Insidious APOL1 Kidney Disease: A Manifestation of APOL1-Associated Pregnancy Complications on Nephron Endowment?
Abstract
1. Introduction
2. APOL1 and CKD Risk
Overt Presentation | Insidious Presentation | CKD from Prematurity or Low Birth Weight | |
---|---|---|---|
CKD onset | severe/rapid | subclinical/chronic | subclinical/chronic |
Clinical presentation | nephrotic range proteinuria | eGFR decline | eGFR decline |
eGFR decline | hypertension | hypertension | |
proteinuria | microalbuminuria | ||
Pathology | FSGS/collapsing FSGS | Nephrosclerosis, microcysts | Nephrosclerosis, |
Podocytopathy [18,20,51] | FSGS, IFTA [44,52,53] | FSGS, IFTA [54,55] | |
Diagnoses | HIVAN [15,16,17,18] | HTN-attributed CKD or ESKD [2,42,43,44,45] | HTN-attributed CKD [56] |
COVAN [20,21,22,23,24] | non-diabetic ESKD [46,47,48] | glomerular disease/nephritis interstitial nephritis [57,58] | |
Interferon therapy use [38] | primary CKD progression (LN, MN, SCN) [59,60,61,62,63,64] | primary CKD progression (IgAN, PKD, MN, MCD, DN) [65,66,67,68] | |
FSGS [2,16,43,69] | secondary to AKI [70,71] | ||
CKD odds ratio | 17–89 (African ancestry) [33] | 2–11 (African ancestry) [33] | 1.2–6 (all races) [57,72,73,74,75,76] |
3. APOL1 and Risk for Preeclampsia, Prematurity, and Low Birth Weight
4. Pregnancy Complications, Nephron Endowment, and CKD Risk
5. Summary
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKI | acute kidney injury |
APOL1 | Apolipoprotein L1 |
COVAN | coronavirus disease-associated nephropathy |
CKD | chronic kidney disease |
CKiD | Chronic Kidney Disease in Children Study |
CureGN | Cure Glomerulonephropathy Consortium |
DN | diabetic nephropathy |
eGFR | estimated glomerular filtration rate |
ESKD | end stage kidney disease |
FSGS | focal segmental glomerulosclerosis |
GFR | glomerular filtration rate |
HIVAN | human immunodeficiency virus-associated nephropathy |
HTN | hypertension |
IFTA | interstitial fibrosis tubular atrophy |
IgAN | IgA nephropathy |
LN | lupus nephritis |
MCD | minimal change disease |
MN | membranous nephropathy |
NEPTUNE | Nephrotic Syndrome Study Network |
PKD | polycystic kidney disease |
SCN | sickle cell nephropathy |
References
- Tzur, S.; Rosset, S.; Shemer, R.; Yudkovsky, G.; Selig, S.; Tarekegn, A.; Bekele, E.; Bradman, N.; Wasser, W.G.; Behar, D.M.; et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 2010, 128, 345–350. [Google Scholar] [CrossRef]
- Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Uscinski Knob, A.L.; et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010, 329, 841–845. [Google Scholar] [CrossRef]
- Genovese, G.; Tonna, S.J.; Knob, A.U.; Appel, G.B.; Katz, A.; Bernhardy, A.J.; Needham, A.W.; Lazarus, R.; Pollak, M.R. A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int. 2010, 78, 698–704. [Google Scholar] [CrossRef]
- Bruggeman, L.A.; Wu, Z.; Luo, L.; Madhavan, S.M.; Konieczkowski, M.; Drawz, P.E.; Thomas, D.B.; Barisoni, L.; Sedor, J.R.; O’Toole, J.F. APOL1-G0 or APOL1-G2 Transgenic Models Develop Preeclampsia but Not Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 3600–3610. [Google Scholar] [CrossRef]
- Conti-Ramsden, F.; de Marvao, A.; Gill, C.; Chappell, L.C.; Myers, J.; Vuckovic, D.; Dehghan, A.; Hysi, P.G. Association of genetic ancestry with pre-eclampsia in multi-ethnic cohorts of pregnant women. Pregnancy Hypertens. 2024, 38, 101162. [Google Scholar] [CrossRef]
- Croke, L. Gestational Hypertension and Preeclampsia: A Practice Bulletin from ACOG. Am. Fam. Physician 2019, 100, 649–650. [Google Scholar]
- Noubiap, J.J.; Bigna, J.J.; Nyaga, U.F.; Jingi, A.M.; Kaze, A.D.; Nansseu, J.R.; Fokom Domgue, J. The burden of hypertensive disorders of pregnancy in Africa: A systematic review and meta-analysis. J. Clin. Hypertens. 2019, 21, 479–488. [Google Scholar] [CrossRef]
- Miller, A.K.; Azhibekov, T.; O’Toole, J.F.; Sedor, J.R.; Williams, S.M.; Redline, R.W.; Bruggeman, L.A. Association of preeclampsia with infant APOL1 genotype in African Americans. BMC Med. Genet. 2020, 21, 110. [Google Scholar] [CrossRef] [PubMed]
