatial working memory. Neurosci. Biobehav. Rev. 2021, 128, 415–420. [Google Scholar] [CrossRef]
- Duan, A.R.; Varela, C.; Zhang, Y.; Shen, Y.; Xiong, L.; Wilson, M.A.; Lisman, J. Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: Relevance to schizophrenia. Biol. Psychiatry 2015, 77, 1098–1107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vertes, R.P.; Linley, S.B. Nucleus Reuniens-Elicited Delta Oscillations Disable the Prefrontal Cortex in Schizophrenia. Cells 2025, 14, 1545. https://doi.org/10.3390/cells14191545
Vertes RP, Linley SB. Nucleus Reuniens-Elicited Delta Oscillations Disable the Prefrontal Cortex in Schizophrenia. Cells. 2025; 14(19):1545. https://doi.org/10.3390/cells14191545
Chicago/Turabian StyleVertes, Robert P., and Stephanie B. Linley. 2025. "Nucleus Reuniens-Elicited Delta Oscillations Disable the Prefrontal Cortex in Schizophrenia" Cells 14, no. 19: 1545. https://doi.org/10.3390/cells14191545
APA StyleVertes, R. P., & Linley, S. B. (2025). Nucleus Reuniens-Elicited Delta Oscillations Disable the Prefrontal Cortex in Schizophrenia. Cells, 14(19), 1545. https://doi.org/10.3390/cells14191545