Identification of Epigenetic Regulatory Networks of Gene Methylation–miRNA–Transcription Factor Feed-Forward Loops in Basal-like Breast Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. General Study Design
2.2. Data Collection
2.3. Epigenetic Profiles
2.4. Differential Genes, TFs, and miRNAs Expression Analysis
2.5. Identification of Gene–TF–miRNA Epigenetic Regulatory Networks and FFLs
2.6. Pathway Enrichment Analysis and Gene Ontology
2.7. Pathway Enrichment Analysis—Hallmark Gene Set Collection Analysis
3. Results
3.1. Hypo-And Hyper-Methylated Probe–Gene Pairs and miRNAs and TFs Master Regulators (MRTFs)
3.2. Epigenetic Gene–TF–miRNA Networks and Formed FFLs
3.3. Identified Signaling Pathways and Gene Ontology Terms of the Hypo and Hypermethylated Probe–Gene Pairs, TFs, and miRNAs
3.4. Identified Hallmark Gene Set Process Categories of the Hypo and Hypermethylated Probe–Gene Pairs, TFs, and miRNAs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Androgen Receptor |
BLBC | Basal Like Breast Cancer |
BP | Biological Process |
BRCA | Breast Cancer |
CC | Cellular Component |
ceRNA | Competing endogenous RNAs |
CpG | Cytosine–guanine dinucleotides |
DE | Differentially expressed |
ELMER | Enhancer Linking by Methylation/Expression Relationships |
EMT | Epithelial–Mesenchymal Transition |
FDA | Food and Drug Administration |
FFL | Feed-Forward Loop |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia for Genes and Genomes |
lncRNAs | Long non-coding RNAs |
LogFC | Log2FoldChange |
MF | Molecular Function |
MiRNA | MicroRNA |
MRTF | Master Regulator Transcription Factor |
MSigDB | Molecular Signatures Database |
PEA | Pathway Enrichment Analysis |
SERM | Selective Estrogen Receptor Modulator |
TCGA | The Cancer Genome Atlas |
TF | Transcription Factor |
TNBC | Triple-Negative Breast Cancer |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Emborgo, T.S.; Saporito, D.; Muse, K.I.; Barrera, A.M.G.; Litton, J.K.; Lu, K.H.; Arun, B.K. Prospective Evaluation of Universal BRCA Testing for Women With Triple-Negative Breast Cancer. JNCI Cancer Spectr. 2020, 4, pkaa002. [Google Scholar] [CrossRef] [PubMed]
- Howard, F.M.; Olopade, O.I. Epidemiology of Triple-Negative Breast Cancer. Cancer J. 2021, 27, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Temian, D.C.; Pop, L.A.; Irimie, A.I.; Berindan-Neagoe, I. The Epigenetics of Triple-Negative and Basal-Like Breast Cancer: Current Knowledge. J. Breast Cancer 2018, 21, 233–243. [Google Scholar] [CrossRef]
- Lee, R.S.; Sad, K.; Fawwal, D.V.; Spangle, J.M. Emerging Role of Epigenetic Modifiers in Breast Cancer Pathogenesis and Therapeutic Response. Cancers 2023, 15, 4005. [Google Scholar] [CrossRef]
- Prabhu, K.S.; Sadida, H.Q.; Kuttikrishnan, S.; Junejo, K.; Bhat, A.A.; Uddin, S. Beyond Genetics: Exploring the Role of Epigenetic Alterations in Breast Cancer. Pathol. Res. Pract. 2024, 254, 155174. [Google Scholar] [CrossRef] [PubMed]
- Aran, D.; Sabato, S.; Hellman, A. DNA Methylation of Distal Regulatory Sites Characterizes Dysregulation of Cancer Genes. Genome Biol. 2013, 14, R21–R35. [Google Scholar] [CrossRef]