- Azhibekov, T.; Durodoye, R.; Miller, A.K.; Simpson, C.L.; Davis, R.L.; Williams, S.M.; Bruggeman, L.A. Fetal High-Risk APOL1 Genotype Increases Risk for Small for Gestational Age in Term Infants Affected by Preeclampsia. Neonatology 2023, 120, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Reidy, K.J.; Hjorten, R.C.; Simpson, C.L.; Rosenberg, A.Z.; Rosenblum, S.D.; Kovesdy, C.P.; Tylavsky, F.A.; Myrie, J.; Ruiz, B.L.; Haque, S.; et al. Fetal-Not Maternal-APOL1 Genotype Associated with Risk for Preeclampsia in Those with African Ancestry. Am. J. Hum. Genet. 2018, 103, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Rosenberg, A.Z.; Zhang, B.; Binns-Roemer, E.; David, V.; Lv, Y.; Hjorten, R.C.; Reidy, K.J.; Chen, T.K.; Wang, G.; et al. Joint Associations of Maternal-Fetal APOL1 Genotypes and Maternal Country of Origin with Preeclampsia Risk. Am. J. Kidney Dis. 2021, 77, 879–888.e871. [Google Scholar] [CrossRef]
- Sheehy, S.; Friedman, D.; Liu, C.; Lunetta, K.L.; Zirpoli, G.; Palmer, J.R. Association between Apolipoprotein L1 genetic variants and risk of preeclampsia and preterm birth among U.S. Black women. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2025, 25, 100365. [Google Scholar] [CrossRef] [PubMed]
- Thakoordeen-Reddy, S.; Winkler, C.; Moodley, J.; David, V.; Binns-Roemer, E.; Ramsuran, V.; Naicker, T. Maternal variants within the apolipoprotein L1 gene are associated with preeclampsia in a South African cohort of African ancestry. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 246, 129–133. [Google Scholar] [CrossRef]
- Friedman, D.J.; Pollak, M.R. APOL1 and Kidney Disease: From Genetics to Biology. Annu. Rev. Physiol. 2020, 82, 323–342. [Google Scholar] [CrossRef] [PubMed]
- Atta, M.G.; Estrella, M.M.; Kuperman, M.; Foy, M.C.; Fine, D.M.; Racusen, L.C.; Lucas, G.M.; Nelson, G.W.; Warner, A.C.; Winkler, C.A.; et al. HIV-associated nephropathy patients with and without apolipoprotein L1 gene variants have similar clinical and pathological characteristics. Kidney Int. 2012, 82, 338–343. [Google Scholar] [CrossRef]
- Kopp, J.B.; Nelson, G.W.; Sampath, K.; Johnson, R.C.; Genovese, G.; An, P.; Friedman, D.; Briggs, W.; Dart, R.; Korbet, S.; et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 2011, 22, 2129–2137. [Google Scholar] [CrossRef] [PubMed]
- Kasembeli, A.N.; Duarte, R.; Ramsay, M.; Mosiane, P.; Dickens, C.; Dix-Peek, T.; Limou, S.; Sezgin, E.; Nelson, G.W.; Fogo, A.B.; et al. APOL1 Risk Variants Are Strongly Associated with HIV-Associated Nephropathy in Black South Africans. J. Am. Soc. Nephrol. 2015, 26, 2882–2890. [Google Scholar] [CrossRef]
- Fine, D.M.; Wasser, W.G.; Estrella, M.M.; Atta, M.G.; Kuperman, M.; Shemer, R.; Rajasekaran, A.; Tzur, S.; Racusen, L.C.; Skorecki, K. APOL1 risk variants predict histopathology and progression to ESRD in HIV-related kidney disease. J. Am. Soc. Nephrol. 2012, 23, 343–350. [Google Scholar] [CrossRef]
- Kudose, S.; Santoriello, D.; Bomback, A.S.; Stokes, M.B.; Batal, I.; Markowitz, G.S.; Wyatt, C.M.; D’Agati, V.D. The spectrum of kidney biopsy findings in HIV-infected patients in the modern era. Kidney Int. 2020, 97, 1006–1016. [Google Scholar] [CrossRef]
- Nguyen, J.K.; Wu, Z.; Agudelo, J.; Herlitz, L.C.; Miller, A.W.; Bruggeman, L.A. Local Inflammation But Not Kidney Cell Infection Associated with High APOL1 Expression in COVID-Associated Nephropathy. Kidney360 2023, 4, 1757–1762. [Google Scholar] [CrossRef]
- Shetty, A.A.; Tawhari, I.; Safar-Boueri, L.; Seif, N.; Alahmadi, A.; Gargiulo, R.; Aggarwal, V.; Usman, I.; Kisselev, S.; Gharavi, A.G.; et al. COVID-19-Associated Glomerular Disease. J. Am. Soc. Nephrol. 2020, 32, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Larsen, C.P.; Hernandez-Arroyo, C.F.; Mohamed, M.M.B.; Caza, T.; Sharshir, M.; Chughtai, A.; Xie, L.; Gimenez, J.M.; Sandow, T.A.; et al. AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL 1 High-Risk Genotype. J. Am. Soc. Nephrol. 2020, 31, 1688–1695. [Google Scholar] [CrossRef]
