Inflammation—A Link Between Arterial Atherosclerotic and Venous Thromboembolic Diseases
Abstract
1. Introduction
2. Relationship Between Inflammatory Markers and Peripheral Arterial and Venous Thromboembolic Diseases
3. Common Risk Factors of Vascular Disease and Inflammation
4. Association Between Preclinical or Clinical Atherosclerosis and Venous Thromboembolic Disease
5. Anti-Inflammatory Therapies for Vascular Disease
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAD | Arterial atherosclerotic disease |
ABI | Ankle–brachial index |
AMI | Acute myocardial infarction |
BMI | Body mass index |
CHD | Coronary heart disease |
CRP | C-reactive protein |
CV | Cardiovascular |
DVT | Deep venous thrombosis |
ED | Endothelial dysfunction |
FMD | Flow-mediated dilation |
HDL | High-density lipoprotein |
hsCRP | High-sensitivity C-reactive protein |
IL-1 beta | Interleukin-1β |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
IL-9 | Interleukin-9 |
IL-10 | Interleukin-10 |
IL-17 | Interleukin-17 |
IM | Intima–media |
IMT | Intima–media thickness |
LDL | Low-density lipoprotein |
MCP-1 | Monocyte chemoattractant protein-1 |
MI | Myocardial infarction |
MicroRNA | Micro ribonucleic acid |
PAD | Peripheral arterial disease |
PE | Pulmonary embolism |
TNF-α | Tumor necrosis factor alpha |
VT | Venous thrombosis |
VTE | Venous thromboembolism |
VTED | Venous thromboembolic disease |
References
- Wendelboe, A.M.; Raskob, G.E. Global Burden of Thrombosis: Epidemiologic Aspects. Circ. Res. 2016, 118, 1340–1347. [Google Scholar] [CrossRef]
- Adcock, D.M. Is There a Genetic Relationship between Arterial and Venous Thrombosis? Clin. Lab. Sci. J. Am. Soc. Med. Technol. 2007, 20, 221–223. [Google Scholar]
- Pitha, J. Common Features of Atherosclerosis and Venous Disease. Rev. Vasc. Med. 2015, 3, 35–39. [Google Scholar] [CrossRef]
- Poredos, P.; Poredos, P. Involvement of Inflammation in Venous Thromboembolic Disease: An Update in the Age of COVID-19. Semin. Thromb. Hemost. 2022, 48, 93–99. [Google Scholar] [CrossRef]
- Poredos, P.; Poredos, A.V.; Gregoric, I. Endothelial Dysfunction and Its Clinical Implications. Angiology 2021, 72, 604–615. [Google Scholar] [CrossRef]
- Steffel, J.; Eikelboom, J.W.; Anand, S.S.; Shestakovska, O.; Yusuf, S.; Fox, K.A.A. The COMPASS Trial: Net Clinical Benefit of Low-Dose Rivaroxaban Plus Aspirin as Compared with Aspirin in Patients with Chronic Vascular Disease. Circulation 2020, 142, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Previtali, E.; Bucciarelli, P.; Passamonti, S.M.; Martinelli, I. Risk Factors for Venous and Arterial Thrombosis. Blood Transfus. 2011, 9, 120–138. [Google Scholar] [CrossRef]
- Poredoš, P. Interrelationship between Venous and Arterial Thrombosis. Int. Angiol. 2017, 36, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, S.S.; Scuto, S.; Marino, E.; Xourafa, A.; Gaudio, A. Oxidative Stress in Peripheral Arterial Disease (PAD) Mechanism and Biomarkers. Antioxidants 2019, 8, 367. [Google Scholar] [CrossRef]
- Brevetti, G.; Giugliano, G.; Brevetti, L.; Hiatt, W.R. Inflammation in Peripheral Artery Disease. Circulation 2010, 122, 1862–1875. [Google Scholar] [CrossRef] [PubMed]
