Hypoimmunogenic Human iPSCs for Repair and Regeneration in the CNS
Abstract
1. Introduction
2. Strategies for Creating Universal Cells
2.1. Cells from Haplotype Banks of iPSCs
2.2. Gene-Edited hiPSCs
2.2.1. Targeting HLA-I
2.2.2. Targeting HLA-II
2.2.3. Impact of HLA Editing on Differentiation, Function, and Integration of Neural Lineage Grafts
2.3. Overexpression of Immunomodulatory Factors, Their Role in Immune Modulation, and Impact on Neural Cell Function
2.3.1. PD-L1
2.3.2. SERPINB9
2.3.3. MFGE8
2.3.4. CD200
2.3.5. CD47
2.3.6. IL-17
2.3.7. IL-10
2.3.8. MIF
2.3.9. HLA-G
2.4. Advantages and Disadvantages of Strategies for Generating Hypoimmunogenic iPSCs
3. Generating Hypoimmunogenic Stem Cells Specifically for Clinical Applications in the CNS
3.1. How Can Effective Integration of Hypoimmunogenic iPSC-Derived Neural Cells with Host Neural Tissue Be Achieved?
3.2. Does Evasion of Host Immune Surveillance Increase the Risk of Tumor Formation and Graft Overgrowth, and How Can This Risk Be Mitigated?
3.3. Technical Considerations for the Simultaneous Overexpression of Multiple Immunomodulatory Factors
4. Summary and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lanza, R.; Russell, D.W.; Nagy, A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol. 2019, 19, 723–733. [Google Scholar] [CrossRef]
- Chakradhar, S. An eye to the future: Researchers debate best path for stem cell-derived therapies. Nat. Med. 2016, 22, 116–119. [Google Scholar] [CrossRef]
- Smith, D.M. Assessing commercial opportunities for autologous and allogeneic cell-based products. Regen. Med. 2012, 7, 721–732. [Google Scholar] [CrossRef]
- Lipsitz, Y.Y.; Bedford, P.; Davies, A.H.; Timmins, N.E.; Zandstra, P.W. Achieving Efficient Manufacturing and Quality Assurance through Synthetic Cell Therapy Design. Cell Stem Cell 2017, 20, 13–17. [Google Scholar] [CrossRef]
- Hotta, A.; Schrepfer, S.; Nagy, A. Genetically engineered hypoimmunogenic cell therapy. Nat. Rev. Bioeng. 2024, 2, 960–979. [Google Scholar] [CrossRef]
- Gonzalez, B.J.; Creusot, R.J.; Sykes, M.; Egli, D. How Safe Are Universal Pluripotent Stem Cells? Cell Stem Cell 2020, 27, 346. [Google Scholar] [CrossRef]
- Harding, J.; Vintersten-Nagy, K.; Nagy, A. Universal Stem Cells: Making the Unsafe Safe. Cell Stem Cell 2020, 27, 198–199. [Google Scholar] [CrossRef] [PubMed]
- Deuse, T.; Hu, X.; Gravina, A.; Wang, D.; Tediashvili, G.; De, C.; Thayer, W.O.; Wahl, A.; Garcia, J.V.; Reichenspurner, H.; et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 2019, 37, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, M.; Duan, S.; Franco, P.J.; Kenty, J.H.; Hedrick, P.; Xia, Y.; Allen, A.; Ferreira, L.M.R.; Strominger, J.L.; et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2019, 116, 10441–10446. [Google Scholar] [CrossRef]
- Hu, X.; White, K.; Olroyd, A.G.; DeJesus, R.; Dominguez, A.A.; Dowdle, W.E.; Friera, A.M.; Young, C.; Wells, F.; Chu, E.Y.; et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat. Biotechnol. 2024, 42, 413–423. [Google Scholar] [CrossRef]
- Pavan, C.; Davidson, K.C.; Payne, N.; Frausin, S.; Hunt, C.P.J.; Moriarty, N.; Berrocal Rubio, M.A.; Elahi, Z.; Quattrocchi, A.T.; Abu-Bonsrah, K.D.; et al. A cloaked human stem-cell-derived neural graft capable of functional integration and immune evasion in rodent models. Cell Stem Cell 2025, 32, 710–726.E8. [Google Scholar] [CrossRef]