- Burger, L.; Gaidatzis, D.; Schübeler, D.; Stadler, M.B. Identification of Active Regulatory Regions from DNA Methylation Data. Nucleic Acids Res. 2013, 41, e155. [Google Scholar] [CrossRef]
- Heyn, H.; Vidal, E.; Ferreira, H.J.; Vizoso, M.; Sayols, S.; Gomez, A.; Moran, S.; Boque-Sastre, R.; Guil, S.; Martinez-Cardus, A.; et al. Epigenomic Analysis Detects Aberrant Super-Enhancer DNA Methylation in Human Cancer. Genome Biol. 2016, 17, 11. [Google Scholar] [CrossRef]
- Lemma, R.B.; Fleischer, T.; Martinsen, E.; Ledsaak, M.; Kristensen, V.; Eskeland, R.; Gabrielsen, O.S.; Mathelier, A. Pioneer Transcription Factors Are Associated with the Modulation of DNA Methylation Patterns across Cancers. Epigenetics Chromatin 2022, 15, 1–16. [Google Scholar] [CrossRef]
- Kribelbauer, J.F.; Laptenko, O.; Chen, S.; Martini, G.D.; Freed-Pastor, W.A.; Prives, C.; Mann, R.S.; Bussemaker, H.J. Quantitative Analysis of the DNA Methylation Sensitivity of Transcription Factor Complexes. Cell Rep. 2017, 19, 2383–2395. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Morgunova, E.; Jolma, A.; Kaasinen, E.; Sahu, B.; Khund-Sayeed, S.; Das, P.K.; Kivioja, T.; Dave, K.; Zhong, F.; et al. Impact of Cytosine Methylation on DNA Binding Specificities of Human Transcription Factors. Science 2017, 356, eaaj2239. [Google Scholar] [CrossRef]
- Kaluscha, S.; Domcke, S.; Wirbelauer, C.; Stadler, M.B.; Durdu, S.; Burger, L.; Schübeler, D. Evidence That Direct Inhibition of Transcription Factor Binding Is the Prevailing Mode of Gene and Repeat Repression by DNA Methylation. Nat. Genet. 2022, 54, 1895–1906. [Google Scholar] [CrossRef]
- Suzuki, T.; Maeda, S.; Furuhata, E.; Shimizu, Y.; Nishimura, H.; Kishima, M.; Suzuki, H. A Screening System to Identify Transcription Factors That Induce Binding Site-Directed DNA Demethylation. Epigenetics Chromatin 2017, 10, 60. [Google Scholar] [CrossRef]
- Miyajima, Y.; Noguchi, S.; Tanaka, Y.; Li, J.-R.; Nishimura, H.; Kishima, M.; Lim, J.; Furuhata, E.; Suzuki, T.; Kasukawa, T.; et al. Prediction of Transcription Factors Associated with DNA Demethylation during Human Cellular Development. Chromoso. Res. 2022, 30, 109–121. [Google Scholar] [CrossRef]
- Suzuki, T.; Shimizu, Y.; Furuhata, E.; Maeda, S.; Kishima, M.; Nishimura, H.; Enomoto, S.; Hayashizaki, Y.; Suzuki, H. RUNX1 Regulates Site Specificity of DNA Demethylation by Recruitment of DNA Demethylation Machineries in Hematopoietic Cells. Blood Adv. 2017, 1, 1699–1711. [Google Scholar] [CrossRef] [PubMed]
- Domcke, S.; Bardet, A.F.; Adrian Ginno, P.; Hartl, D.; Burger, L.; Schübeler, D. Competition between DNA Methylation and Transcription Factors Determines Binding of NRF1. Nature 2015, 528, 575–579. [Google Scholar] [CrossRef]
- Héberlé, É.; Bardet, A.F. Sensitivity of Transcription Factors to DNA Methylation. Essays Biochem. 2019, 63, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Grau, J.; Schmidt, F.; Schulz, M.H. Widespread Effects of DNA Methylation and Intra-Motif Dependencies Revealed by Novel Transcription Factor Binding Models. Nucleic Acids Res. 2023, 51, e95. [Google Scholar] [CrossRef]
- Glaich, O.; Parikh, S.; Bell, R.E.; Mekahel, K.; Donyo, M.; Leader, Y.; Shayevitch, R.; Sheinboim, D.; Yannai, S.; Hollander, D.; et al. DNA Methylation Directs MicroRNA Biogenesis in Mammalian Cells. Nat. Commun. 2019, 10, 5657. [Google Scholar] [CrossRef]