- Tzoulaki, I.; Murray, G.D.; Lee, A.J.; Rumley, A.; Lowe, G.D.O.; Fowkes, F.G.R. C-Reactive Protein, Interleukin-6, and Soluble Adhesion Molecules as Predictors of Progressive Peripheral Atherosclerosis in the General Population: Edinburgh Artery Study. Circulation 2005, 112, 976–983. [Google Scholar] [CrossRef]
- Gremmels, H.; Teraa, M.; de Jager, S.C.A.; Pasterkamp, G.; de Borst, G.J.; Verhaar, M.C. A Pro-Inflammatory Biomarker-Profile Predicts Amputation-Free Survival in Patients with Severe Limb Ischemia. Sci. Rep. 2019, 9, 10740. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Morrison, A.; Boerwinkle, E.; Miles, J.S.; Rhodes, C.E.; Sharrett, A.R.; Ballantyne, C.M. Plasma MCP-1 Level and Risk for Peripheral Arterial Disease and Incident Coronary Heart Disease: Atherosclerosis Risk in Communities Study. Atherosclerosis 2005, 183, 301–307. [Google Scholar] [CrossRef]
- Wilson, A.M.; Kimura, E.; Harada, R.K.; Nair, N.; Narasimhan, B.; Meng, X.-Y.; Zhang, F.; Beck, K.R.; Olin, J.W.; Fung, E.T.; et al. Beta2-Microglobulin as a Biomarker in Peripheral Arterial Disease: Proteomic Profiling and Clinical Studies. Circulation 2007, 116, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Yang, E.; Matcuk, G.; Deng, D.; Sampas, N.; Tsalenko, A.; Tabibiazar, R.; Zhang, Y.; Chen, M.; Talbi, S.; et al. Identification of Endothelial Cell Genes by Combined Database Mining and Microarray Analysis. Physiol. Genomics 2003, 13, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Branchford, B.R.; Carpenter, S.L. The Role of Inflammation in Venous Thromboembolism. Front. Pediatr. 2018, 6, 142. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T. Inflammation and Coagulation. Crit. Care Med. 2010, 38, S26–S34. [Google Scholar] [CrossRef]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef]
- Tsai, A.W.; Cushman, M.; Rosamond, W.D.; Heckbert, S.R.; Tracy, R.P.; Aleksic, N.; Folsom, A.R. Coagulation Factors, Inflammation Markers, and Venous Thromboembolism: The Longitudinal Investigation of Thromboembolism Etiology (LITE). Am. J. Med. 2002, 113, 636–642. [Google Scholar] [CrossRef]
- Jezovnik, M.K.; Poredos, P. Idiopathic Venous Thrombosis Is Related to Systemic Inflammatory Response and to Increased Levels of Circulating Markers of Endothelial Dysfunction. Int. Angiol. 2010, 29, 226–231. [Google Scholar]
- Ding, J.; Yue, X.; Tian, X.; Liao, Z.; Meng, R.; Zou, M. Association between Inflammatory Biomarkers and Venous Thromboembolism: A Systematic Review and Meta-Analysis. Thromb. J. 2023, 21, 82. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Lutsey, P.L.; Astor, B.C.; Cushman, M. C-Reactive Protein and Venous Thromboembolism. A Prospective Investigation in the ARIC Cohort. Thromb. Haemost. 2009, 102, 615–619. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Seidu, S.; Blom, A.W.; Khunti, K.; Laukkanen, J.A. Serum C-Reactive Protein Increases the Risk of Venous Thromboembolism: A Prospective Study and Meta-Analysis of Published Prospective Evidence. Eur. J. Epidemiol. 2017, 32, 657–667. [Google Scholar] [CrossRef]