- Feng, L.; Chao, J.; Ye, P.; Luong, Q.; Sun, G.; Liu, W.; Cui, Q.; Flores, S.; Jackson, N.; Shayento, A.N.H.; et al. Developing Hypoimmunogenic Human iPSC-Derived Oligodendrocyte Progenitor Cells as an Off-The-Shelf Cell Therapy for Myelin Disorders. Adv. Sci. 2023, 10, e2206910. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Y.; Xue, H.; Zhang, H.; Wu, J.; Chen, X.; Perez Bouza, M.; Yi, S.; Zhou, H.; Xia, X.; et al. Macrophage Migration Inhibitory Factor Suppresses Natural Killer Cell Response and Promotes Hypoimmunogenic Stem Cell Engraftment Following Spinal Cord Injury. Biology 2025, 14, 791. [Google Scholar] [CrossRef]
- Sawamoto, N.; Doi, D.; Nakanishi, E.; Sawamura, M.; Kikuchi, T.; Yamakado, H.; Taruno, Y.; Shima, A.; Fushimi, Y.; Okada, T.; et al. Phase I/II trial of iPS-cell-derived dopaminergic cells for Parkinson’s disease. Nature 2025, 641, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Kato, T.M.; Sato, Y.; Umekage, M.; Ichisaka, T.; Tsukahara, M.; Takasu, N.; Yamanaka, S. A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med 2023, 4, 51–66.e10. [Google Scholar] [CrossRef] [PubMed]
- Martins de Oliveira, M.L.; Tura, B.R.; Meira Leite, M.; Melo Dos Santos, E.J.; Porto, L.C.; Pereira, L.V.; Campos de Carvalho, A.C. Creating an HLA-homozygous iPS cell bank for the Brazilian population: Challenges and opportunities. Stem Cell Rep. 2023, 18, 1905–1912. [Google Scholar] [CrossRef]
- Spierings, E. Minor histocompatibility antigens: Past, present, and future. Tissue Antigens 2014, 84, 374–360. [Google Scholar] [CrossRef] [PubMed]
- Lechler, R.I.; Garden, O.A.; Turka, L.A. The complementary roles of deletion and regulation in transplantation tolerance. Nat. Rev. Immunol. 2003, 3, 147–158. [Google Scholar] [CrossRef]
- Jones, S.C.; Murphy, G.F.; Friedman, T.M.; Korngold, R. Importance of minor histocompatibility antigen expression by nonhematopoietic tissues in a CD4+ T cell-mediated graft-versus-host disease model. J. Clin. Investig. 2003, 112, 1880–1886. [Google Scholar] [CrossRef]
- Zorn, E.; See, S.B. Antibody Responses to Minor Histocompatibility Antigens After Solid Organ Transplantation. Transplantation 2022, 106, 749–753. [Google Scholar] [CrossRef]
- Fuchs, K.J.; Falkenburg, J.H.F.; Griffioen, M. Minor histocompatibility antigens to predict, monitor or manipulate GvL and GvHD after allogeneic hematopoietic cell transplantation. Best Pract. Res. Clin. Haematol. 2024, 37, 101555. [Google Scholar] [CrossRef]
- Goulmy, E.; Termijtelen, A.; Bradley, B.A.; van Rood, J.J. Alloimmunity to human H-Y. Lancet 1976, 2, 1206. [Google Scholar] [CrossRef]
- Lilienfeld, B.G.; Crew, M.D.; Forte, P.; Baumann, B.C.; Seebach, J.D. Transgenic expression of HLA-E single chain trimer protects porcine endothelial cells against human natural killer cell-mediated cytotoxicity. Xenotransplantation 2007, 14, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Gornalusse, G.G.; Hirata, R.K.; Funk, S.E.; Riolobos, L.; Lopes, V.S.; Manske, G.; Prunkard, D.; Colunga, A.G.; Hanafi, L.A.; Clegg, D.O.; et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 2017, 35, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Staats, K.A.; Schonefeldt, S.; Van Rillaer, M.; Van Hoecke, A.; Van Damme, P.; Robberecht, W.; Liston, A.; Van Den Bosch, L. Beta-2 microglobulin is important for disease progression in a murine model for amyotrophic lateral sclerosis. Front. Cell. Neurosci. 2013, 7, 249. [Google Scholar] [CrossRef]
