Botulinum Toxin Type A Inhibits Submandibular Secretion via the ERK/miR-124-3p/Specificity Protein 1/Claudin-1 Axis
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Measurement of Saliva Secretion
2.3. Cell Culture
2.4. Transmission Electron Microscopy
2.5. Histological and Immunofluorescence Staining
2.6. Measurement of Transepithelial Electrical Resistance and Paracellular Tracer Flux
2.7. Knockdown of Cldn1 and Sp1
2.8. Transfection of miR-124-3p Mimic and Inhibitor
2.9. Plasmid Construction and Dual-Luciferase Activity Assay
2.10. Western Blot Analysis
2.11. RNA Extraction and Quantitative Real-Time PCR
2.12. Statistical Analysis
3. Results
3.1. Upregulation of Cldn1 and Cldn3 Expression Following BTXA-Induced Inhibition of Salivary Secretion in the Submandibular Gland
3.2. BTXA Increases the Expression of Cldn1 and Cldn3 and Decreases Paracelluar Permeability in SMG-C6 Cells
3.3. ERK1/2 Activation Is Involved in BTXA-Induced Reduction in Paracellular Permeability and Upregulation of Cldn1 Expression
3.4. BTXA Increases the Expression of Sp1 in Submandibular Gland and SMG-C6 Cells
3.5. ERK1/2 Activation Is Involved in the Promotion of Cldn1 Transcription by BTXA Through the Upregulation of Sp1 Expression
3.6. MiR-124-3p Upregulates Cldn1 Expression by Directly Targeting Sp1 in SMG-C6 Cells
3.7. ERK1/2 Activation Is Involved in BTXA-Induced Downregulation of miR-124-3p
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Isaacson, J.; Patel, S.; Torres-Yaghi, Y.; Pagan, F. Sialorrhea in Parkinson’s Disease. Toxins 2020, 12, 691. [Google Scholar] [CrossRef] [PubMed]
- Jost, W.H.; Friedman, A.; Michel, O.; Oehlwein, C.; Slawek, J.; Bogucki, A.; Ochudlo, S.; Banach, M.; Pagan, F.; Flatau-Baque, B.; et al. SIAXI: Placebo-controlled, randomized, double-blind study of incobotulinumtoxinA for sialorrhea. Neurology 2019, 92, e1982–e1991. [Google Scholar] [CrossRef]
- Lakraj, A.A.; Moghimi, N.; Jabbari, B. Sialorrhea: Anatomy, pathophysiology and treatment with emphasis on the role of botulinum toxins. Toxins 2013, 5, 1010–1031. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Xu, H.; Shan, X.F.; Cai, Z.G. Botulinum toxin type A interrupts autophagic flux of submandibular gland. Biosci. Rep. 2019, 39, BSR20190035. [Google Scholar] [CrossRef]
- Xu, H.; Shan, X.F.; Cong, X.; Yang, N.Y.; Wu, L.L.; Yu, G.Y.; Zhang, Y.; Cai, Z.G. Pre- and Post-synaptic Effects of Botulinum Toxin A on Submandibular Glands. J. Dent. Res. 2015, 94, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Baker, O.J. Current trends in salivary gland tight junctions. Tissue Barriers 2016, 4, e1162348. [Google Scholar] [CrossRef]
- Zheng, X.; Ren, B.; Gao, Y. Tight junction proteins related to blood-brain barrier and their regulatory signaling pathways in ischemic stroke. Biomed. Pharmacother. 2023, 165, 115272. [Google Scholar] [CrossRef]
- Gunzel, D.; Fromm, M. Claudins and other tight junction proteins. Compr. Physiol. 2012, 2, 1819–1852. [Google Scholar] [CrossRef] [PubMed]
- Furuse, M.; Hata, M.; Furuse, K.; Yoshida, Y.; Haratake, A.; Sugitani, Y.; Noda, T.; Kubo, A.; Tsukita, S. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J. Cell. Biol. 2002, 156, 1099–1111. [Google Scholar] [CrossRef]