- Najem, M.Y.; Couturaud, F.; Lemarié, C.A. Cytokine and Chemokine Regulation of Venous Thromboembolism. J. Thromb. Haemost. 2020, 18, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Van Aken, B.E.; Reitsma, P.H.; Rosendaal, F.R. Interleukin 8 and Venous Thrombosis: Evidence for a Role of Inflammation in Thrombosis. Br. J. Haematol. 2002, 116, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Reitsma, P.H.; Rosendaal, F.R. Activation of Innate Immunity in Patients with Venous Thrombosis: The Leiden Thrombophilia Study. J. Thromb. Haemost. 2004, 2, 619–622. [Google Scholar] [CrossRef]
- Shbaklo, H.; Holcroft, C.A.; Kahn, S.R. Levels of Inflammatory Markers and the Development of the Post-Thrombotic Syndrome. Thromb. Haemost. 2009, 101, 505–512. [Google Scholar] [CrossRef]
- Wojcik, B.M.; Wrobleski, S.K.; Hawley, A.E.; Wakefield, T.W.; Myers, D.D.J.; Diaz, J.A. Interleukin-6: A Potential Target for Post-Thrombotic Syndrome. Ann. Vasc. Surg. 2011, 25, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z.; Wei, R.; Miao, X.; Sun, S.; Liang, G.; Chu, C.; Zhao, L.; Zhu, X.; Guo, Q.; et al. IL (Interleukin)-6 Contributes to Deep Vein Thrombosis and Is Negatively Regulated by MiR-338-5p. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 323–334. [Google Scholar] [CrossRef]
- Matos, M.F.; Lourenço, D.M.; Orikaza, C.M.; Bajerl, J.A.H.; Noguti, M.A.E.; Morelli, V.M. The Role of IL-6, IL-8 and MCP-1 and Their Promoter Polymorphisms IL-6-174GC, IL-8-251AT and MCP-1-2518AG in the Risk of Venous Thromboembolism: A Case-Control Study. Thromb. Res. 2011, 128, 216–220. [Google Scholar] [CrossRef]
- Hawrylowicz, C.M.; O’Garra, A. Potential Role of Interleukin-10-Secreting Regulatory T Cells in Allergy and Asthma. Nat. Rev. Immunol. 2005, 5, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Downing, L.J.; Strieter, R.M.; Kadell, A.M.; Wilke, C.A.; Austin, J.C.; Hare, B.D.; Burdick, M.D.; Greenfield, L.J.; Wakefield, T.W. IL-10 Regulates Thrombus-Induced Vein Wall Inflammation and Thrombosis. J. Immunol. 1998, 161, 1471–1476. [Google Scholar] [CrossRef] [PubMed]
- Poredos, P.; Jezovnik, M.K. In Patients with Idiopathic Venous Thrombosis, Interleukin-10 Is Decreased and Related to Endothelial Dysfunction. Heart Vessel. 2011, 26, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Poredos, P.; Spirkoska, A.; Lezaic, L.; Mijovski, M.B.; Jezovnik, M.K. Patients with an Inflamed Atherosclerotic Plaque Have Increased Levels of Circulating Inflammatory Markers. J. Atheroscler. Thromb. 2017, 24, 39–46. [Google Scholar] [CrossRef]
- Ray, J.G. Dyslipidemia, Statins, and Venous Thromboembolism: A Potential Risk Factor and a Potential Treatment. Curr. Opin. Pulm. Med. 2003, 9, 378–384. [Google Scholar] [CrossRef]
- Poredoš, P.; Mukherjee, D.; Blinc, A. Statins and Venous Thromboembolic Disease—Where Are We Now? Curr. Vasc. Pharmacol. 2024, 22, 297–300. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Liu, Z.-H.; Yao, F.-J.; Zeng, W.-T.; Zheng, D.-D.; Dong, Y.-G.; Wu, S.-H. Current and Former Smoking and Risk for Venous Thromboembolism: A Systematic Review and Meta-Analysis. PLoS Med. 2013, 10, e1001515. [Google Scholar] [CrossRef]
- Arnson, Y.; Shoenfeld, Y.; Amital, H. Effects of Tobacco Smoke on Immunity, Inflammation and Autoimmunity. J. Autoimmun. 2010, 34, J258–J265. [Google Scholar] [CrossRef]
