Prognostic Associations and Functional Implications of Angiogenesis-Related miRNA Variants in Ischemic Stroke
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Approval
2.2. Study Population Group
2.3. Genotyping of the Six miRNA Polymorphisms
2.4. Determination of Homocysteine, Folate, and High-Density Lipoprotein-Cholesterol Levels
2.5. Statistical Analysis
2.6. Cell Culture
2.7. Plasmid Amplification, Transformation and Purification
2.8. Over-Expression of the miR-21 Gene in EA. Hy926 Cells
2.9. Quantitative Real-Time PCR
2.10. The Prediction of miR-21 Binding Target Genes
3. Results
3.1. Clinical Profiles in This Study
3.2. Genotype Frequency Analyses of miRNA Polymorphisms in Ischemic Stroke Patients and Controls
3.3. Genotype Frequency Analyses of miRNA Polymorhpisms in Ischemic Stroke Subgroup Patients and Controls
3.4. Allele Combination Analyses for Each miRNA Plymorphism in Ischemic Stroke Patients and Controls
3.5. Genotype Combination Analyses for Each miRNA Polymorphism in Ischemic Stroke Patients and Controls
3.6. Stratified Analyses of miRNA Genotypes Combined with Clinical Variables Related to Ischemic Stroke
3.7. Ischemic Stroke Prevalence According to Analyses of Interactions Between miRNA Polymorphisms and Environmental Factors
3.8. Stratified Assessments of Clinical Variables and miRNA Polymorphisms in Ischemic Stroke Patients and Controls According to Analysis of Variance (ANOVA)
3.9. Comparisons of miRNA Polymorphism Genotype Frequency and Survival in Ischemic Stroke Patients
3.10. Differences in miR-21 Expression Between miR-21 rs1292037 and rs13137 Polymorphisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MiRNA | MicroRNA |
Dicer-1 | Dicer 1, ribonuclease III |
STAT3 | Signal transducer and activator of transcription 3 |
TOAST | Trial of Org 10172 in Acute Stroke Treatment |
LAD | Large-artery disease |
MRI | Magnetic resonance imaging |
SVD | Small-vessel disease |
CE | Cardio-embolism |
HTN | Hypertension |
DM | Diabetes mellitus |
PCR | Polymerase chain reaction |
RFLP | Restriction fragment length polymorphism |
SNP | Single-nucleotide polymorphism |
tHcy | Total homocysteine |
FPIA | Fluorescent polarizing immunoassay |
HDL-C | High-density lipoprotein-cholesterol |
AOR | Adjusted odds ratios |
CI | Confidence intervals |
OR | Odds ratios |
HWE | Hardy–Weinberg equilibrium |
MDR | Multifactor Dimensionality Reduction |
ANOVA | Analysis of variance |
RECK | Reversion-inducing cysteine-rich protein with Kazal motifs |
HUVECs | Human Umbilical Vein Endothelial Cells |
References
- Yoon, H. Factors affecting quality of life of the Korean aged stroke patients. Int. J. Aging Hum. Dev. 1997, 44, 167–181. [Google Scholar] [CrossRef]
- Kwon, S.U.; Kim, J.S.; Lee, J.H.; Lee, M.C. Ischemic stroke in Korean young adults. Acta Neurol. Scand. 2000, 101, 19–24. [Google Scholar] [CrossRef]
- Antovic, J.; Bakic, M.; Zivkovic, M.; Ilic, A.; Blomback, M. Blood coagulation and fibrinolysis in acute ischaemic and haemorrhagic (intracerebral and subarachnoid haemorrhage) stroke: Does decreased plasmin inhibitor indicate increased fibrinolysis in subarachnoid haemorrhage compared to other types of stroke? Scand. J. Clin. Lab. Investig. 2002, 62, 195–199. [Google Scholar] [CrossRef]
- Song, Y.M.; Sung, J.; Davey Smith, G.; Ebrahim, S. Body mass index and ischemic and hemorrhagic stroke: A prospective study in Korean men. Stroke 2004, 35, 831–836. [Google Scholar] [CrossRef]
- Song, Y.M.; Kwon, S.U.; Sung, J.; Ebrahim, S.; Smith, G.D.; Sunwoo, S.; Yun, Y.S. Different risk factor profiles between subtypes of ischemic stroke. A case-control study in Korean men. Eur. J. Epidemiol. 2005, 20, 605–612. [Google Scholar] [CrossRef]
- Jee, S.H.; Park, J.W.; Lee, S.Y.; Nam, B.H.; Ryu, H.G.; Kim, S.Y.; Kim, Y.N.; Lee, J.K.; Choi, S.M.; Yun, J.E. Stroke risk prediction model: A risk profile from the Korean study. Atherosclerosis 2008, 197, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Smyth, A.; O’Donnell, M.; Rangarajan, S.; Hankey, G.J.; Oveisgharan, S.; Canavan, M.; McDermott, C.; Xavier, D.; Zhang, H.; Damasceno, A.; et al. Alcohol Intake as a Risk Factor for Acute Stroke: The INTERSTROKE Study. Neurology 2023, 100, e142–e153. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, G.; Debette, S. Genetic Risk Factors for Ischemic and Hemorrhagic Stroke. Curr. Cardiol. Rep. 2016, 18, 124. [Google Scholar] [CrossRef]