- Kirschner, N.; Rosenthal, R.; Furuse, M.; Moll, I.; Fromm, M.; Brandner, J.M. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J. Investig. Dermatol. 2013, 133, 1161–1169. [Google Scholar] [CrossRef]
- Grosse, B.; Cassio, D.; Yousef, N.; Bernardo, C.; Jacquemin, E.; Gonzales, E. Claudin-1 involved in neonatal ichthyosis sclerosing cholangitis syndrome regulates hepatic paracellular permeability. Hepatology 2012, 55, 1249–1259. [Google Scholar] [CrossRef]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef]
- Burek, M.; Konig, A.; Lang, M.; Fiedler, J.; Oerter, S.; Roewer, N.; Bohnert, M.; Thal, S.C.; Blecharz-Lang, K.G.; Woitzik, J.; et al. Hypoxia-Induced MicroRNA-212/132 Alter Blood-Brain Barrier Integrity Through Inhibition of Tight Junction-Associated Proteins in Human and Mouse Brain Microvascular Endothelial Cells. Transl. Stroke Res. 2019, 10, 672–683. [Google Scholar] [CrossRef]
- Xie, Y.; Tan, J.; Qin, Y.; Cao, Y.; Wang, Y.; Li, A.; Wang, Z.; Qiao, Z.; Yan, Z. MiR-3571 modulates the proliferation and migration of vascular smooth muscle cells by targeting claudin 1. Int. J. Med. Sci. 2022, 19, 511–524. [Google Scholar] [CrossRef]
- Zhou, Q.; Costinean, S.; Croce, C.M.; Brasier, A.R.; Merwat, S.; Larson, S.A.; Basra, S.; Verne, G.N. MicroRNA 29 targets nuclear factor-kappaB-repressing factor and Claudin 1 to increase intestinal permeability. Gastroenterology 2015, 148, 158–169. [Google Scholar] [CrossRef]
- Worton, L.E.; Gardiner, E.M.; Kwon, R.Y.; Downey, L.M.; Ausk, B.J.; Bain, S.D.; Gross, T.S. Botulinum toxin A-induced muscle paralysis stimulates Hdac4 and differential miRNA expression. PLoS ONE 2018, 13, e0207354. [Google Scholar] [CrossRef]
- Hou, Z.; Fan, F.; Liu, P. BTXA regulates the epithelial-mesenchymal transition and autophagy of keloid fibroblasts via modulating miR-1587/miR-2392 targeted ZEB2. Biosci. Rep. 2019, 39, BSR20190679. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.Y.; Xie, S.; Wu, L.L.; Xiang, R.L.; Cai, Z.G. MicroRNA-mRNA expression profiles and functional network after injection of botulinum toxin type A into submandibular glands. Toxicon 2021, 199, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, H.M.; Mao, Q.Y.; Cong, X.; Zhang, Y.; Lee, S.W.; Park, K.; Wu, L.L.; Xiang, R.L.; Yu, G.Y. High Glucose Reduces the Paracellular Permeability of the Submandibular Gland Epithelium via the MiR-22-3p/Sp1/Claudin Pathway. Cells 2021, 10, 3230. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Liao, G.; Wang, Y.; Tang, D.D. Specific protein 1, c-Abl and ERK1/2 form a regulatory loop. J. Cell. Sci. 2019, 132, jcs222380. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, J.; Fan, Y.; Wang, Z.; Tian, R.; Ji, W.; Zhang, F.; Niu, R. TGF-beta transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol. Oncol. 2018, 12, 305–321. [Google Scholar] [CrossRef]
- Gunzel, D.; Yu, A.S. Claudins and the modulation of tight junction permeability. Physiol. Rev. 2013, 93, 525–569. [Google Scholar] [CrossRef]