- May, R.M.; Cassol, C.; Hannoudi, A.; Larsen, C.P.; Lerma, E.V.; Haun, R.S.; Braga, J.R.; Hassen, S.I.; Wilson, J.; VanBeek, C.; et al. A multi-center retrospective cohort study defines the spectrum of kidney pathology in Coronavirus 2019 Disease (COVID-19). Kidney Int. 2021, 100, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Kudose, S.; Batal, I.; Santoriello, D.; Xu, K.; Barasch, J.; Peleg, Y.; Canetta, P.; Ratner, L.E.; Marasa, M.; Gharavi, A.G.; et al. Kidney Biopsy Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1959–1968. [Google Scholar] [CrossRef]
- Muehlig, A.K.; Gies, S.; Huber, T.B.; Braun, F. Collapsing Focal Segmental Glomerulosclerosis in Viral Infections. Front. Immunol. 2021, 12, 800074. [Google Scholar] [CrossRef]
- Nichols, B.; Jog, P.; Lee, J.H.; Blackler, D.; Wilmot, M.; D’Agati, V.; Markowitz, G.; Kopp, J.B.; Alper, S.L.; Pollak, M.R.; et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2015, 87, 332–342. [Google Scholar] [CrossRef]
- Khalaila, R.; Skorecki, K. Apolipoprotein L1 (APOL1): Consideration of Molecular Evolution, Interaction with APOL3, and Impact of Splice Isoforms Advances Understanding of Cellular and Molecular Mechanisms of Cell Injury. Cells 2025, 14, 1011. [Google Scholar] [CrossRef]
- Friedman, D.J.; Pollak, M.R. In Search of the Mechanism of APOL1 Kidney Disease. J. Am. Soc. Nephrol. 2024, 35, 815–817. [Google Scholar] [CrossRef]
- Pays, E. The Mechanism of Kidney Disease due to APOL1 Risk Variants: Involvement of Two Distinct Processes. J. Am. Soc. Nephrol. 2024, 35, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M.R.; Friedman, D.J. APOL1-associated kidney disease: Modulators of the genotype-phenotype relationship. Curr. Opin. Nephrol. Hypertens. 2025, 34, 191–198. [Google Scholar] [CrossRef]
- Höffken, V.; Braun, D.A.; Pavenstädt, H.; Weide, T. A Cell Biologist’s View on APOL1: What We Know and What We Still Need to Address. Cells 2025, 14, 960. [Google Scholar] [CrossRef]
- Pell, J.; Nagata, S.; Menon, M.C. Nonpodocyte Roles of APOL1 Variants: An Evolving Paradigm. Kidney360 2023, 4, e1325–e1331. [Google Scholar] [CrossRef]
- Ojo, A.O.; Adu, D.; Bramham, K.; Freedman, B.I.; Gbadegesin, R.A.; Ilori, T.O.; Jefferson, N.; Olabisi, O.A.; Susztak, K.; Young, B.A.; et al. APOL1 kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2025, in press. [Google Scholar] [CrossRef]
- Winston, J.A.; Bruggeman, L.A.; Ross, M.D.; Jacobson, J.; Ross, L.; D’Agati, V.D.; Klotman, P.E.; Klotman, M.E. Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N. Engl. J. Med. 2001, 344, 1979–1984. [Google Scholar] [CrossRef]
- McCarthy, G.M.; Blasio, A.; Donovan, O.G.; Schaller, L.B.; Bock-Hughes, A.; Magraner, J.M.; Suh, J.H.; Tattersfield, C.F.; Stillman, I.E.; Shah, S.S.; et al. Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease. Dis. Model. Mech. 2021, 14, dmm048952. [Google Scholar] [CrossRef] [PubMed]
- Riella, C.V.; McNulty, M.; Ribas, G.T.; Tattersfield, C.F.; Perez-Gill, C.; Eichinger, F.; Kelly, J.; Chun, J.; Subramanian, B.; Guizelini, D.; et al. ADAR regulates APOL1 via A-to-I RNA editing by inhibition of MDA5 activation in a paradoxical biological circuit. Proc. Nat. Acad. Sci. USA 2022, 119, e2210150119. [Google Scholar] [CrossRef] [PubMed]
- Aghajan, M.; Booten, S.L.; Althage, M.; Hart, C.E.; Ericsson, A.; Maxvall, I.; Ochaba, J.; Menschik-Lundin, A.; Hartleib, J.; Kuntz, S.; et al. Antisense oligonucleotide treatment ameliorates IFN-gamma-induced proteinuria in APOL1-transgenic mice. JCI Insight 2019, 4, e126124. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, G.S.; Nasr, S.H.; Stokes, M.B.; D’Agati, V.D. Treatment with IFN-α, -β, or -γ is associated with collapsing focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010, 5, 607–615. [Google Scholar] [CrossRef]