- Alloubani, A.; Saleh, A.; Abdelhafiz, I. Hypertension and diabetes mellitus as a predictive risk factors for stroke. Diabetes Metab. Syndr. 2018, 12, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Du, Z.; Ye, N.; Shi, C.; Liu, S.; Geng, D.; Sun, Y. Hyperlipidemia and hypertension have synergistic interaction on ischemic stroke: Insights from a general population survey in China. BMC Cardiovasc. Disord. 2022, 22, 47. [Google Scholar] [CrossRef]
- Matsuo, R.; Ago, T.; Kiyuna, F.; Sato, N.; Nakamura, K.; Kuroda, J.; Wakisaka, Y.; Kitazono, T.; Fukuoka Stroke Registry, I. Smoking Status and Functional Outcomes After Acute Ischemic Stroke. Stroke 2020, 51, 846–852. [Google Scholar] [CrossRef]
- Harrison, P.J.; Luciano, S. Incidence of Parkinson’s disease, dementia, cerebrovascular disease and stroke in bipolar disorder compared to other psychiatric disorders: An electronic health records network study of 66 million people. Bipolar Disord. 2021, 23, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.; Jung, H.; Kang, B.Y.; Kim, M. Impact of potential biomarkers, SNRPE, COX7C, and RPS27, on idiopathic Parkinson’s disease. Genes Genom. 2025, 3, 341–349. [Google Scholar] [CrossRef]
- Li, X.; Wang, X. Relationships between stroke, depression, generalized anxiety disorder and physical disability: Some evidence from the Canadian Community Health Survey-Mental Health. Psychiatry Res. 2020, 290, 113074. [Google Scholar] [CrossRef]
- Tang, W.K.; Wang, L.; KK, F.T.; Rutovic, S.; Kim, J.S. Post-Traumatic Stress Disorder after Stroke: A Systematic Review. Neurol. India 2022, 70, 1887–1895. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Chen, B.; Huang, S.; Zeng, C.; Wu, H.; Chen, C.; Long, F. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol. 2018, 18, 198. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Z.; Wang, Z.; Liu, J. MiRNA-27b Regulates Angiogenesis by Targeting AMPK in Mouse Ischemic Stroke Model. Neuroscience 2019, 398, 12–22. [Google Scholar] [CrossRef]
- Li, D.B.; Liu, J.L.; Wang, W.; Li, R.Y.; Yu, D.J.; Lan, X.Y.; Li, J.P. Plasma Exosomal miR-422a and miR-125b-2-3p Serve as Biomarkers for Ischemic Stroke. Curr. Neurovasc. Res. 2017, 14, 330–337. [Google Scholar] [CrossRef]
- Song, P.; Sun, H.; Chen, H.; Wang, Y.; Zhang, Q. Decreased Serum Exosomal miR-152-3p Contributes to the Progression of Acute Ischemic Stroke. Clin. Lab. 2020, 66, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.M.; Kim, D.S.; Kim, M. Hemorrhagic Transformation After Ischemic Stroke: Mechanisms and Management. Front. Neurol. 2021, 12, 703258. [Google Scholar] [CrossRef] [PubMed]
- Komlodi-Pasztor, E.; Gilbert, M.R.; Armstrong, T.S. Diagnosis and Management of Stroke in Adults with Primary Brain Tumor. Curr. Oncol. Rep. 2022, 24, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Li, Y.; Cai, M.; Cao, Y.; Piao, X. Discovery of a New Biomarker Pattern for Differential Diagnosis of Acute Ischemic Stroke Using Targeted Metabolomics. Front. Neurol. 2019, 10, 1011. [Google Scholar] [CrossRef] [PubMed]
- Renjen, P.N.; Chaudhari, D. Biomarkers in Ischemic and Hemorrhagic Stroke. Neurol. India 2021, 69, 1466. [Google Scholar] [CrossRef]
- Choi, G.H.; Ko, K.H.; Kim, J.O.; Kim, J.; Oh, S.H.; Han, I.B.; Cho, K.G.; Kim, O.J.; Bae, J.; Kim, N.K. Association of miR-34a, miR-130a, miR-150 and miR-155 polymorphisms with the risk of ischemic stroke. Int. J. Mol. Med. 2016, 38, 345–356. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, O.J.; Kim, S.Y.; Oh, S.H.; Oh, D.; Kim, O.J.; Shin, B.S.; Kim, N.K. Association of the miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with ischemic stroke and silent brain infarction risk. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, G.H.; Ko, K.H.; Kim, J.O.; Oh, S.H.; Park, Y.S.; Kim, O.J.; Kim, N.K. Association of the Single Nucleotide Polymorphisms in microRNAs 130b, 200b, and 495 with Ischemic Stroke Susceptibility and Post-Stroke Mortality. PLoS ONE 2016, 11, e0162519. [Google Scholar] [CrossRef]
- Kim, O.J.; Hong, S.H.; Oh, S.H.; Kim, T.G.; Min, K.T.; Oh, D.; Kim, N.K. Association between VEGF polymorphisms and homocysteine levels in patients with ischemic stroke and silent brain infarction. Stroke 2011, 42, 2393–2402. [Google Scholar] [CrossRef]
- Ryu, C.S.; Oh, S.H.; Lee, K.O.; Park, H.S.; An, H.J.; Lee, J.Y.; Ko, E.J.; Park, H.W.; Kim, O.J.; Kim, N.K. MiR-10a, 27a, 34b/c, and 300 Polymorphisms are Associated with Ischemic Stroke Susceptibility and Post-Stroke Mortality. Life 2020, 10, 309. [Google Scholar] [CrossRef]
- Ryu, C.S.; Bae, J.; Kim, I.J.; Kim, J.; Oh, S.H.; Kim, O.J.; Kim, N.K. MPG and NPRL3 Polymorphisms are Associated with Ischemic Stroke Susceptibility and Post-Stroke Mortality. Diagnostics 2020, 10, 947. [Google Scholar] [CrossRef]