- Smith, M.R.; Kinmonth, A.-L.; Luben, R.N.; Bingham, S.; Day, N.E.; Wareham, N.J.; Welch, A.; Khaw, K.-T. Smoking Status and Differential White Cell Count in Men and Women in the EPIC-Norfolk Population. Atherosclerosis 2003, 169, 331–337. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Luo, J.; He, Z.; Li, Q.; Lv, M.; Cai, Y.; Ke, W.; Niu, X.; Zhang, Z. Adipokines in Atherosclerosis: Unraveling Complex Roles. Front. Cardiovasc. Med. 2023, 10, 1235953. [Google Scholar] [CrossRef]
- Hotoleanu, C. Association between Obesity and Venous Thromboembolism. Med. Pharm. Rep. 2020, 93, 162–168. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kambayashi, J.; Sakon, M. Hyperlipidemia: A Novel Etiologic Factor in Deep Vein Thrombosis. Thromb. Res. 1995, 79, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Welty, F.K.; Alfaddagh, A.; Elajami, T.K. Targeting Inflammation in Metabolic Syndrome. Transl. Res. 2016, 167, 257–280. [Google Scholar] [CrossRef]
- Yin, J.; Peng, Y.; Wu, J.; Wang, Y.; Yao, L. Toll-like Receptor 2/4 Links to Free Fatty Acid-Induced Inflammation and β-Cell Dysfunction. J. Leukoc. Biol. 2014, 95, 47–52. [Google Scholar] [CrossRef] [PubMed]
- McMaster, W.G.; Kirabo, A.; Madhur, M.S.; Harrison, D.G. Inflammation, Immunity, and Hypertensive End-Organ Damage. Circ. Res. 2015, 116, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Nazarzadeh, M.; Bidel, Z.; Mohseni, H.; Canoy, D.; Pinho-Gomes, A.-C.; Hassaine, A.; Dehghan, A.; Tregouet, D.-A.; Smith, N.L.; Rahimi, K. Blood Pressure and Risk of Venous Thromboembolism: A Cohort Analysis of 5.5 Million UK Adults and Mendelian Randomization Studies. Cardiovasc. Res. 2023, 119, 835–842. [Google Scholar] [CrossRef]
- Piazza, G.; Creager, M.A. Thromboangiitis Obliterans. Circulation 2010, 121, 1858–1861. [Google Scholar] [CrossRef]
- Goldhaber, S.Z.; Grodstein, F.; Stampfer, M.J.; Manson, J.E.; Colditz, G.A.; Speizer, F.E.; Willett, W.C.; Hennekens, C.H. A Prospective Study of Risk Factors for Pulmonary Embolism in Women. JAMA 1997, 277, 642–645. [Google Scholar] [CrossRef]
- Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New Insights into Oxidative Stress and Inflammation during Diabetes Mellitus-Accelerated Atherosclerosis. Redox Biol. 2019, 20, 247–260. [Google Scholar] [CrossRef]
- Samama, M.M.; Dahl, O.E.; Quinlan, D.J.; Mismetti, P.; Rosencher, N. Quantification of Risk Factors for Venous Thromboembolism: A Preliminary Study for the Development of a Risk Assessment Tool. Haematologica 2003, 88, 1410–1421. [Google Scholar]
- Ahmed, H.M.; Blaha, M.J.; Nasir, K.; Rivera, J.J.; Blumenthal, R.S. Effects of Physical Activity on Cardiovascular Disease. Am. J. Cardiol. 2012, 109, 288–295. [Google Scholar] [CrossRef]
- Wang, G.; Han, B.; Dai, G.; Lian, Y.; Hart, M.L.; Rolauffs, B.; Chen, H.; Tang, C.; Wang, C. Role of Physical Activity and Sedentary Behavior in Venous Thromboembolism: A Systematic Review and Dose-Response Meta-Analysis. Sci. Rep. 2024, 14, 22088. [Google Scholar] [CrossRef]