- VanGuilder Starkey, H.D.; Van Kirk, C.A.; Bixler, G.V.; Imperio, C.G.; Kale, V.P.; Serfass, J.M.; Farley, J.A.; Yan, H.; Warrington, J.P.; Han, S.; et al. Neuroglial expression of the MHCI pathway and PirB receptor is upregulated in the hippocampus with advanced aging. J. Mol. Neurosci. 2012, 48, 111–126. [Google Scholar] [CrossRef]
- Harding, J.; Vintersten-Nagy, K.; Yang, H.; Tang, J.K.; Shutova, M.; Jong, E.D.; Lee, J.H.; Massumi, M.; Oussenko, T.; Izadifar, Z.; et al. Immune-privileged tissues formed from immunologically cloaked mouse embryonic stem cells survive long term in allogeneic hosts. Nat. Biomed. Eng. 2024, 8, 427–442. [Google Scholar] [CrossRef]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Day, C.L.; Kaufmann, D.E.; Kiepiela, P.; Brown, J.A.; Moodley, E.S.; Reddy, S.; Mackey, E.W.; Miller, J.D.; Leslie, A.J.; DePierres, C.; et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006, 443, 350–354. [Google Scholar] [CrossRef]
- Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007, 27, 111–122. [Google Scholar] [CrossRef]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef]
- Linnerbauer, M.; Beyer, T.; Nirschl, L.; Farrenkopf, D.; Losslein, L.; Vandrey, O.; Peter, A.; Tsaktanis, T.; Kebir, H.; Laplaud, D.; et al. PD-L1 positive astrocytes attenuate inflammatory functions of PD-1 positive microglia in models of autoimmune neuroinflammation. Nat. Commun. 2023, 14, 5555. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Zhang, T.; Zhang, S.; Ji, F.; Qin, J.; Li, H.; Jiao, J. PD-L1/PD-1 checkpoint pathway regulates astrocyte morphogenesis and myelination during brain development. Mol. Psychiatry 2025, 30, 3895–3911. [Google Scholar] [CrossRef]
- Han, R.; Luo, J.; Shi, Y.; Yao, Y.; Hao, J. PD-L1 (Programmed Death Ligand 1) Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury. Stroke 2017, 48, 2255–2262. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Kim, Y.H.; Li, H.; Luo, H.; Liu, D.L.; Zhang, Z.J.; Lay, M.; Chang, W.; Zhang, Y.Q.; Ji, R.R. PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nat. Neurosci. 2017, 20, 917–926. [Google Scholar] [CrossRef]
- Kaiserman, D.; Bird, P.I. Control of granzymes by serpins. Cell Death Differ. 2010, 17, 586–595. [Google Scholar] [CrossRef]
- Law, R.H.; Zhang, Q.; McGowan, S.; Buckle, A.M.; Silverman, G.A.; Wong, W.; Rosado, C.J.; Langendorf, C.G.; Pike, R.N.; Bird, P.I.; et al. An overview of the serpin superfamily. Genome Biol. 2006, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Trapani, J.A.; Sutton, V.R. Granzyme B: Pro-apoptotic, antiviral and antitumor functions. Curr. Opin. Immunol. 2003, 15, 533–543. [Google Scholar] [CrossRef]
- Stubbs, J.D.; Lekutis, C.; Singer, K.L.; Bui, A.; Yuzuki, D.; Srinivasan, U.; Parry, G. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc. Natl. Acad. Sci. USA 1990, 87, 8417–8421. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Gilbert, G.E. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood 2003, 101, 2628–2636. [Google Scholar] [CrossRef]
- Hanayama, R.; Tanaka, M.; Miwa, K.; Shinohara, A.; Iwamatsu, A.; Nagata, S. Identification of a factor that links apoptotic cells to phagocytes. Nature 2002, 417, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418, 191–195. [Google Scholar] [CrossRef]