- Roy, S.; Sen, C.K. miRNA in wound inflammation and angiogenesis. Microcirculation 2012, 19, 224–232. [Google Scholar] [CrossRef]
- Bielefeld, P.; Mooney, C.; Henshall, D.C.; Fitzsimons, C.P. miRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Epilepsy. Brain Plast. 2017, 3, 43–59. [Google Scholar] [CrossRef] [PubMed]
- You, D.; Cohen, J.D.; Pustovalova, O.; Lewis, L.; Shen, L. Profiling Secreted miRNA Biomarkers of Chemical-Induced Neurodegeneration in Human iPSC-Derived Neurons. Toxicol. Sci. 2022, 186, 221–241. [Google Scholar] [CrossRef]
- Malhas, A.; Saunders, N.J.; Vaux, D.J. The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle 2010, 9, 531–539. [Google Scholar] [CrossRef]
- Didiano, D.; Hobert, O. Molecular architecture of a miRNA-regulated 3′ UTR. RNA 2008, 14, 1297–1317. [Google Scholar] [CrossRef]
- Zhou, P.; Xu, W.; Peng, X.; Luo, Z.; Xing, Q.; Chen, X.; Hou, C.; Liang, W.; Zhou, J.; Wu, X.; et al. Large-scale screens of miRNA-mRNA interactions unveiled that the 3′UTR of a gene is targeted by multiple miRNAs. PLoS ONE 2013, 8, e68204. [Google Scholar] [CrossRef]
- Wehrspaun, C.C.; Ponting, C.P.; Marques, A.C. Brain-expressed 3′UTR extensions strengthen miRNA cross-talk between ion channel/transporter encoding mRNAs. Front. Genet. 2014, 5, 41. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, C.J.; Xu, X.; Cao, J.N.; Feng, Q.T.; Yang, J. MiR-214 regulates the pathogenesis of patients with coronary artery disease by targeting VEGF. Mol. Cell. Biochem. 2015, 402, 111–122. [Google Scholar] [CrossRef]
- Sun, J.; Tao, S.; Liu, L.; Guo, D.; Xia, Z.; Huang, M. miR-140-5p regulates angiogenesis following ischemic stroke by targeting VEGFA. Mol. Med. Rep. 2016, 13, 4499–4505. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Sobenin, I.A.; Orekhov, A.N.; Bobryshev, Y.V. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BioMed Res. Int. 2015, 2015, 354517. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Zhou, Y.; Zhou, D.; Zhang, Y.; Shang, D.; Qi, J. The latest progress on miR-374 and its functional implications in physiological and pathological processes. J. Cell. Mol. Med. 2019, 23, 3063–3076. [Google Scholar] [CrossRef]
- Feng, X.; Bao, J.; Song, C.; Xie, L.; Tan, X.; Li, J.; Jia, H.; Tian, M.; Qi, J.; Qin, C.; et al. Functional role of miR-155 in physiological and pathological processes of liver injury (Review). Mol. Med. Rep. 2021, 24, 714. [Google Scholar] [CrossRef] [PubMed]
- Kesidou, D.; Beqqali, A.; Baker, A.H. The dual effects of miR-222 in cardiac hypertrophy: Bridging pathological and physiological paradigms. Cardiovasc. Res. 2024, 120, 217–219. [Google Scholar] [CrossRef]
- Tiwari, A.; Mukherjee, B.; Dixit, M. MicroRNA Key to Angiogenesis Regulation: MiRNA Biology and Therapy. Curr. Cancer Drug Targets 2018, 18, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.X.; Shu, L.Y.; Wang, H.M.; Lu, K.L.; Huang, L.G.; Xiang, J.Y.; Geng, Z.; Zhao, Y.W.; Chen, H. miR-181b promotes angiogenesis and neurological function recovery after ischemic stroke. Neural Regen. Res. 2023, 18, 1983–1989. [Google Scholar]
- Du, K.; Zhao, C.; Wang, L.; Wang, Y.; Zhang, K.Z.; Shen, X.Y.; Sun, H.X.; Gao, W.; Lu, X. MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1. Aging 2019, 11, 2762–2786. [Google Scholar] [CrossRef]
- Zheng, T.; Shi, Y.; Zhang, J.; Peng, J.; Zhang, X.; Chen, K.; Chen, Y.; Liu, L. MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway. Biomed. Pharmacother. 2019, 117, 109117. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Zhang, W.; Chen, Y.; Bihl, J.C. Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neurosci. Ther. 2020, 26, 1255–1265. [Google Scholar] [CrossRef]
- Jin, F.; Xing, J. Circulating miR-126 and miR-130a levels correlate with lower disease risk, disease severity, and reduced inflammatory cytokine levels in acute ischemic stroke patients. Neurol. Sci. 2018, 39, 1757–1765. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, Z.; Xia, J. New insights into circRNA and its mechanisms in angiogenesis regulation in ischemic stroke: A biomarker and therapeutic target. Mol. Biol. Rep. 2023, 50, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Long, G.; Wang, F.; Li, H.; Yin, Z.; Sandip, C.; Lou, Y.; Wang, Y.; Chen, C.; Wang, D.W. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol. 2013, 13, 178. [Google Scholar] [CrossRef]