- Falconer, C.L.; Cooper, A.R.; Walhin, J.P.; Thompson, D.; Page, A.S.; Peters, T.J.; Montgomery, A.A.; Sharp, D.J.; Dayan, C.M.; Andrews, R.C. Sedentary Time and Markers of Inflammation in People with Newly Diagnosed Type 2 Diabetes. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 956–962. [Google Scholar] [CrossRef]
- Bova, C.; Marchiori, A.; Noto, A.; Rossi, V.; Daniele, F.; Santoro, C.; Ricchio, R.; De Lorenzo, R.; Umbaca, R.; Prandoni, P. Incidence of Arterial Cardiovascular Events in Patients with Idiopathic Venous Thromboembolism. A Retrospective Cohort Study. Thromb. Haemost. 2006, 96, 132–136. [Google Scholar]
- Grady, D.; Wenger, N.K.; Herrington, D.; Khan, S.; Furberg, C.; Hunninghake, D.; Vittinghoff, E.; Hulley, S. Postmenopausal Hormone Therapy Increases Risk for Venous Thromboembolic Disease. The Heart and Estrogen/Progestin Replacement Study. Ann. Intern. Med. 2000, 132, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Becattini, C.; Agnelli, G.; Prandoni, P.; Silingardi, M.; Salvi, R.; Taliani, M.R.; Poggio, R.; Imberti, D.; Ageno, W.; Pogliani, E.; et al. A Prospective Study on Cardiovascular Events after Acute Pulmonary Embolism. Eur. Heart J. 2005, 26, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Ghirarduzzi, A.; Prins, M.H.; Pengo, V.; Davidson, B.L.; Sørensen, H.; Pesavento, R.; Iotti, M.; Casiglia, E.; Iliceto, S.; et al. Venous Thromboembolism and the Risk of Subsequent Symptomatic Atherosclerosis. J. Thromb. Haemost. 2006, 4, 1891–1896. [Google Scholar] [CrossRef]
- Sørensen, H.T.; Horvath-Puho, E.; Pedersen, L.; Baron, J.A.; Prandoni, P. Venous Thromboembolism and Subsequent Hospitalisation Due to Acute Arterial Cardiovascular Events: A 20-Year Cohort Study. Lancet 2007, 370, 1773–1779. [Google Scholar] [CrossRef]
- Rinde, L.B.; Småbrekke, B.; Mathiesen, E.B.; Løchen, M.-L.; Njølstad, I.; Hald, E.M.; Wilsgaard, T.; Brækkan, S.K.; Hansen, J.-B. Ischemic Stroke and Risk of Venous Thromboembolism in the General Population: The Tromsø Study. J. Am. Heart Assoc. 2016, 5, e004311. [Google Scholar] [CrossRef] [PubMed]
- Sykora, D.; Firth, C.; Girardo, M.; Bhatt, S.; Tseng, A.; Chamberlain, A.; Liedl, D.; Wennberg, P.; Shamoun, F.E. Peripheral Artery Disease and the Risk of Venous Thromboembolism. Vasa 2022, 51, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Bilora, F.; Marchiori, A.; Bernardi, E.; Petrobelli, F.; Lensing, A.W.A.; Prins, M.H.; Girolami, A. An Association between Atherosclerosis and Venous Thrombosis. N. Engl. J. Med. 2003, 348, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Jezovnik, M.K.; Poredos, P.; Lusa, L. Idiopathic Venous Thrombosis Is Associated with Preclinical Atherosclerosis. J. Atheroscler. Thromb. 2010, 17, 304–311. [Google Scholar] [CrossRef]
- Jezovnik, M.K.; Poredos, P.; Stalc, M. Impairment of the Vasodilatation Capability of the Brachial Artery in Patients with Idiopathic Venous Thrombosis. J. Atheroscler. Thromb. 2010, 17, 1190–1198. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.H.; Genest, J.; Gotto, A.M.J.; Kastelein, J.J.P.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef]
- Simes, J.; Becattini, C.; Agnelli, G.; Eikelboom, J.W.; Kirby, A.C.; Mister, R.; Prandoni, P.; Brighton, T.A. Aspirin for the Prevention of Recurrent Venous Thromboembolism: The INSPIRE Collaboration. Circulation 2014, 130, 1062–1071. [Google Scholar] [CrossRef]