- Deroide, N.; Li, X.; Lerouet, D.; Van Vre, E.; Baker, L.; Harrison, J.; Poittevin, M.; Masters, L.; Nih, L.; Margaill, I.; et al. MFGE8 inhibits inflammasome-induced IL-1beta production and limits postischemic cerebral injury. J. Clin. Investig. 2013, 123, 1176–1181. [Google Scholar] [CrossRef]
- Soki, F.N.; Koh, A.J.; Jones, J.D.; Kim, Y.W.; Dai, J.; Keller, E.T.; Pienta, K.J.; Atabai, K.; Roca, H.; McCauley, L.K. Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J. Biol. Chem. 2014, 289, 24560–24572. [Google Scholar] [CrossRef]
- Hanayama, R.; Tanaka, M.; Miyasaka, K.; Aozasa, K.; Koike, M.; Uchiyama, Y.; Nagata, S. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 2004, 304, 1147–1150. [Google Scholar] [CrossRef]
- Huang, W.; Wu, J.; Yang, H.; Xiong, Y.; Jiang, R.; Cui, T.; Ye, D. Milk fat globule-EGF factor 8 suppresses the aberrant immune response of systemic lupus erythematosus-derived neutrophils and associated tissue damage. Cell Death Differ. 2017, 24, 263–275. [Google Scholar] [CrossRef]
- Zhou, Y.; Bond, A.M.; Shade, J.E.; Zhu, Y.; Davis, C.O.; Wang, X.; Su, Y.; Yoon, K.J.; Phan, A.T.; Chen, W.J.; et al. Autocrine Mfge8 Signaling Prevents Developmental Exhaustion of the Adult Neural Stem Cell Pool. Cell Stem Cell 2018, 23, 444–452.e4. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Yang, X.; Wang, J.K.; Yan, X.X.; Liu, F.; Zuo, Y.C. MFGE8 promotes adult hippocampal neurogenesis in rats following experimental subarachnoid hemorrhage via modifying the integrin beta3/Akt signaling pathway. Cell Death Discov. 2024, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.J.; Jones, M.; Puklavec, M.J.; Brown, M.H.; Barclay, A.N. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 2001, 102, 173–179. [Google Scholar] [CrossRef]
- Feng, D.; Huang, A.; Yan, W.; Chen, D. CD200 dysfunction in neuron contributes to synaptic deficits and cognitive impairment. Biochem. Biophys. Res. Commun. 2019, 516, 1053–1059. [Google Scholar] [CrossRef]
- Pfeifer, C.W.; Walsh, J.T.; Santeford, A.; Lin, J.B.; Beatty, W.L.; Terao, R.; Liu, Y.A.; Hase, K.; Ruzycki, P.A.; Apte, R.S. Dysregulated CD200-CD200R signaling in early diabetes modulates microglia-mediated retinopathy. Proc. Natl. Acad. Sci. USA 2023, 120, e2308214120. [Google Scholar] [CrossRef]
- Cornell, J.; Salinas, S.; Huang, H.Y.; Zhou, M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen. Res. 2022, 17, 705–716. [Google Scholar] [CrossRef]
- Kim, A.; Garcia-Garcia, E.; Straccia, M.; Comella-Bolla, A.; Miguez, A.; Masana, M.; Alberch, J.; Canals, J.M.; Rodriguez, M.J. Reduced Fractalkine Levels Lead to Striatal Synaptic Plasticity Deficits in Huntington’s Disease. Front. Cell. Neurosci. 2020, 14, 163. [Google Scholar] [CrossRef]
- Rabaneda-Lombarte, N.; Vidal-Taboada, J.M.; Valente, T.; Ezquerra, M.; Fernandez-Santiago, R.; Marti, M.J.; Compta, Y.; Saura, J.; Sola, C. Altered expression of the immunoregulatory ligand-receptor pair CD200-CD200R1 in the brain of Parkinson’s disease patients. NPJ Park. Dis. 2022, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Ohnishi, H.; Okazawa, H.; Murata, Y.; Kusakari, S.; Hayashi, Y.; Miyashita, M.; Itoh, H.; Oldenborg, P.-A.; Furuya, N.; et al. CD47 Promotes Neuronal Development through Src- and FRG/Vav2-Mediated Activation of Rac and Cdc42. J. Neurosci. 2006, 26, 12397–12407. [Google Scholar] [CrossRef]