- Egbuna, O.; Zimmerman, B.; Manos, G.; Fortier, A.; Chirieac, M.C.; Dakin, L.A.; Friedman, D.J.; Bramham, K.; Campbell, K.; Knebelmann, B.; et al. Inaxaplin for Proteinuric Kidney Disease in Persons with Two APOL1 Variants. N. Engl. J. Med. 2023, 388, 969–979. [Google Scholar] [CrossRef]
- Nystrom, S.E.; Li, G.; Datta, S.; Soldano, K.L.; Silas, D.; Weins, A.; Hall, G.; Thomas, D.B.; Olabisi, O.A. JAK inhibitor blocks COVID-19 cytokine-induced JAK/STAT/APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids. JCI Insight 2022, 7, e157432. [Google Scholar] [CrossRef]
- Sula Karreci, E.; Jacas, S.; Donovan, O.; Pintye, D.; Wiley, N.; Zsengeller, Z.K.; Schlondorff, J.; Alper, S.L.; Friedman, D.J.; Pollak, M.R. Differing sensitivities to angiotensin converting enzyme inhibition of kidney disease mediated by APOL1 high-risk variants G1 and G2. Kidney Int. 2024, 106, 1072–1085. [Google Scholar] [CrossRef]
- Parsa, A.; Kao, W.H.; Xie, D.; Astor, B.C.; Li, M.; Hsu, C.Y.; Feldman, H.I.; Parekh, R.S.; Kusek, J.W.; Greene, T.H.; et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 2013, 369, 2183–2196. [Google Scholar] [CrossRef]
- Anyaegbu, E.I.; Shaw, A.S.; Hruska, K.A.; Jain, S. Clinical phenotype of APOL1 nephropathy in young relatives of patients with end-stage renal disease. Pediatr. Nephrol. 2015, 30, 983–989. [Google Scholar] [CrossRef]
- Groopman, E.E.; Marasa, M.; Cameron-Christie, S.; Petrovski, S.; Aggarwal, V.S.; Milo-Rasouly, H.; Li, Y.; Zhang, J.; Nestor, J.; Krithivasan, P.; et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019, 380, 142–151. [Google Scholar] [CrossRef]
- Lipkowitz, M.S.; Freedman, B.I.; Langefeld, C.D.; Comeau, M.E.; Bowden, D.W.; Kao, W.H.; Astor, B.C.; Bottinger, E.P.; Iyengar, S.K.; Klotman, P.E.; et al. Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int. 2013, 83, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Tzur, S.; Rosset, S.; Skorecki, K.; Wasser, W.G. APOL1 allelic variants are associated with lower age of dialysis initiation and thereby increased dialysis vintage in African and Hispanic Americans with non-diabetic end-stage kidney disease. Nephrol. Dial. Transplant. 2012, 27, 1498–1505. [Google Scholar] [CrossRef]
- Freedman, B.I.; Langefeld, C.D.; Turner, J.; Nunez, M.; High, K.P.; Spainhour, M.; Hicks, P.J.; Bowden, D.W.; Reeves-Daniel, A.M.; Murea, M.; et al. Association of APOL1 variants with mild kidney disease in the first-degree relatives of African American patients with non-diabetic end-stage renal disease. Kidney Int. 2012, 82, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Ulasi, I.I.; Tzur, S.; Wasser, W.G.; Shemer, R.; Kruzel, E.; Feigin, E.; Ijoma, C.K.; Onodugo, O.D.; Okoye, J.U.; Arodiwe, E.B.; et al. High population frequencies of APOL1 risk variants are associated with increased prevalence of non-diabetic chronic kidney disease in the Igbo people from south-eastern Nigeria. Nephron Clin. Pract. 2013, 123, 123–128. [Google Scholar] [CrossRef]
- Bruggeman, L.A.; O’Toole, J.F.; Sedor, J.R. APOL1 polymorphisms and kidney disease: Loss-of-function or gain-of-function? Am. J. Physiol. Renal Physiol. 2019, 316, F1–F8. [Google Scholar] [CrossRef]
- Friedman, D.J. COVID-19 and APOL1: Understanding Disease Mechanisms through Clinical Observation. J. Am. Soc. Nephrol. 2021, 32, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Kopp, J.B.; Winkler, C.A.; Zhao, X.; Radeva, M.K.; Gassman, J.J.; D’Agati, V.D.; Nast, C.C.; Wei, C.; Reiser, J.; Guay-Woodford, L.M.; et al. Clinical Features and Histology of Apolipoprotein L1-Associated Nephropathy in the FSGS Clinical Trial. J. Am. Soc. Nephrol. 2015, 26, 1443–1448. [Google Scholar] [CrossRef]
- Larsen, C.P.; Beggs, M.L.; Saeed, M.; Ambruzs, J.M.; Cossey, L.N.; Messias, N.C.; Walker, P.D.; Freedman, B.I. Histopathologic findings associated with APOL1 risk variants in chronic kidney disease. Mod. Pathol. 2015, 28, 95–102. [Google Scholar] [CrossRef]