- Pala, E.; Penalba, A.; Bustamante, A.; Garcia-Berrocoso, T.; Lamana-Vallverdu, M.; Meisel, C.; Meisel, A.; van der Worp, H.B.; Macleod, R.M.; Kallmunzer, B.; et al. Blood biomarker changes following therapeutic hypothermia in ischemic stroke. Brain Behav. 2023, 13, e3230. [Google Scholar] [CrossRef]
- Ju, H.Y.; Tang, S.S.; Li, B.J.; Luo, X.; Li, Q. The expression levels of circulating miR-140-3p, miR-130a-3p, and miR-320b as diagnostic biomarkers in acute ischemic stroke. Kaohsiung J. Med. Sci. 2023, 39, 927–935. [Google Scholar] [CrossRef]
- Xiang, Y.; Guo, J.; Peng, Y.F.; Tan, T.; Huang, H.T.; Luo, H.C.; Wei, Y.S. Association of miR-21, miR-126 and miR-605 gene polymorphisms with ischemic stroke risk. Oncotarget 2017, 8, 95755–95763. [Google Scholar] [CrossRef]
- Xing, X.; Guo, S.; Zhang, G.; Liu, Y.; Bi, S.; Wang, X.; Lu, Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Braz. J. Med. Biol. Res. 2020, 53, e9106. [Google Scholar] [CrossRef]
- Wei, G.J.; Yuan, M.Q.; Jiang, L.H.; Lu, Y.L.; Liu, C.H.; Luo, H.C.; Huang, H.T.; Qi, Z.Q.; Wei, Y.S. A Genetic Variant of miR-34a Contributes to Susceptibility of Ischemic Stroke Among Chinese Population. Front. Physiol. 2019, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, Z.Y.; Xu, S.Y.; Zhang, X.J.; Zhang, Y.; Luo, K.; Li, W.P. Upregulation of miR-107 Inhibits Glioma Angiogenesis and VEGF Expression. Cell. Mol. Neurobiol. 2016, 36, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Ji, Y.; Peng, J.; Zhou, X.; Chen, X.; Zhao, H.; Xu, T.; Chen, L.; Xu, Y. Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients. PLoS ONE 2016, 11, e0163645. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, G.; Sze, J.; Liu, Y.; Lin, S.; Yao, H.; Zhang, J.; Xie, D.; Liu, Q.; Kung, H.F.; et al. Plasma miR-124 Is a Promising Candidate Biomarker for Human Intracerebral Hemorrhage Stroke. Mol. Neurobiol. 2018, 55, 5879–5888. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Luo, W.; Wang, Q.; Ye, Y.; Fan, J.; Lin, L.; Shi, C.; Wei, W.; Chen, H.; Wu, Y.; et al. Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p. Stem Cell Res. 2021, 52, 102235. [Google Scholar] [CrossRef]
- Liang, Z.; Chi, Y.J.; Lin, G.Q.; Luo, S.H.; Jiang, Q.Y.; Chen, Y.K. MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3485–3492. [Google Scholar]
- Li, Y.; Mao, L.; Gao, Y.; Baral, S.; Zhou, Y.; Hu, B. MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci. Rep. 2015, 5, 13316. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, X.; Luan, P.; Kou, W.; Li, M.; Yu, Q.; Zhuang, J.; Xu, Y.; Peng, W.; Jian, W. miR-124-3p regulates angiogenesis in peripheral arterial disease by targeting STAT3. Mol. Med. Rep. 2020, 22, 4890–4898. [Google Scholar] [CrossRef]
- Chung, J.W.; Park, S.H.; Kim, N.; Kim, W.J.; Park, J.H.; Ko, Y.; Yang, M.H.; Jang, M.S.; Han, M.K.; Jung, C.; et al. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification and vascular territory of ischemic stroke lesions diagnosed by diffusion-weighted imaging. J. Am. Heart Assoc. 2014, 3, e001119. [Google Scholar] [CrossRef] [PubMed]
- Malek, E.G.; Elbejjani, M.; Abbas, R.; Abed Al Ahad, M.; Isma’eel, H.; Makki, A. TOAST classification and risk factors of ischemic stroke in Lebanon. Acta Neurol. Scand. 2020, 141, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Rathburn, C.M.; Mun, K.T.; Sharma, L.K.; Saver, J.L. TOAST stroke subtype classification in clinical practice: Implications for the get with the guidelines-stroke nationwide registry. Front. Neurol. 2024, 15, 1375547. [Google Scholar] [CrossRef]
- Gui, J.; Tosteson, T.D.; Borsuk, M. Weighted multiple testing procedures for genomic studies. BioData Min. 2012, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Mu, Z.; Jiang, H.; Zhang, S.; Pang, Y.; Jin, H.; Chen, J.; Jia, C.; Guo, H. MiR-21-5p protects against ischemic stroke by targeting IL-6R. Ann. Transl. Med. 2023, 11, 101. [Google Scholar] [CrossRef]
- Yuan, M.; Guo, Y.S.; Zhang, X.X.; Gao, Z.K.; Shen, X.Y.; Han, Y.; Bi, X. Diagnostic performance of miR-21, miR-124, miR-132, and miR-200b serums in post-stroke cognitive impairment patients. Folia Neuropathol. 2022, 60, 228–236. [Google Scholar] [CrossRef]
- Ghose, M.; Das, M.; Das, R.; Barua, A.R.; Deka, P.; Barman, A.; Lahan, V.; Choudhury, D.J.; Sharma, J.P.; Mathur, M.; et al. Homocysteine, Vitamins B6, B12, and Folate and the Risk of Ischemic and Hemorrhagic Stroke: A Case-control Study from Northeast India. Ann. Neurosci. 2023, 30, 33–39. [Google Scholar] [CrossRef]