- Ding, X.; Wang, J.; Huang, M.; Chen, Z.; Liu, J.; Zhang, Q.; Zhang, C.; Xiang, Y.; Zen, K.; Li, L. Loss of microglial SIRPalpha promotes synaptic pruning in preclinical models of neurodegeneration. Nat. Commun. 2021, 12, 2030. [Google Scholar] [CrossRef] [PubMed]
- Lehrman, E.K.; Wilton, D.K.; Litvina, E.Y.; Welsh, C.A.; Chang, S.T.; Frouin, A.; Walker, A.J.; Heller, M.D.; Umemori, H.; Chen, C.; et al. CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development. Neuron 2018, 100, 120–134.e126. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Brickler, T.; Banuelos, A.; Marjon, K.; Shcherbina, A.; Banerjee, S.; Bian, J.; Narayanan, C.; Weissman, I.L.; Chetty, S. Overexpression of CD47 is associated with brain overgrowth and 16p11.2 deletion syndrome. Proc. Natl. Acad. Sci. USA 2021, 118, e2005483118. [Google Scholar] [CrossRef]
- Deuse, T.; Hu, X.; Agbor-Enoh, S.; Jang, M.K.; Alawi, M.; Saygi, C.; Gravina, A.; Tediashvili, G.; Nguyen, V.Q.; Liu, Y.; et al. The SIRPalpha-CD47 immune checkpoint in NK cells. J. Exp. Med. 2021, 218, e20200839. [Google Scholar] [CrossRef]
- Hu, X.; Manner, K.; DeJesus, R.; White, K.; Gattis, C.; Ngo, P.; Bandoro, C.; Tham, E.; Chu, E.Y.; Young, C.; et al. Hypoimmune anti-CD19 chimeric antigen receptor T cells provide lasting tumor control in fully immunocompetent allogeneic humanized mice. Nat. Commun. 2023, 14, 2020. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.H.G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 2023, 23, 38–54. [Google Scholar] [CrossRef]
- Zenobia, C.; Hajishengallis, G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol. 2000 2015, 69, 142–159. [Google Scholar] [CrossRef]
- Berry, S.P.D.; Dossou, C.; Kashif, A.; Sharifinejad, N.; Azizi, G.; Hamedifar, H.; Sabzvari, A.; Zian, Z. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. Int. Immunopharmacol. 2022, 102, 108402. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Lan, T.; Chiari, C.; Ye, X.; Wang, K.; Chen, J. The role of interleukin-17 in inflammation-related cancers. Front. Immunol. 2024, 15, 1479505. [Google Scholar] [CrossRef]
- Sun, L.; Wang, L.; Moore, B.B.; Zhang, S.; Xiao, P.; Decker, A.M.; Wang, H.L. IL-17: Balancing Protective Immunity and Pathogenesis. J. Immunol. Res. 2023, 2023, 3360310. [Google Scholar] [CrossRef]
- Huangfu, L.; Li, R.; Huang, Y.; Wang, S. The IL-17 family in diseases: From bench to bedside. Signal Transduct. Target. Ther. 2023, 8, 402. [Google Scholar] [CrossRef]
- Beriou, G.; Costantino, C.M.; Ashley, C.W.; Yang, L.; Kuchroo, V.K.; Baecher-Allan, C.; Hafler, D.A. IL-17–producing human peripheral regulatory T cells retain suppressive function. Blood 2009, 113, 4240–4249. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, G.A.; Miller, G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J. Exp. Med. 2020, 217, e20190456. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xin, W.; He, P.; Turner, D.; Yin, J.; Gan, Y.; Shi, F.D.; Wu, J. Interleukin-17 inhibits adult hippocampal neurogenesis. Sci. Rep. 2014, 4, 7554. [Google Scholar] [CrossRef]
- Gomes, A.K.S.; Dantas, R.M.; Yokota, B.Y.; Silva, A.; Griesi-Oliveira, K.; Passos-Bueno, M.R.; Sertie, A.L. Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects. Front. Neurosci. 2022, 16, 828646. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Ishikawa, T.; Lee, H.; Lee, B.; Ryu, C.; Davila Mejia, I.; Kim, M.; Lu, G.; Hong, Y.; Feng, M.; et al. Brain-wide mapping of immune receptors uncovers a neuromodulatory role of IL-17E and the receptor IL-17RB. Cell 2025, 188, 2203–2217.E17. [Google Scholar] [CrossRef]