- Zee, J.; McNulty, M.T.; Hodgin, J.B.; Zhdanova, O.; Hingorani, S.; Jefferson, J.A.; Gibson, K.L.; Trachtman, H.; Fornoni, A.; Dell, K.M.; et al. APOL1 genotype-associated morphologic changes among patients with focal segmental glomerulosclerosis. Pediatr. Nephrol. 2021, 36, 2747–2757. [Google Scholar] [CrossRef]
- Good, P.I.; Li, L.; Hurst, H.A.; Serrano Herrera, I.; Xu, K.; Rao, M.; Bateman, D.A.; Al-Awqati, Q.; D’Agati, V.D.; Costantini, F.; et al. Low nephron endowment increases susceptibility to renal stress and chronic kidney disease. JCI Insight 2023, 8, e161316. [Google Scholar] [CrossRef]
- Hodgin, J.B.; Rasoulpour, M.; Markowitz, G.S.; D’Agati, V.D. Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2009, 4, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Lackland, D.T.; Bendall, H.E.; Osmond, C.; Egan, B.M.; Barker, D.J. Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch. Intern. Med. 2000, 160, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Vikse, B.E.; Irgens, L.M.; Leivestad, T.; Hallan, S.; Iversen, B.M. Low birth weight increases risk for end-stage renal disease. J. Am. Soc. Nephrol. 2008, 19, 151–157. [Google Scholar] [CrossRef]
- Ikezumi, Y.; Suzuki, T.; Karasawa, T.; Yamada, T.; Hasegawa, H.; Nishimura, H.; Uchiyama, M. Low birthweight and premature birth are risk factors for podocytopenia and focal segmental glomerulosclerosis. Am. J. Nephrol. 2013, 38, 149–157. [Google Scholar] [CrossRef]
- Larsen, C.P.; Beggs, M.L.; Saeed, M.; Walker, P.D. Apolipoprotein L1 risk variants associate with systemic lupus erythematosus-associated collapsing glomerulopathy. J. Am. Soc. Nephrol. 2013, 24, 722–725. [Google Scholar] [CrossRef]
- Freedman, B.I.; Langefeld, C.D.; Andringa, K.K.; Croker, J.A.; Williams, A.H.; Garner, N.E.; Birmingham, D.J.; Hebert, L.A.; Hicks, P.J.; Segal, M.S.; et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 2014, 66, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.P.; Henderson, C.D.; Anguiano, J.; Aiello, C.P.; Collie, M.M.; Moreno, V.; Hu, Y.; Hogan, S.L.; Falk, R.J. Kidney Disease Progression in Membranous Nephropathy among Black Participants with High-Risk APOL1 Genotype. Clin. J. Am. Soc. Nephrol. 2023, 18, 337–343. [Google Scholar] [CrossRef]
- Elliott, M.D.; Marasa, M.; Cocchi, E.; Vena, N.; Zhang, J.Y.; Khan, A.; Krishna Murthy, S.; Bheda, S.; Milo Rasouly, H.; Povysil, G.; et al. Clinical and Genetic Characteristics of CKD Patients with High-Risk APOL1 Genotypes. J. Am. Soc. Nephrol. 2023, 34, 909–919. [Google Scholar] [CrossRef]
- Ashley-Koch, A.E.; Okocha, E.C.; Garrett, M.E.; Soldano, K.; De Castro, L.M.; Jonassaint, J.C.; Orringer, E.P.; Eckman, J.R.; Telen, M.J. MYH9 and APOL1 are both associated with sickle cell disease nephropathy. Br. J. Haematol. 2011, 155, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.L.; Zhang, X.; Shah, B.; Kanias, T.; Gudehithlu, K.P.; Kittles, R.; Machado, R.F.; Arruda, J.A.; Gladwin, M.T.; Singh, A.K.; et al. Genetic variants and cell-free hemoglobin processing in sickle cell nephropathy. Haematologica 2015, 100, 1275–1284. [Google Scholar] [CrossRef]
- Orskov, B.; Christensen, K.B.; Feldt-Rasmussen, B.; Strandgaard, S. Low birth weight is associated with earlier onset of end-stage renal disease in Danish patients with autosomal dominant polycystic kidney disease. Kidney Int. 2012, 81, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Ruggajo, P.; Svarstad, E.; Leh, S.; Marti, H.P.; Reisæther, A.V.; Vikse, B.E. Low Birth Weight and Risk of Progression to End Stage Renal Disease in IgA Nephropathy—A Retrospective Registry-Based Cohort Study. PLoS ONE 2016, 11, e0153819. [Google Scholar] [CrossRef]
- Duncan, R.C.; Bass, P.S.; Garrett, P.J.; Dathan, J.R. Weight at birth and other factors influencing progression of idiopathic membranous nephropathy. Nephrol. Dial. Transplant. 1994, 9, 875. [Google Scholar] [CrossRef]