- Rosenthal, R.; Gunzel, D.; Theune, D.; Czichos, C.; Schulzke, J.D.; Fromm, M. Water channels and barriers formed by claudins. Ann. N. Y. Acad. Sci. 2017, 1397, 100–109. [Google Scholar] [CrossRef]
- Inai, T.; Kobayashi, J.; Shibata, Y. Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur. J. Cell. Biol. 1999, 78, 849–855. [Google Scholar] [CrossRef]
- De Benedetto, A.; Rafaels, N.M.; McGirt, L.Y.; Ivanov, A.I.; Georas, S.N.; Cheadle, C.; Berger, A.E.; Zhang, K.; Vidyasagar, S.; Yoshida, T.; et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2011, 127, 773–786. [Google Scholar] [CrossRef]
- Watson, R.E.; Poddar, R.; Walker, J.M.; McGuill, I.; Hoare, L.M.; Griffiths, C.E.; O’Neill, C.A. Altered claudin expression is a feature of chronic plaque psoriasis. J. Pathol. 2007, 212, 450–458. [Google Scholar] [CrossRef]
- Zhao, X.; Zeng, H.; Lei, L.; Tong, X.; Yang, L.; Yang, Y.; Li, S.; Zhou, Y.; Luo, L.; Huang, J.; et al. Tight junctions and their regulation by non-coding RNAs. Int. J. Biol. Sci. 2021, 17, 712–727. [Google Scholar] [CrossRef]
- Rawat, M.; Nighot, M.; Al-Sadi, R.; Gupta, Y.; Viszwapriya, D.; Yochum, G.; Koltun, W.; Ma, T.Y. IL1B Increases Intestinal Tight Junction Permeability by Up-regulation of MIR200C-3p, Which Degrades Occludin mRNA. Gastroenterology 2020, 159, 1375–1389. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.; Rodino-Janeiro, B.K.; Lobo, B.; Stanifer, M.L.; Klaus, B.; Granzow, M.; Gonzalez-Castro, A.M.; Salvo-Romero, E.; Alonso-Cotoner, C.; Pigrau, M.; et al. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 2017, 66, 1537–1538. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Yuan, W.; Yao, L.; Wang, S.; Jia, Z.; Wu, P.; Li, L.; Wei, P.; Wang, X.; et al. MicroRNA-155-5p is a key regulator of allergic inflammation, modulating the epithelial barrier by targeting PKIalpha. Cell Death Dis. 2019, 10, 884. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.; Yan, J.; Sun, M.Z.; Greenaway, F.T. The potential role of miR-124-3p in tumorigenesis and other related diseases. Mol. Biol. Rep. 2021, 48, 3579–3591. [Google Scholar] [CrossRef]
- Song, B.F.; Xu, L.Z.; Jiang, K.; Cheng, F. MiR-124-3p inhibits tumor progression in prostate cancer by targeting EZH2. Funct. Integr. Genom. 2023, 23, 80. [Google Scholar] [CrossRef]
- Yang, Q.; Murata, K.; Ikeda, T.; Minatoya, K.; Masumoto, H. miR-124-3p downregulates EGR1 to suppress ischemia-hypoxia reperfusion injury in human iPS cell-derived cardiomyocytes. Sci. Rep. 2024, 14, 14811. [Google Scholar] [CrossRef]
- Wang, H.B.; Wang, P.Y.; Wang, X.; Wan, Y.L.; Liu, Y.C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 2012, 57, 3126–3135. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, C.; Wang, L.; Zhang, D.; Liu, N.; Ming, X.; Zhou, H.; Guli, Q.; Liu, Y. Interaction with SP1, but not binding to the E-box motifs, is responsible for BHLHE40/DEC1-induced transcriptional suppression of CLDN1 and cell invasion in MCF-7 cells. Mol. Carcinog. 2018, 57, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Huang, Z.; Huang, W.; Lin, M.; Liu, W.; Liu, K.; Li, C. microRNA-124-3p attenuates myocardial injury in sepsis via modulating SP1/HDAC4/HIF-1alpha axis. Cell Death Discov. 2022, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, Y.; Zeng, F.; Liu, X.; Tao, T.; Qin, Z. Propofol Exposure Disturbs the Differentiation of Rodent Neural Stem Cells via an miR-124-3p/Sp1/Cdkn1b Axis. Cell Dev. Biol. 2020, 8, 838. [Google Scholar] [CrossRef]