- Milovanovic, J.; Arsenijevic, A.; Stojanovic, B.; Kanjevac, T.; Arsenijevic, D.; Radosavljevic, G.; Milovanovic, M.; Arsenijevic, N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front. Immunol. 2020, 11, 947. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef]
- Gorby, C.; Sotolongo Bellon, J.; Wilmes, S.; Warda, W.; Pohler, E.; Fyfe, P.K.; Cozzani, A.; Ferrand, C.; Walter, M.R.; Mitra, S.; et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci. Signal. 2020, 13, eabc0653. [Google Scholar] [CrossRef]
- Bedke, T.; Muscate, F.; Soukou, S.; Gagliani, N.; Huber, S. Title: IL-10-producing T cells and their dual functions. Semin. Immunol. 2019, 44, 101335. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.L.; Zhao, S.J.; Lin, X.X.; Liao, A.H. IL-10: A bridge between immune cells and metabolism during pregnancy. J. Reprod. Immunol. 2022, 154, 103750. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Zhou, T.; Jiang, W.; Wu, H.; Zhang, S.; Deng, L.; Wang, H. Neuroprotective effects of interleukin 10 in spinal cord injury. Front. Mol. Neurosci. 2023, 16, 1214294. [Google Scholar] [CrossRef]
- Plunkett, J.A.; Yu, C.G.; Easton, J.M.; Bethea, J.R.; Yezierski, R.P. Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp. Neurol. 2001, 168, 144–154. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, A.R.; Marriott, I. The Interleukin-10 Family of Cytokines and Their Role in the CNS. Front. Cell. Neurosci. 2018, 12, 458. [Google Scholar] [CrossRef]
- Strickland, M.R.; Ibanez, K.R.; Yaroshenko, M.; Diaz, C.C.; Borchelt, D.R.; Chakrabarty, P. IL-10 based immunomodulation initiated at birth extends lifespan in a familial mouse model of amyotrophic lateral sclerosis. Sci. Rep. 2020, 10, 20862. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, A.K.; Surendran, A.; Malik, A.; Jassal, D.S.; Ravandi, A.; Singal, P.K. IL-10 attenuates OxPCs-mediated lipid metabolic responses in ischemia reperfusion injury. Sci. Rep. 2020, 10, 12120. [Google Scholar] [CrossRef] [PubMed]
- Perez-Asensio, F.J.; Perpina, U.; Planas, A.M.; Pozas, E. Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J. Cell Sci. 2013, 126, 4208–4219. [Google Scholar] [CrossRef]
- Gonzalez, P.; Burgaya, F.; Acarin, L.; Peluffo, H.; Castellano, B.; Gonzalez, B. Interleukin-10 and Interleukin refeceptor-I Are Upregulated in Glial Cells After an Excitotoxic Injury to the Postnatal Rat Brain. J. Neuropathol. Exp. Neurol. 2009, 68, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Barabas, K.; Barad, Z.; Denes, A.; Bhattarai, J.P.; Han, S.K.; Kiss, E.; Sarmay, G.; Abraham, I.M. The Role of Interleukin-10 in Mediating the Effect of Immune Challenge on Mouse Gonadotropin-Releasing Hormone Neurons In Vivo. eNeuro 2018, 5, ENEURO.0211-18.2018. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Zhang, H.; Liu, X.; Zeng, B.; Wang, H.; Zhang, H.; Lui, W.O.; Hui, X.; Miao, H.; et al. Targeting CD37 promotes macrophage-dependent phagocytosis of multiple cancer cell types and facilitates tumor clearance in mice. Nat. Commun. 2025, 16, 6610. [Google Scholar] [CrossRef]
- Leyton-Jaimes, M.F.; Kahn, J.; Israelson, A. Macrophage migration inhibitory factor: A multifaceted cytokine implicated in multiple neurological diseases. Exp. Neurol. 2018, 301, 83–91. [Google Scholar] [CrossRef]