- Zidar, N.; Avgustin Cavić, M.; Kenda, R.B.; Ferluga, D. Unfavorable course of minimal change nephrotic syndrome in children with intrauterine growth retardation. Kidney Int. 1998, 54, 1320–1323. [Google Scholar] [CrossRef]
- Kallash, M.; Wang, Y.; Smith, A.; Trachtman, H.; Gbadegesin, R.; Nester, C.; Canetta, P.; Wang, C.; Hunley, T.E.; Sperati, C.J.; et al. Rapid Progression of Focal Segmental Glomerulosclerosis in Patients with High-Risk APOL1 Genotypes. Clin. J. Am. Soc. Nephrol. 2023, 18, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Selewski, D.T.; Charlton, J.R.; Jetton, J.G.; Guillet, R.; Mhanna, M.J.; Askenazi, D.J.; Kent, A.L. Neonatal Acute Kidney Injury. Pediatrics 2015, 136, e463–e473. [Google Scholar] [CrossRef]
- Starr, M.C.; Hingorani, S.R. Prematurity and future kidney health: The growing risk of chronic kidney disease. Curr. Opin. Pediatr. 2018, 30, 228–235. [Google Scholar] [CrossRef]
- Brathwaite, K.E.; Levy, R.V.; Sarathy, H.; Agalliu, I.; Johns, T.S.; Reidy, K.J.; Fadrowski, J.J.; Schwartz, G.J.; Kaskel, F.J.; Melamed, M.L. Reduced kidney function and hypertension in adolescents with low birth weight, NHANES 1999–2016. Pediatr. Nephrol. 2023, 38, 3071–3082. [Google Scholar] [CrossRef]
- Fan, Z.J.; Lackland, D.T.; Lipsitz, S.R.; Nicholas, J.S. The association of low birthweight and chronic renal failure among Medicaid young adults with diabetes and/or hypertension. Public Health Rep. 2006, 121, 239–244. [Google Scholar] [CrossRef]
- Gjerde, A.; Reisæter, A.V.; Skrunes, R.; Marti, H.P.; Vikse, B.E. Intrauterine Growth Restriction and Risk of Diverse Forms of Kidney Disease during the First 50 Years of Life. Clin. J. Am. Soc. Nephrol. 2020, 15, 1413–1423. [Google Scholar] [CrossRef]
- Ruggajo, P.; Skrunes, R.; Svarstad, E.; Skjærven, R.; Reisæther, A.V.; Vikse, B.E. Familial Factors, Low Birth Weight, and Development of ESRD: A Nationwide Registry Study. Am. J. Kidney Dis. 2016, 67, 601–608. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, J.; Winkleby, M.A.; Sundquist, K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: National cohort study. Br. Med. J. 2019, 365, l1346. [Google Scholar] [CrossRef]
- Yoshida, T.; Latt, K.Z.; Shrivastav, S.; Lu, H.; Reidy, K.J.; Charlton, J.R.; Zhao, Y.; Winkler, C.A.; Reznik, S.E.; Rosenberg, A.Z.; et al. Preeclampsia in mice carrying fetuses with APOL1 risk variants. bioRxiv 2024. [Google Scholar] [CrossRef]
- Duchateau, P.N.; Pullinger, C.R.; Cho, M.H.; Eng, C.; Kane, J.P. Apolipoprotein L gene family: Tissue-specific expression, splicing, promoter regions; discovery of a new gene. J. Lipid Res. 2001, 42, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Red-Horse, K.; Zhou, Y.; Genbacev, O.; Prakobphol, A.; Foulk, R.; McMaster, M.; Fisher, S.J. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Investig. 2004, 114, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Lyall, F.; Robson, S.C.; Bulmer, J.N. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: Relationship to clinical outcome. Hypertension 2013, 62, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Osterman, M.J.K.; Hamilton, B.E.; Martin, J.A.; Driscoll, A.K.; Valenzuela, C.P. Births: Final Data for 2022. Natl. Vital. Stat. Rep. 2024, 73, 1–56. [Google Scholar]
- Riella, C.; Siemens, T.A.; Wang, M.; Campos, R.P.; Moraes, T.P.; Riella, L.V.; Friedman, D.J.; Riella, M.C.; Pollak, M.R. APOL1-Associated Kidney Disease in Brazil. Kidney Int. Rep. 2019, 4, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Nakimuli, A.; Chazara, O.; Byamugisha, J.; Elliott, A.M.; Kaleebu, P.; Mirembe, F.; Moffett, A. Pregnancy, parturition and preeclampsia in women of African ancestry. Am. J. Obstet. Gynecol. 2014, 210, 510–520.e511. [Google Scholar] [CrossRef]
- Ray, J.G.; Wanigaratne, S.; Park, A.L.; Bartsch, E.; Dzakpasu, S.; Urquia, M.L. Preterm preeclampsia in relation to country of birth. J. Perinatol. 2016, 36, 718–722. [Google Scholar] [CrossRef]