- Gong, Z.; Chen, J.; Wang, J.; Liu, S.; Ambrosone, C.B.; Higgins, M.J. Differential Methylation and Expression Patterns of MicroRNAs in Relation to Breast Cancer Subtypes among American Women of African and European Ancestry. PLoS ONE 2021, 16, e0249229. [Google Scholar] [CrossRef]
- Sandhu, R.; Rivenbark, A.G.; Mackler, R.M.; Livasy, C.A.; Coleman, W.B. Dysregulation of MicroRNA Expression Drives Aberrant DNA Hypermethylation in Basal-like Breast Cancer. Int. J. Oncol. 2014, 44, 563–572. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, J.; Li, X.; Xiao, G.; Wang, H.; Yang, G.; Li, Y.; Tang, S.; Qin, S.; Du, N.; et al. MYC and DNMT 3A-mediated DNA Methylation Represses Micro RNA -200b in Triple-Negative Breast Cancer. J. Cell Mol. Med. 2018, 22, 6262–6274. [Google Scholar] [CrossRef]
- Saviana, M.; Le, P.; Micalo, L.; Del Valle-Morales, D.; Romano, G.; Acunzo, M.; Li, H.; Nana-Sinkam, P. Crosstalk between MiRNAs and DNA Methylation in Cancer. Genes 2023, 14, 1075. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, W.; Claret, F.X. Mutual Regulation of MicroRNAs and DNA Methylation in Human Cancers. Epigenetics 2017, 12, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, M.R.; Pourdavoud, P.; Ehtesham, N.; Qadbeigi, M.; Asl, M.M.; Alani, B.; Mosallaei, M.; Pakzad, B. Regulation of DNA Methylation Machinery by Epi-MiRNAs in Human Cancer: Emerging New Targets in Cancer Therapy. Cancer Gene Ther. 2021, 28, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Mitra, R.; Lin, C.-C.; Wang, Q.; Cheng, F.; Zhao, Z. Systematic Dissection of Dysregulated Transcription Factor–MiRNA Feed-Forward Loops across Tumor Types. Brief. Bioinform. 2016, 17, 996–1008. [Google Scholar] [CrossRef]
- Fan, C.-N.; Ma, L.; Liu, N. Systematic Analysis of LncRNA–MiRNA–MRNA Competing Endogenous RNA Network Identifies Four-LncRNA Signature as a Prognostic Biomarker for Breast Cancer. J. Transl. Med. 2018, 16, 264–276. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Li, Y.; Zhang, J.; Chen, H.; Lu, J.; Wang, Z.; Zhao, X.; Xu, K.; Li, Y.; et al. Competing Endogenous RNA Network Analysis Identifies Critical Genes among the Different Breast Cancer Subtypes. Oncotarget 2017, 8, 10171–10184. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, L.; Yang, Q.; Liu, H.; Meng, Q.; Jiang, L.; Wang, S.; Jiang, W. Systematical Analysis of LncRNA–MRNA Competing Endogenous RNA Network in Breast Cancer Subtypes. Breast Cancer Res. Treat. 2018, 169, 267–275. [Google Scholar] [CrossRef]
- Yan, Z.; Shah, P.K.; Amin, S.B.; Samur, M.K.; Huang, N.; Wang, X.; Misra, V.; Ji, H.; Gabuzda, D.; Li, C. Integrative Analysis of Gene and MiRNA Expression Profiles with Transcription Factor–MiRNA Feed-Forward Loops Identifies Regulators in Human Cancers. Nucleic Acids Res. 2012, 40, e135. [Google Scholar] [CrossRef]
- Aguda, B.D. Modeling MicroRNA-Transcription Factor Networks in Cancer. Adv. Exp. Med. Biol. 2013, 774, 149–167. [Google Scholar] [CrossRef]
- Jiang, L.; Yu, X.; Ma, X.; Liu, H.; Zhou, S.; Zhou, X.; Meng, Q.; Wang, L.; Jiang, W. Identification of Transcription Factor-MiRNA-LncRNA Feed-Forward Loops in Breast Cancer Subtypes. Comput. Biol. Chem. 2019, 78, 1–7. [Google Scholar] [CrossRef]