- Ellis, S.A.; Sargent, I.L.; Redman, C.W.; McMichael, A.J. Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology 1986, 59, 595–601. [Google Scholar]
- Geraghty, D.E.; Koller, B.H.; Orr, H.T. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc. Natl. Acad. Sci. USA 1987, 84, 9145–9149. [Google Scholar] [CrossRef]
- Ellis, S.A.; Palmer, M.S.; McMichael, A.J. Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA Class I molecule. J. Immunol. 1990, 144, 731–735. [Google Scholar] [CrossRef]
- Carosella, E.D.; Favier, B.; Rouas-Freiss, N.; Moreau, P.; Lemaoult, J. Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood 2008, 111, 4862–4870. [Google Scholar] [CrossRef]
- Attia, J.V.D.; Dessens, C.E.; van de Water, R.; Houvast, R.D.; Kuppen, P.J.K.; Krijgsman, D. The Molecular and Functional Characteristics of HLA-G and the Interaction with Its Receptors: Where to Intervene for Cancer Immunotherapy? Int. J. Mol. Sci. 2020, 21, 8678. [Google Scholar] [CrossRef] [PubMed]
- Krijgsman, D.; Roelands, J.; Hendrickx, W.; Bedognetti, D.; Kuppen, P.J.K. HLA-G: A New Immune Checkpoint in Cancer? Int. J. Mol. Sci. 2020, 21, 4528. [Google Scholar] [CrossRef]
- Kosicki, M.; Tomberg, K.; Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018, 36, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, J.S. Unexpected CRISPR on-target effects. Nat. Biotechnol. 2018, 36, 703–704. [Google Scholar] [CrossRef]
- Lu, P.; Woodruff, G.; Wang, Y.; Graham, L.; Hunt, M.; Wu, D.; Boehle, E.; Ahmad, R.; Poplawski, G.; Brock, J.; et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 2014, 83, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Vermilyea, S.C.; Zammit, M.; Lu, J.; Olsen, M.; Metzger, J.M.; Yao, L.; Chen, Y.; Phillips, S.; Holden, J.E.; et al. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nat. Med. 2021, 27, 632–639. [Google Scholar] [CrossRef]
- Emborg, M.E.; Metzger, J.M.; D’Amour, K.; Colwell, J.C.; Neumann, L.C.; Zhang, A.; Federoff, H.J. Advantages and challenges of using allogeneic vs. autologous sources for neuronal cell replacement in Parkinson’s disease: Insights from non-human primate studies. Brain Res. Bull. 2025, 224, 111297. [Google Scholar] [CrossRef]
- Jebran, A.F.; Seidler, T.; Tiburcy, M.; Daskalaki, M.; Kutschka, I.; Fujita, B.; Ensminger, S.; Bremmer, F.; Moussavi, A.; Yang, H.; et al. Engineered heart muscle allografts for heart repair in primates and humans. Nature 2025, 639, 503–511. [Google Scholar] [CrossRef]
Method | Mechanism | Applications | Advantages | Disadvantages | Refs |
---|---|---|---|---|---|
HLA-haplotype iPSC banks | Derive iPSCs from donors homozygous for common HLA haplotypes | Parkinson’s disease (dopaminergic neurons) | Avoids gene editing; scalable for certain populations | Limited HLA coverage in diverse populations; needs large banks | [14,15] |
Gene-edited hiPSCs | Knockout of B2M (HLA-I) and CIITA (HLA-II) or selective disruption of HLA-A/B/C loci | Oligodendrocyte progenitor cells in Canavan disease | Flexible; broadly applicable; off-the-shelf potential | Risk of NK cell activation if non-classical HLA-E/G not retained; CRISPR editing on-target mutation and off-target effects | [12] |
Overexpression of immunomodulatory factors (PD-L1, CD200, CD47, SERPINB9, MFGE8, etc.) | Express multiple immunosuppressive genes to inhibit T cells, NK cells, macrophages | Ventral midbrain dopaminergic neurons (Parkinson’s disease) | Survival in fully immunocompetent hosts; broad immune evasion | Technical complexity; stability of transgene expression; tumor risk | [11] |