- Urquia, M.L.; Ying, I.; Glazier, R.H.; Berger, H.; De Souza, L.R.; Ray, J.G. Serious preeclampsia among different immigrant groups. J. Obstet. Gynaecol. Can. 2012, 34, 348–352. [Google Scholar] [CrossRef]
- Robertson, C.C.; Gillies, C.E.; Putler, R.K.B.; Ng, D.; Reidy, K.J.; Crawford, B.; Sampson, M.G. An investigation of APOL1 risk genotypes and preterm birth in African American population cohorts. Nephrol. Dial. Transplant. 2017, 32, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.A.; Roberts, J.M.; Bodnar, L.M.; Haggerty, C.L.; Youk, A.O.; Catov, J.M. Fetal sex and race modify the predictors of fetal growth. Matern. Child Health J. 2015, 19, 798–810. [Google Scholar] [CrossRef]
- Paré, E.; Parry, S.; McElrath, T.F.; Pucci, D.; Newton, A.; Lim, K.H. Clinical risk factors for preeclampsia in the 21st century. Obstet. Gynecol. 2014, 124, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Jaamaa, G.; Kaiser, M.; Hills, E.; Soim, A.; Zhu, M.; Shcherbatykh, I.Y.; Samelson, R.; Bell, E.; Zdeb, M.; et al. Racial disparity in hypertensive disorders of pregnancy in New York State: A 10-year longitudinal population-based study. Am. J. Public Health 2007, 97, 163–170. [Google Scholar] [CrossRef]
- Zhang, S.; Cardarelli, K.; Shim, R.; Ye, J.; Booker, K.L.; Rust, G. Racial disparities in economic and clinical outcomes of pregnancy among Medicaid recipients. Matern. Child Health J. 2013, 17, 1518–1525. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Perico, N.; Somaschini, M.; Manfellotto, D.; Valensise, H.; Cetin, I.; Simeoni, U.; Allegaert, K.; Vikse, B.E.; Steegers, E.A.; et al. A developmental approach to the prevention of hypertension and kidney disease: A report from the Low Birth Weight and Nephron Number Working Group. Lancet 2017, 390, 424–428. [Google Scholar] [CrossRef]
- Khalsa, D.D.; Beydoun, H.A.; Carmody, J.B. Prevalence of chronic kidney disease risk factors among low birth weight adolescents. Pediatr. Nephrol. 2016, 31, 1509–1516. [Google Scholar] [CrossRef]
- Ng, D.K.; Robertson, C.C.; Woroniecki, R.P.; Limou, S.; Gillies, C.E.; Reidy, K.J.; Winkler, C.A.; Hingorani, S.; Gibson, K.L.; Hjorten, R.; et al. APOL1-associated glomerular disease among African-American children: A collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) cohorts. Nephrol. Dial. Transplant. 2017, 32, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Isaac, J.S.; Troost, J.P.; Wang, Y.; Garrity, K.; Kaskel, F.; Gbadegesin, R.; Reidy, K.J. Association of Preterm Birth with Adverse Glomerular Disease Outcomes in Children and Adults. Clin. J. Am. Soc. Nephrol. 2024, 19, 1016–1024. [Google Scholar] [CrossRef]
- Hingorani, S.; Gibson, K.L.; Xie, Y.; Wang, Y.; Eddy, S.; Hartman, J.; Sampson, M.; Cassol, C.; Thomas, D.; Gipson, D.S.; et al. The association of low birthweight and prematurity on outcomes in children and adults with nephrotic syndrome-a NEPTUNE cohort study. Pediatr. Nephrol. 2023, 38, 3297–3308. [Google Scholar] [CrossRef]
- Sutherland, M.R.; Black, M.J. The impact of intrauterine growth restriction and prematurity on nephron endowment. Nat. Rev. Nephrol. 2023, 19, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Hinchliffe, S.A.; Lynch, M.R.; Sargent, P.H.; Howard, C.V.; Van Velzen, D. The effect of intrauterine growth retardation on the development of renal nephrons. Br. J. Obstet. Gynaecol. 1992, 99, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Brenner, B.M.; Chertow, G.M. Congenital oligonephropathy: An inborn cause of adult hypertension and progressive renal injury? Curr. Opin. Nephrol. Hypertens. 1993, 2, 691–695. [Google Scholar]
- Hostetter, T.H.; Olson, J.L.; Rennke, H.G.; Venkatachalam, M.A.; Brenner, B.M. Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am. J. Physiol. 1981, 241, F85–F93. [Google Scholar] [CrossRef]
- Wharram, B.L.; Goyal, M.; Wiggins, J.E.; Sanden, S.K.; Hussain, S.; Filipiak, W.E.; Saunders, T.L.; Dysko, R.C.; Kohno, K.; Holzman, L.B.; et al. Podocyte depletion causes glomerulosclerosis: Diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 2005, 16, 2941–2952. [Google Scholar] [CrossRef]