- Xia, Y.; Li, L.; Li, Y.; Hu, M.; Zhang, T.; Feng, Q.; Li, W.; Zhu, Y.; Wu, M. Association of fasting blood glucose level with 90-day unfavorable outcome in acute ischemic stroke patients. Clin. Neurol. Neurosurg. 2024, 236, 108049. [Google Scholar] [CrossRef]
- Chen, J.; Cui, C.; Yang, X.; Xu, J.; Venkat, P.; Zacharek, A.; Yu, P.; Chopp, M. MiR-126 Affects Brain-Heart Interaction after Cerebral Ischemic Stroke. Transl. Stroke Res. 2017, 8, 374–385. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Li, Y.; Wang, R.; Jiang, L.; Zheng, B.; Zhang, Y.; Wang, Q.; Wang, J. Biomarker of early neurological deterioration in minor stroke and proximal large vessel occlusion: A pilot study. Front. Neurol. 2022, 13, 1019530. [Google Scholar] [CrossRef]
- Yuan, L.; Sun, Y.; Huang, X.; Xu, X.; Xu, J.; Xu, Y.; Yang, Q.; Zhu, Y.; Zhou, Z. Fasting Blood-Glucose Level and Clinical Outcome in Anterior Circulation Ischemic Stroke of Different Age Groups After Endovascular Treatment. Neuropsychiatr. Dis. Treat 2022, 18, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.S.; Morris-Blanco, K.C.; Ly, N.; Maves, C.; Dempsey, R.J.; Vemuganti, R. MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Transl. Stroke Res. 2022, 13, 483–493. [Google Scholar] [CrossRef]
- Yan, H.; Huang, W.; Rao, J.; Yuan, J. miR-21 regulates ischemic neuronal injury via the p53/Bcl-2/Bax signaling pathway. Aging 2021, 13, 22242–22255. [Google Scholar] [CrossRef]
- Hu, H.; Hu, X.; Li, L.; Fang, Y.; Yang, Y.; Gu, J.; Xu, J.; Chu, L. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Promote Angiogenesis in Ischemic Stroke Mice via Upregulation of MiR-21-5p. Biomolecules 2022, 12, 883. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J. Mol. Cell. Cardiol. 2016, 97, 47–55. [Google Scholar] [CrossRef]
- Suzuki, M.; Ishibashi, S.; Iwasawa, E.; Oguma, T.; Saito, Y.; Li, F.; Otsu, S.; Ichinose, K.; Yoshioka, K.; Nagata, T.; et al. Effective silencing of miR-126 after ischemic stroke by means of intravenous alpha-tocopherol-conjugated heteroduplex oligonucleotide in mice. Sci. Rep. 2021, 11, 14237. [Google Scholar] [CrossRef] [PubMed]
- Saadh, M.J.; Jasim, N.Y.; Ahmed, M.H.; Ballal, S.; Kumar, A.; Atteri, S.; Vashishth, R.; Rizaev, J.; Alhili, A.; Jawad, M.J.; et al. Critical roles of miR-21 in promotions angiogenesis: Friend or foe? Clin. Exp. Med. 2025, 25, 66. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Controls | Stroke Patients | p a |
---|---|---|---|
(n = 400) | (n = 520) | ||
Males, n (%) | 167 (41.8) | 241 (46.3) | 0.164 |
Age (years, mean ± SD) | 62.48 ± 11.31 | 62.91 ± 11.28 | 0.560 |
Smoking, n (%) | 131 (32.8) | 208 (40.0) | 0.024 |
Hypertension, n (%) | 161 (40.3) | 332 (63.8) | <0.0001 |
Diabetes mellitus, n (%) | 55 (13.8) | 140 (26.9) | <0.0001 |
Hyperlipidemia, n (%) | 86 (21.5) | 157 (30.2) | 0.003 |
HDL-c (mg/dL, mean ± SD) | 46.47 ± 14.07 | 44.51 ± 15.47 | 0.146 |
LDL-c (mg/dL, mean ± SD) | 116.63 ± 40.64 | 120.37 ± 34.00 | 0.059 b |
Homocysteine (μmol/L, mean ± SD) | 9.99 ± 4.16 | 11.14 ± 6.54 | 0.001 b |
Folate (nmol/L, mean ± SD) | 8.98 ± 8.05 | 6.83 ± 5.13 | <0.0001 b |
Vitamin B12 (pg/mL, mean ± SD) | 746.78 ± 677.94 | 754.99 ± 652.55 | 0.854 |
Fasting blood sugar (mg/dL, mean ± SD) | 115.12 ± 38.18 | 136.33 ± 59.36 | <0.0001 b |
Total cholesterol (mg/dL, mean ± SD) | 192.15 ± 37.45 | 189.96 ± 40.56 | 0.406 |
Triglyceride (mg/dL, mean ± SD) | 144.01 ± 84.72 | 148.99 ± 93.04 | 0.409 |
Platelets (103/µL, mean ± SD) | 243.63 ± 64.01 | 245.41 ± 75.57 | 0.633 b |
Prothrombin time (sec, mean ± SD) | 11.76 ± 0.78 | 11.92 ± 3.27 | 0.565 b |
aPTT (sec, mean ± SD) | 31.90 ± 8.31 | 30.53 ± 4.67 | 0.134 b |
Fibrinogen (mg/dL, mean ± SD) | 418.21 ± 144.98 | 426.97 ± 131.02 | 0.494 |
Antithrombin (%, mean ± SD) | 91.26 ± 17.41 | 93.71 ± 17.49 | 0.149 |
Creatinine (mg/dL, mean ± SD) | 0.96 ± 0.25 | 1.03 ± 0.77 | 0.571 b |
Blood urea nitrogen (mg/dL, mean ± SD) | 15.72 ± 5.01 | 16.33 ± 7.52 | 0.566 b |
Uric acid (mg/dL, mean ± SD) | 4.64 ± 1.46 | 4.69 ± 1.54 | 0.662 |
Genotypes | Controls | Stroke Patients | AOR (95% CI) * | p † | FDR-P |
---|---|---|---|---|---|
(n = 400) | (n = 520) | ||||
miR-21 rs1292037 T > C | |||||
TT | 102 (25.5) | 120 (23.1) | 1.000 (reference) | ||
TC | 187 (46.8) | 268 (51.5) | 1.214 (0.863–1.709) | 0.265 | 0.552 |
CC | 111 (27.8) | 132 (25.4) | 0.938 (0.635–1.387) | 0.749 | 0.899 |
Dominant (TT vs. TC + CC) | 1.111 (0.809–1.527) | 0.516 | 0.658 | ||
Recessive (TT + TC vs. CC) | 0.837 (0.614–1.143) | 0.263 | 0.526 | ||
HWE-P | 0.197 | 0.475 | |||
miR-21 rs13137 A > T | |||||
AA | 99 (24.8) | 150 (28.8) | 1.000 (reference) | ||