Combined gene-editing and overexpression of immunomodulatory factors | Knockout of B2M (HLA-I) and CIITA (HLA-II) and overexpress MIF | Neural progenitors in SCI models | Survival and integration of neural progenitors in SCI models | Long-term evaluations are needed; risks for mutations from CRISPR editing | [13] |
Factor | Cell Type | Mechanism | Reference |
---|---|---|---|
PD-L1 | T cells | Regulates T-cell activity by binding to PD-1, suppresses T-cell responses, maintains immune homeostasis, modulates peripheral immune response, shifts CD4 + T-cell polarization toward anti-inflammatory phenotypes | [11,27] |
FASL | T cells | Induces apoptosis in target cells expressing Fas receptor | |
SERPINB9 | T cells, NK cells | Directly inhibits Granzyme B, protecting cells from apoptosis | [11,27] |
MFGE8 | Monocytes, Macrophages | Promotes apoptotic cell clearance, dampens excessive inflammatory responses, promotes immune tolerance | [11,27] |
CD200 | Monocytes, Macrophages | Regulates microglial activity, maintains them in a homeostatic, surveillance state, protective role in synaptic maintenance | [11,27] |
CD47 | Monocytes, Macrophages | Acts as a “do-not-eat-me” signal, inhibiting microglial-mediated phagocytosis, protects killing from NK cells | [8,9,10,11,27] |
CCL21 | Dendritic cells | Chemokine that attracts immune cells | [11,27] |
IL-10 | Immune-suppressive | Suppresses pro-inflammatory cytokines, reduces antigen presentation, impairs microbicidal mechanisms, promotes T-cell anergy, enhances B-cell survival/proliferation/differentiation, supports Tregs | |
HLA-G | NK cells | Inhibits NK cell activity, promotes immune tolerance | [11,27] |
HLA-E | NK cells | Inhibits NK cell activity, promotes immune tolerance | [23,24] |
MIF | NK cells | Suppresses NK cell response | [13] |
Strategy | Description | Advantages | Limitations |
---|---|---|---|
Overexpression of immunomodulatory factors | hiPSC-derived NSCs or neural cells are modified to express immunomodulatory factors (PD-L1, MFGE8, and CD47, etc.) to achieve immune cloaking |
|
|
HLA gene editing | Targeted deletion or modification of HLA class I and/or class II genes to reduce immune recognition and create universal donor cells |
|
|
Allogeneic transplantation with immunosuppression | Use of allogeneic donor-derived neural cells with matched HLA typing in combination with pharmacological immunosuppression |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhou, H.; Xia, X.; Cao, Q.; Liu, Y. Hypoimmunogenic Human iPSCs for Repair and Regeneration in the CNS. Cells 2025, 14, 1248. https://doi.org/10.3390/cells14161248
Zhang H, Zhou H, Xia X, Cao Q, Liu Y. Hypoimmunogenic Human iPSCs for Repair and Regeneration in the CNS. Cells. 2025; 14(16):1248. https://doi.org/10.3390/cells14161248
Chicago/Turabian StyleZhang, Haiwei, Hongxia Zhou, Xugang Xia, Qilin Cao, and Ying Liu. 2025. "Hypoimmunogenic Human iPSCs for Repair and Regeneration in the CNS" Cells 14, no. 16: 1248. https://doi.org/10.3390/cells14161248
APA StyleZhang, H., Zhou, H., Xia, X., Cao, Q., & Liu, Y. (2025). Hypoimmunogenic Human iPSCs for Repair and Regeneration in the CNS. Cells, 14(16), 1248. https://doi.org/10.3390/cells14161248