- Wiggins, J.E.; Goyal, M.; Sanden, S.K.; Wharram, B.L.; Shedden, K.A.; Misek, D.E.; Kuick, R.D.; Wiggins, R.C. Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: Prevention by calorie restriction. J. Am. Soc. Nephrol. 2005, 16, 2953–2966. [Google Scholar] [CrossRef]
- Koike, K.; Ikezumi, Y.; Tsuboi, N.; Kanzaki, G.; Haruhara, K.; Okabayashi, Y.; Sasaki, T.; Ogura, M.; Saitoh, A.; Yokoo, T. Glomerular Density and Volume in Renal Biopsy Specimens of Children with Proteinuria Relative to Preterm Birth and Gestational Age. Clin. J. Am. Soc. Nephrol. 2017, 12, 585–590. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Gao, Q.; Liu, G.; Zheng, J.; Ding, F. Preterm birth leads to a decreased number of differentiated podocytes and accelerated podocyte differentiation. Front. Cell Dev. Biol. 2023, 11, 1142929. [Google Scholar] [CrossRef]
- Bruggeman, L.A.; Wu, Z.; Luo, L.; Madhavan, S.; Drawz, P.E.; Thomas, D.B.; Barisoni, L.; O’Toole, J.F.; Sedor, J.R. APOL1-G0 protects podocytes in a mouse model of HIV-associated nephropathy. PLoS ONE 2019, 14, e0224408. [Google Scholar] [CrossRef]
- Chen, D.P.; Zaky, Z.S.; Schold, J.D.; Herlitz, L.C.; El-Rifai, R.; Drawz, P.E.; Bruggeman, L.A.; Barisoni, L.; Hogan, S.L.; Hu, Y.; et al. Podocyte density is reduced in kidney allografts with high-risk APOL1 genotypes at transplantation. Clin. Transplant. 2021, 35, e14234. [Google Scholar] [CrossRef]
- Hoy, W.E.; Hughson, M.D.; Kopp, J.B.; Mott, S.A.; Bertram, J.F.; Winkler, C.A. APOL1 Risk Alleles Are Associated with Exaggerated Age-Related Changes in Glomerular Number and Volume in African-American Adults: An Autopsy Study. J. Am. Soc. Nephrol. 2015, 26, 3179–3189. [Google Scholar] [CrossRef]
- Morozov, D.; Parvin, N.; Conaway, M.; Oxley, G.; Baldelomar, E.J.; Cwiek, A.; deRonde, K.; Beeman, S.C.; Charlton, J.R.; Bennett, K.M. Estimating Nephron Number from Biopsies: Impact on Clinical Studies. J. Am. Soc. Nephrol. 2022, 33, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Sedor, J.R. APOL1 Kidney Disease: Discovery to Targeted Therapy in 10 Years. Clin. J. Am. Soc. Nephrol. 2024, 19, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Orozco, A.; Shemies, R.; Attini, R.; Cabiddu, G.; Toreggiani, M.; Jesudason, S.; Garovic, V. Postpartum counseling and interventions to reduce the risk of chronic kidney disease: Back to the future. Kidney Int. 2025, 108, 160–166. [Google Scholar] [CrossRef] [PubMed]
Preeclampsia | Low Birth Weight or Small for Gestational Age | ||||
---|---|---|---|---|---|
Incidence (% Births) | Odds Ratio | Incidence (% Births) | Odds Ratio | Citation | |
European Americans | 7.1% | (reference) | 9.4% | (reference) | [81] |
African Americans | 9.9% | 1.3–1.6 * | 12.9–14.8% | 1.7–2.6 * | [81,87,88,89,90] |
African Americans with APOL1 high-risk genotype | 15–22% | 1.7–3.6 ** | 19.3–20.2% | 2.4–5.5 ** | [8,9,10,11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azhibekov, T.; Bruggeman, L.A. Insidious APOL1 Kidney Disease: A Manifestation of APOL1-Associated Pregnancy Complications on Nephron Endowment? Cells 2025, 14, 1373. https://doi.org/10.3390/cells14171373
Azhibekov T, Bruggeman LA. Insidious APOL1 Kidney Disease: A Manifestation of APOL1-Associated Pregnancy Complications on Nephron Endowment? Cells. 2025; 14(17):1373. https://doi.org/10.3390/cells14171373
Chicago/Turabian StyleAzhibekov, Timur, and Leslie A. Bruggeman. 2025. "Insidious APOL1 Kidney Disease: A Manifestation of APOL1-Associated Pregnancy Complications on Nephron Endowment?" Cells 14, no. 17: 1373. https://doi.org/10.3390/cells14171373
APA StyleAzhibekov, T., & Bruggeman, L. A. (2025). Insidious APOL1 Kidney Disease: A Manifestation of APOL1-Associated Pregnancy Complications on Nephron Endowment? Cells, 14(17), 1373. https://doi.org/10.3390/cells14171373