- Nelson, K.; Fuster, V.; Ridker, P.M. Low-Dose Colchicine for Secondary Prevention of Coronary Artery Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 82, 648–660. [Google Scholar] [CrossRef]
- Ridker, P.M. The Time to Initiate Anti-Inflammatory Therapy for Patients with Chronic Coronary Atherosclerosis Has Arrived. Circulation 2023, 148, 1071–1073. [Google Scholar] [CrossRef]
- Rodriguez, A.L.; Wojcik, B.M.; Wrobleski, S.K.; Myers, D.D.J.; Wakefield, T.W.; Diaz, J.A. Statins, Inflammation and Deep Vein Thrombosis: A Systematic Review. J. Thromb. Thrombolysis 2012, 33, 371–382. [Google Scholar] [CrossRef]
- Agarwal, V.; Phung, O.J.; Tongbram, V.; Bhardwaj, A.; Coleman, C.I. Statin Use and the Prevention of Venous Thromboembolism: A Meta-Analysis. Int. J. Clin. Pract. 2010, 64, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
Study/Ref | Study/Ref | Findings |
---|---|---|
Incidence of CV events in pts. with idiopathic VTE [59] | 151 pts. with VTE 151 controls | In 43-month follow-up, more CV events in pts. than in controls (16 vs. 6) |
CV events after PE [61] | 209 pts. with unprovoked PE 105 pts. with provoked PE | In 38-month follow-up, 7.5% CV events in unprovoked PE vs. 3.1% in provoked PE |
VTE and subsequent hospitalization due to CV events [63] | 20-year cohort study—40,000 pts. with VTE | In the 1st year, relative risk of 1.6 for MI and 2.19 for stroke |
Tromso study: risk of stroke in pts. with VTE [64] | 82,000 subjects without VTE or CV events | In follow-up of 12.2 years, subjects suffering from VTE had 35% higher risk of CV events, especially stroke |
PAD and VTE: ABI studies at Mayo Clinic [65] | 39,834 subjects, follow-up for VTE in relation to ABI (34 months) | VTE events occurred in 13% of pts. The highest risk of VTE was in pts. with very low ABI |
Relationship between VTE and asymptomatic carotid plaques [62] | 299 pts. with DVT 150 controls | Pts. with unprovoked VTE had significantly more plaques than controls (47.1% vs. 32.0%) |
DVT: carotid and femoral plaques, IMT [63] | 49 pts. with unprovoked DVT 48 controls | Significantly thicker IM and higher prevalence of femoral and carotid plaques than in controls |
DVT: ED (flow-mediated dilation of brachial artery) [66] | 97 patients with DVT | Decreased FMD (indicator of endothelial dysfunction) in pts. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poredos, P.; Poredos, P. Inflammation—A Link Between Arterial Atherosclerotic and Venous Thromboembolic Diseases. Cells 2025, 14, 1319. https://doi.org/10.3390/cells14171319
Poredos P, Poredos P. Inflammation—A Link Between Arterial Atherosclerotic and Venous Thromboembolic Diseases. Cells. 2025; 14(17):1319. https://doi.org/10.3390/cells14171319
Chicago/Turabian StylePoredos, Pavel, and Peter Poredos. 2025. "Inflammation—A Link Between Arterial Atherosclerotic and Venous Thromboembolic Diseases" Cells 14, no. 17: 1319. https://doi.org/10.3390/cells14171319
APA StylePoredos, P., & Poredos, P. (2025). Inflammation—A Link Between Arterial Atherosclerotic and Venous Thromboembolic Diseases. Cells, 14(17), 1319. https://doi.org/10.3390/cells14171319