- Cong, X.; Zhang, Y.; Li, J.; Mei, M.; Ding, C.; Xiang, R.L.; Zhang, L.W.; Wang, Y.; Wu, L.L.; Yu, G.Y. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J. Cell Sci. 2015, 128, 2271–2286. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Xiang, R.L.; Cong, X.; Zhang, Y.; Li, J.; Yi, X.; Park, K.; Han, J.Y.; Wu, L.L.; Yu, G.Y. Claudin-3 is required for modulation of paracellular permeability by TNF-alpha through ERK1/2/slug signaling axis in submandibular gland. Cell. Signal. 2015, 27, 1915–1927. [Google Scholar] [CrossRef]
- Park, T.H.; Park, J.H.; Chang, C.H.; Rah, D.K. Botulinum Toxin A Upregulates Rac1, Cdc42, and RhoA Gene Expression in a Dose-Dependent Manner: In Vivo and in Vitro Study. J. Craniofac. Surg. 2016, 27, 516–520. [Google Scholar] [CrossRef]
- Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 2015, 15, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Shi, B.; Hou, P. Activated ERK: An Emerging Player in miRNA Downregulation. Trends Cancer 2017, 3, 163–165. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequence (5′-3′) |
---|---|
rno-claudin-1-siRNA | Forward GCCACAGCAUGGUAUGGAATT |
Reverse UUCCAUACCAUGCUGUGGCTT | |
rno-Sp1-siRNA | Forward GCAAGUUCUGACAGGUCUATT |
Reverse UAGACCUGUCAGAACUUGCTT | |
negative control (NC) | Forward UUCUCCGAACGUGUCACGUTT |
Reverse ACGUGACACGUUCGGAGAATT |
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
Sp1 | GGACAGTTGAGCAGCATT | CCATCATCATTCGGACAC |
β-actin | GAGACCTTCAACACCCCAGCC | TCGGGGCATCGGAACCGCTCA |
miR-124-3p | GCGTAAGGCACGCGGTG | AGTGCAGGGTCCGAGGTATT |
U6 | CTCGCTTCGGCAGCACA | AACGCTTCACGAATTTGCGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Q.-Y.; Huang, Y.; Chen, Z.; Shan, X.-F.; Xie, S.; Wu, L.-L.; Xiang, R.-L.; Cai, Z.-G. Botulinum Toxin Type A Inhibits Submandibular Secretion via the ERK/miR-124-3p/Specificity Protein 1/Claudin-1 Axis. Cells 2025, 14, 1366. https://doi.org/10.3390/cells14171366
Mao Q-Y, Huang Y, Chen Z, Shan X-F, Xie S, Wu L-L, Xiang R-L, Cai Z-G. Botulinum Toxin Type A Inhibits Submandibular Secretion via the ERK/miR-124-3p/Specificity Protein 1/Claudin-1 Axis. Cells. 2025; 14(17):1366. https://doi.org/10.3390/cells14171366
Chicago/Turabian StyleMao, Qian-Ying, Yan Huang, Zhuo Chen, Xiao-Feng Shan, Shang Xie, Li-Ling Wu, Ruo-Lan Xiang, and Zhi-Gang Cai. 2025. "Botulinum Toxin Type A Inhibits Submandibular Secretion via the ERK/miR-124-3p/Specificity Protein 1/Claudin-1 Axis" Cells 14, no. 17: 1366. https://doi.org/10.3390/cells14171366
APA StyleMao, Q.-Y., Huang, Y., Chen, Z., Shan, X.-F., Xie, S., Wu, L.-L., Xiang, R.-L., & Cai, Z.-G. (2025). Botulinum Toxin Type A Inhibits Submandibular Secretion via the ERK/miR-124-3p/Specificity Protein 1/Claudin-1 Axis. Cells, 14(17), 1366. https://doi.org/10.3390/cells14171366