AT | 208 (52.0) | 270 (51.9) | 0.833 (0.599–1.158) | 0.276 | 0.552 |
TT | 93 (23.3) | 100 (19.2) | 0.611 (0.405–0.923) | 0.019 | 0.114 |
Dominant (AA vs. AT + TT) | 0.772 (0.566–1.053) | 0.103 | 0.309 | ||
Recessive (AA + AT vs. TT) | 0.724 (0.516–1.015) | 0.061 | 0.366 | ||
HWE-P | 0.421 | 0.272 | |||
miR-26a rs7372209 C > T | |||||
CC | 214 (53.5) | 275 (52.9) | 1.000 (reference) | ||
CT | 155 (38.8) | 203 (39.0) | 1.059 (0.793–1.414) | 0.698 | 0.698 |
TT | 31 (7.8) | 42 (8.1) | 1.259 (0.738–2.146) | 0.398 | 0.796 |
Dominant (CC vs. CT + TT) | 1.088 (0.826–1.434) | 0.548 | 0.658 | ||
Recessive (CC + CT vs. TT) | 1.212 (0.729–2.015) | 0.459 | 0.689 | ||
HWE-P | 0.691 | 0.598 | |||
miR-107 rs2296616 A > G | |||||
AA | 329 (82.3) | 426 (81.9) | 1.000 (reference) | ||
AG | 66 (16.5) | 88 (16.9) | 1.081 (0.748–1.564) | 0.679 | 0.698 |
GG | 5 (1.3) | 6 (1.2) | 1.072 (0.309–3.719) | 0.913 | 0.913 |
Dominant (AA vs. AG + GG) | 1.079 (0.755–1.543) | 0.677 | 0.677 | ||
Recessive (AA + AG vs. GG) | 1.053 (0.304–3.651) | 0.935 | 0.935 | ||
HWE-P | 0.419 | 0.547 | |||
miR-124-1 rs531564 G > C | |||||
GG | 302 (75.5) | 374 (71.9) | 1.000 (reference) | ||
GC | 88 (22.0) | 129 (24.8) | 1.134 (0.817–1.573) | 0.454 | 0.681 |
CC | 10 (2.5) | 17 (3.3) | 1.760 (0.770–4.024) | 0.180 | 0.540 |
Dominant (GG vs. GC + CC) | 1.191 (0.870–1.628) | 0.275 | 0.550 | ||
Recessive (GG + GC vs. CC) | 1.711 (0.751–3.898) | 0.201 | 0.526 | ||
HWE-P | 0.246 | 0.161 | |||
miR-126 rs4636297 G > A | |||||
GG | 296 (74.0) | 349 (67.1) | 1.000 (reference) | ||
GA | 93 (23.3) | 158 (30.4) | 1.557 (1.135–2.135) | 0.006 | 0.036 |
AA | 11 (2.8) | 13 (2.5) | 1.158 (0.486–2.756) | 0.741 | 0.899 |
Dominant (GG vs. GA + AA) | 1.525 (1.123–2.070) | 0.007 | 0.042 | ||
Recessive (GG + GA vs. AA) | 1.037 (0.437–2.459) | 0.934 | 0.935 | ||
HWE-P | 0.267 | 0.324 |
Genotypes | Controls | LAD Patients | AOR (95% CI) * | p † | SVD Patients | AOR (95% CI) * | p † | CE Patients | AOR (95% CI) * | p † |
---|---|---|---|---|---|---|---|---|---|---|
(n = 400) | (n = 204) | (n = 148) | (n = 58) | |||||||
miR-21 rs1292037 T > C | ||||||||||
TT | 102 (25.5) | 48 (23.5) | 1.000 (reference) | 38 (25.7) | 1.000 (reference) | 19 (32.8) | 1.000 (reference) | |||
TC | 187 (46.8) | 105 (51.5) | 1.174 (0.753–1.829) | 0.479 | 74 (50.0) | 0.938 (0.577–1.526) | 0.797 | 25 (43.1) | 0.702 (0.361–1.366) | 0.298 |
CC | 111 (27.8) | 51 (25.0) | 0.852 (0.504–1.440) | 0.549 | 36 (24.3) | 0.719 (0.404–1.280) | 0.262 | 14 (24.1) | 0.653 (0.302–1.415) | 0.280 |
Dominant (TT vs. TC + CC) | 1.063 (0.702–1.609) | 0.773 | 0.866 (0.549–1.366) | 0.537 | 0.688 (0.375–1.261) | 0.226 | ||||
Recessive (TT + TC vs. CC) | 0.800 (0.531–1.207) | 0.288 | 0.768 (0.482–1.223) | 0.265 | 0.804 (0.419–1.542) | 0.511 | ||||
miR-21 rs13137 A > T | ||||||||||
AA | 99 (24.8) | 60 (29.4) | 1.000 (reference) | 44 (29.7) | 1.000 (reference) | 23 (39.7) | 1.000 (reference) | |||
AT | 208 (52.0) | 101 (49.5) | 0.776 (0.505–1.193) | 0.248 | 81 (54.7) | 0.742 (0.466–1.183) | 0.210 | 22 (37.9) | 0.432 (0.223–0.837) | 0.013 |
TT | 93 (23.3) | 43 (21.1) | 0.638 (0.373–1.091) | 0.100 | 23 (15.5) | 0.359 (0.183–0.705) | 0.003 | 13 (22.4) | 0.516 (0.237–1.120) | 0.094 |
Dominant (AA vs. AT + TT) | 0.745 (0.499–1.114) | 0.152 | 0.640 (0.409–1.002) | 0.051 | 0.476 (0.263–0.861) | 0.014 | ||||
Recessive (AA + AT vs. TT) | 0.809 (0.523–1.251) | 0.341 | 0.514 (0.299–0.884) | 0.016 | 0.900 (0.460–1.761) | 0.758 | ||||
miR-26a rs7372209 C > T | ||||||||||
CC | 214 (53.5) | 110 (53.9) | 1.000 (reference) | 83 (56.1) | 1.000 (reference) | 25 (43.1) | 1.000 (reference) | |||
CT | 155 (38.8) | 76 (37.3) | 0.951 (0.649–1.394) | 0.796 | 55 (37.2) | 0.932 (0.609–1.426) | 0.745 | 27 (46.6) | 1.481 (0.820–2.674) | 0.193 |
TT | 31 (7.8) | 18 (8.8) | 1.491 (0.750–2.966) | 0.254 | 10 (6.8) | 1.130 (0.510–2.504) | 0.763 | 6 (10.3) | 2.049 (0.735–5.711) | 0.170 |
Dominant (CC vs. CT + TT) | 1.025 (0.714–1.471) | 0.895 | 0.961 (0.643–1.438) | 0.848 | 1.566 (0.888–2.761) | 0.121 | ||||
Recessive (CC + CT vs. TT) | 1.500 (0.778–2.893) | 0.227 | 1.157 (0.536–2.497) | 0.710 | 1.571 (0.612–4.031) | 0.348 | ||||
miR-107 rs2296616 A > G | ||||||||||
AA | 329 (82.3) | 169 (82.8) | 1.000 (reference) | 119 (80.4) | 1.000 (reference) | 48 (82.8) | 1.000 (reference) | |||
AG | 66 (16.5) | 33 (16.2) | 1.016 (0.624–1.653) | 0.949 | 28 (18.9) | 1.294 (0.769–2.179) | 0.332 | 10 (17.2) | 1.111 (0.529–2.336) | 0.781 |
GG | 5 (1.3) | 2 (1.0) | 0.712 (0.126–4.031) | 0.701 | 1 (0.7) | 0.575 (0.058–5.757) | 0.638 | 0 (0.0) | - | 0.996 |
Dominant (AA vs. AG + GG) | 0.990 (0.617–1.589) | 0.966 | 1.241 (0.745–2.066) | 0.407 | 1.025 (0.490–2.144) | 0.948 | ||||
Recessive (AA + AG vs. GG) | 0.688 (0.121–3.905) | 0.673 | 0.558 (0.057–5.438) | 0.616 | - | 0.996 | ||||
miR-124-1 rs531564 G > C | ||||||||||
GG | 302 (75.5) | 147 (72.1) | 1.000 (reference) | 115 (77.7) | 1.000 (reference) | 41 (70.7) | 1.000 (reference) | |||
GC | 88 (22.0) | 49 (24.0) | 1.097 (0.715–1.683) | 0.671 | 31 (20.9) | 0.793 (0.482–1.306) | 0.363 | 15 (25.9) | 1.235 (0.647–2.360) | 0.522 |
CC | 10 (2.5) | 8 (3.9) | 2.168 (0.797–5.893) | 0.130 | 2 (1.4) | 0.546 (0.111–2.689) | 0.457 | 2 (3.4) | 1.304 (0.259–6.573) | 0.748 |
Dominant (GG vs. GC + CC) | 1.196 (0.797–1.795) | 0.388 | 0.776 (0.479–1.257) | 0.303 | 1.258 (0.675–2.341) | 0.470 | ||||
Recessive (GG + GC vs. CC) | 2.124 (0.784–5.756) | 0.139 | 0.600 (0.123–2.930) | 0.528 | 1.427 (0.289–7.046) | 0.662 | ||||
miR-126 rs4636297 G > A | ||||||||||
GG | 296 (74.0) | 140 (68.6) | 1.000 (reference) | 96 (64.9) | 1.000 (reference) | 41 (70.7) | 1.000 (reference) | |||
GA | 93 (23.3) | 60 (29.4) | 1.529 (1.016–2.300) | 0.042 | 48 (32.4) | 1.677 (1.075–2.616) | 0.023 | 14 (24.1) | 1.172 (0.603–2.277) | 0.641 |
AA | 11 (2.8) | 4 (2.0) | 0.946 (0.271–3.304) | 0.930 | 4 (2.7) | 1.078 (0.316–3.681) | 0.904 | 3 (5.2) | 2.781 (0.689–11.217) | 0.151 |
Dominant (GG vs. GA + AA) | 1.481 (0.995–2.205) | 0.053 | 1.623 (1.054–2.501) | 0.028 | 1.318 (0.706–2.462) | 0.386 | ||||
Recessive (GG + GA vs. AA) | 0.879 (0.255–3.033) | 0.839 | 0.959 (0.285–3.228) | 0.946 | 2.771 (0.705–10.886) | 0.144 |
Allele Combinations | Controls | Stroke | OR (95% CI) | p |
---|---|---|---|---|
(2n = 800) | (2n = 1040) | |||
miR-21 rs13137 A > T/miR-26a rs7372209 C > T/miR-107 rs2296616 A > G/miR-126 rs4636297 G > A * | ||||
A-C-A-G | 219 (27.4) | 342 (32.9) | 1.000 (reference) | |
A-C-A-A | 37 (4.7) | 43 (4.2) | 0.753 (0.470–1.206) | 0.244 |
A-C-G-G | 27 (3.4) | 26 (2.5) | 0.624 (0.355–1.098) | 0.105 |
A-C-G-A | 5 (0.6) | 12 (1.1) | 1.555 (0.541–4.476) | 0.378 |
A-T-A-G | 86 (10.8) | 114 (10.9) | 0.859 (0.619–1.192) | 0.365 |
A-T-A-A | 23 (2.9) | 17 (1.6) | 0.479 (0.250–0.917) | 0.025 |
A-T-G-G | 6 (0.8) | 15 (1.5) | 1.620 (0.619–4.239) | 0.285 |
A-T-G-A | 2 (0.3) | 1 (0.1) | 0.324 (0.029–3.595) | 0.316 |
T-C-A-G | 242 (30.2) | 228 (21.9) | 0.611 (0.477–0.782) | <0.0001 |
T-C-A-A | 35 (4.4) | 74 (7.1) | 1.370 (0.886–2.120) | 0.143 |
T-C-G-G | 16 (2.0) | 29 (2.8) | 1.175 (0.623–2.213) | 0.612 |
T-C-G-A | 1 (0.2) | 0 (0.0) | - | - |
T-T-A-G | 70 (8.8) | 94 (9.1) | 0.870 (0.612–1.238) | 0.443 |
T-T-A-A | 11 (1.4) | 29 (2.8) | 1.709 (0.836–3.491) | 0.108 |
T-T-G-G | 18 (2.3) | 8 (0.8) | 0.288 (0.123–0.674) | 0.001 |
T-T-G-A | 0 (0.0) | 9 (0.9) | - | - |
miR-21 rs1292037 T > C/miR-21 rs13137 A > T/miR-126 rs4636297 G > A * | ||||
T-A-G | 316 (39.5) | 437 (42.0) | 1.000 (reference) | |
T-A-A | 59 (7.4) | 66 (6.3) | 0.809 (0.553–1.183) | 0.277 |
T-T-G | 14 (1.7) | 3 (0.3) | 0.155 (0.044–0.544) | <0.0001 |
T-T-A | 2 (0.3) | 2 (0.2) | 0.723 (0.101–5.161) | 0.749 |
C-A-G | 21 (2.6) | 56 (5.4) | 1.928 (1.144–3.250) | 0.006 |
C-A-A | 10 (1.2) | 10 (1.0) | 0.723 (0.297–1.758) | 0.478 |
C-T-G | 334 (41.8) | 359 (34.5) | 0.777 (0.631–0.957) | 0.017 |
C-T-A | 44 (5.5) | 107 (10.3) | 1.758 (1.203–2.571) | 0.002 |
miR-21 rs1292037 T > C/miR-21 rs13137 A > T | ||||
T-A | 375 (46.9) | 504 (48.4) | 1.000 (reference) | |
T-T | 16 (2.0) | 4 (0.4) | 0.186 (0.062–0.561) | <0.0001 |
C-A | 31 (3.8) | 66 (6.4) | 1.584 (1.013–2.477) | 0.033 |
C-T | 378 (47.3) | 466 (44.8) | 0.917 (0.758–1.110) | 0.374 |
miR-21 rs13137 A > T/miR-126 rs4636297 G > A * | ||||
A-G | 339 (42.4) | 494 (47.5) | 1.000 (reference) | |
A-A | 67 (8.4) | 76 (7.3) | 0.778 (0.545–1.112) | 0.172 |
T-G | 346 (43.2) | 362 (34.8) | 0.718 (0.587–0.879) | 0.001 |
T-A | 48 (6.0) | 108 (10.4) | 1.544 (1.070–2.229) | 0.015 |
Genotype Combinations | Controls | Stroke | AOR (95% CI) | p * |
---|---|---|---|---|
(n = 400) | (n = 520) | |||
miR-21 rs1292037 T > C/miR-21 rs13137 A > T | ||||
TT/AA | 95 (23.8) | 118 (22.7) | 1.000 (reference) | |
TC/AA | 4 (1.0) | 25 (4.8) | 10.549 (3.141–35.427) | 0.0001 |
TC/TT | 7 (1.8) | 2 (0.4) | 0.121 (0.020–0.733) | 0.022 |
miR-21 rs1292037 T > C/miR-126 rs4636297 G > A | ||||
TT/GG | 76 (19.0) | 93 (17.9) | 1.000 (reference) | |
TC/GA | 43 (10.8) | 90 (17.3) | 1.903 (1.137–3.186) | 0.014 |
miR-21 rs13137 A > T/miR-26a rs7372209 C > T | ||||
AA/CC | 47 (11.8) | 80 (15.4) | 1.000 (reference) | |
TT/CC | 53 (13.3) | 47 (9.0) | 0.443 (0.244–0.807) | 0.008 |
miR-21 rs13137 A > T/miR-107 rs2296616 A > G | ||||
AA/AA | 82 (20.5) | 122 (23.5) | 1.000 (reference) | |
TT/AA | 81 (20.3) | 82 (15.8) | 0.575 (0.363–0.910) | 0.018 |
miR-21 rs13137 A > T/miR-126 rs4636297 G > A | ||||
AA/GG | 75 (18.8) | 116 (22.3) | 1.000 (reference) | |
TT/GG | 77 (19.3) | 64 (12.3) | 0.452 (0.280–0.731) | 0.001 |
miR-26a rs7372209 C > T/miR-126 rs4636297 G > A | ||||
CC/GG | 163 (40.8) | 187 (36.0) | 1.000 (reference) | |
CC/GA | 44 (11.0) | 80 (15.4) | 1.888 (1.196–2.981) | 0.006 |
miR-107 rs2296616 A > G/miR-124-1 rs531564 G > C | ||||
AA/GG | 244 (61.0) | 309 (59.4) | 1.000 (reference) | |
AG/GC | 9 (2.3) | 25 (4.8) | 2.463 (1.099–5.519) | 0.029 |
GG/CC | 0 (0.0) | 0 (0.0) | - | - |
miR-107 rs2296616 A > G/miR-126 rs4636297 G > A | ||||
AA/GG | 242 (60.5) | 288 (55.4) | 1.000 (reference) | |
AA/GA | 77 (19.3) | 130 (25.0) | 1.580 (1.114–2.242) | 0.010 |
GG/AA | 0 (0.0) | 0 (0.0) | - | - |
miR-124-1 rs531564 G > C/miR-126 rs4636297 G > A | ||||
GG/GG | 226 (56.5) | 244 (46.9) | 1.000 (reference) | |
GG/GA | 66 (16.5) | 119 (22.9) | 1.843 (1.272–2.672) | 0.001 |
Genotypes | LDL-Cholsterol (mg/dL) | Folate (mg/mL) | Total Cholesterol (mg/dL) | aPTT (sec) | Fibrinogen (mg/dL) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | p * | Mean ± SD | p * | Mean ± SD | p * | Mean ± SD | p * | Mean ± SD | p * | |
miR-21 rs1292037 T > C | ||||||||||
TT | 118.18 ± 37.89 | 0.753 | 7.37 ± 5.30 | 0.575 | 189.64 ± 41.79 | 0.798 | 30.98 ± 7.22 | 0.709 | 409.55 ± 137.03 | 0.157 |
TC | 120.47 ± 36.34 | 7.94 ± 6.53 | 190.88 ± 37.14 | 30.87 ± 5.40 | 434.50 ± 134.37 | |||||
CC | 118.56 ± 32.92 | 7.77 ± 7.83 | 192.11 ± 40.76 | 31.31 ± 6.74 | 420.38 ± 130.83 | |||||
miR-21 rs13137 A > T | ||||||||||
AA | 121.71 ± 38.10 | 0.593 | 7.09 ± 4.83 | 0.086 | 192.51 ± 42.70 | 0.605 | 30.87 ± 6.94 | 0.911 | 409.23 ± 128.11 | 0.130 |
AT | 118.35 ± 35.56 | 7.81 ± 6.32 | 189.65 ± 36.94 | 31.10 ± 5.87 | 434.33 ± 134.73 | |||||
TT | 119.19 ± 33.30 | 8.49 ± 8.96 | 191.89 ± 40.21 | 30.98 ± 6.20 | 420.83 ± 140.53 | |||||
miR-26a rs7372209 C > T | ||||||||||
CC | 119.64 ± 35.11 | 0.890 | 7.95 ± 7.79 | 0.096 | 190.56 ± 38.16 | 0.696 | 30.89 ± 6.01 | 0.820 | 421.94 ± 127.56 | 0.821 |
CT | 119.54 ± 37.97 | 7.25 ± 4.91 | 190.59 ± 40.91 | 31.19 ± 6.52 | 428.18 ± 141.55 | |||||
TT | 116.96 ± 29.18 | 8.91 ± 5.37 | 194.68 ± 38.55 | 30.96 ± 6.35 | 430.93 ± 147.15 | |||||
miR-107 rs2296616 A > G | ||||||||||
AA | 119.14 ± 36.22 | 0.062 | 7.86 ± 6.99 | 0.316 | 190.68 ± 38.91 | 0.024 | 31.05 ± 6.21 | 0.093 | 426.79 ± 132.88 | 0.759 |
AG | 118.76 ± 31.09 | 7.12 ± 4.74 | 189.63 ± 39.15 | 31.19 ± 6.45 | 416.12 ± 144.11 | |||||
GG | 151.14 ± 58.25 | 9.42 ± 4.37 | 222.82 ± 52.94 | 26.97 ± 3.69 | 425.03 ± 64.79 | |||||
miR-124-1 rs531564 G > C | ||||||||||
GG | 120.68 ± 36.30 | 0.304 | 7.73 ± 6.73 | 0.945 | 191.83 ± 39.58 | 0.397 | 31.02 ± 6.51 | 0.997 | 422.70 ± 127.94 | 0.642 |
GC | 116.50 ± 34.49 | 7.78 ± 6.38 | 189.00 ± 38.80 | 30.99 ± 5.58 | 428.54 ± 151.78 | |||||
CC | 112.65 ± 34.06 | 8.16 ± 6.58 | 183.44 ± 34.55 | 31.09 ± 4.46 | 449.24 ± 140.30 | |||||
miR-126 rs4636297 G > A | ||||||||||
GG | 119.37 ± 37.71 | 0.972 | 7.91 ± 6.97 | 0.554 | 191.56 ± 40.74 | 0.383 | 30.82 ± 6.25 | 0.176 | 424.51 ± 131.80 | 0.955 |
GA | 119.37 ± 30.70 | 7.37 ± 5.84 | 188.50 ± 34.89 | 31.30 ± 6.05 | 425.20 ± 142.83 | |||||
AA | 121.77 ± 37.50 | 7.80 ± 5.38 | 198.35 ± 41.33 | 33.48 ± 7.89 | 435.95 ± 92.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, C.S.; Lee, K.-O.; Ko, E.J.; Park, H.W.; Lee, J.H.; Kim, O.J.; Kim, N.K. Prognostic Associations and Functional Implications of Angiogenesis-Related miRNA Variants in Ischemic Stroke. Cells 2025, 14, 1389. https://doi.org/10.3390/cells14171389
Ryu CS, Lee K-O, Ko EJ, Park HW, Lee JH, Kim OJ, Kim NK. Prognostic Associations and Functional Implications of Angiogenesis-Related miRNA Variants in Ischemic Stroke. Cells. 2025; 14(17):1389. https://doi.org/10.3390/cells14171389
Chicago/Turabian StyleRyu, Chang Soo, Kee-Ook Lee, Eun Ju Ko, Hyeon Woo Park, Jae Hyun Lee, Ok Joon Kim, and Nam Keun Kim. 2025. "Prognostic Associations and Functional Implications of Angiogenesis-Related miRNA Variants in Ischemic Stroke" Cells 14, no. 17: 1389. https://doi.org/10.3390/cells14171389
APA StyleRyu, C. S., Lee, K.-O., Ko, E. J., Park, H. W., Lee, J. H., Kim, O. J., & Kim, N. K. (2025). Prognostic Associations and Functional Implications of Angiogenesis-Related miRNA Variants in Ischemic Stroke. Cells, 14(17), 1389. https://doi.org/10.3390/cells14171389