- Mangan, S.; Zaslaver, A.; Alon, U. The Coherent Feedforward Loop Serves as a Sign-Sensitive Delay Element in Transcription Networks. J. Mol. Biol. 2003, 334, 197–204. [Google Scholar] [CrossRef]
- Zhang, H.M.; Kuang, S.; Xiong, X.; Gao, T.; Liu, C.; Guo, A.Y. Transcription Factor and MicroRNA Co-Regulatory Loops: Important Regulatory Motifs in Biological Processes and Diseases. Brief. Bioinform. 2013, 16, 45–58. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; et al. Comprehensive Molecular Portraits of Human Breast Tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef]
- Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; et al. TCGAbiolinks: An R/Bioconductor Package for Integrative Analysis of TCGA Data. Nucleic Acids Res. 2016, 44, e71. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.C.; Colaprico, A.; Olsen, C.; D’Angelo, F.; Bontempi, G.; Ceccarelli, M.; Noushmehr, H. TCGA Workflow: Analyze Cancer Genomics and Epigenomics Data Using Bioconductor Packages. F1000Research 2016, 5, 1542–1601. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.C.; Coetzee, S.G.; Gull, N.; Yao, L.; Hazelett, D.J.; Noushmehr, H.; Lin, D.C.; Berman, B.P. ELMER v.2: An R/Bioconductor Package to Reconstruct Gene Regulatory Networks from DNA Methylation and Transcriptome Profiles. Bioinformatics 2019, 35, 1974–1977. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Ru, Y.; Kechris, K.J.; Tabakoff, B.; Hoffman, P.; Radcliffe, R.A.; Bowler, R.; Mahaffey, S.; Rossi, S.; Calin, G.A.; Bemis, L.; et al. The MultiMiR R Package and Database: Integration of MicroRNA-Target Interactions along with Their Disease and Drug Associations. Nucleic Acids Res. 2014, 42, e133. [Google Scholar] [CrossRef]
- Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; Barrell, D.; Zadissa, A.; Searle, S.; et al. GENCODE: The Reference Human Genome Annotation for the ENCODE Project. Genome Res. 2012, 22, 1760–1774. [Google Scholar] [CrossRef]
- Lachmann, A.; Xu, H.; Krishnan, J.; Berger, S.I.; Mazloom, A.R.; Ma’ayan, A. ChEA: Transcription Factor Regulation Inferred from Integrating Genome-Wide ChIP-X Experiments. Bioinformatics 2010, 26, 2438–2444. [Google Scholar] [CrossRef] [PubMed]
- Rouillard, A.D.; Gundersen, G.W.; Fernandez, N.F.; Wang, Z.; Monteiro, C.D.; McDermott, M.G.; Ma’ayan, A. The Harmonizome: A Collection of Processed Datasets Gathered to Serve and Mine Knowledge about Genes and Proteins. Database 2016, 2016, baw100. [Google Scholar] [CrossRef]
- Wernicke, S.; Rasche, F. FANMOD: A Tool for Fast Network Motif Detection. Bioinformatics 2006, 22, 1152–1153. [Google Scholar] [CrossRef]
- Tastsoglou, S.; Skoufos, G.; Miliotis, M.; Karagkouni, D.; Koutsoukos, I.; Karavangeli, A.; Kardaras, F.S.; Hatzigeorgiou, A.G. DIANA-MiRPath v4.0: Expanding Target-Based MiRNA Functional Analysis in Cell-Type and Tissue Contexts. Nucleic Acids Res. 2023, 51, W154–W159. [Google Scholar] [CrossRef]
- Gillespie, M.; Jassal, B.; Stephan, R.; Milacic, M.; Rothfels, K.; Senff-Ribeiro, A.; Griss, J.; Sevilla, C.; Matthews, L.; Gong, C.; et al. The Reactome Pathway Knowledgebase 2022. Nucleic Acids Res. 2022, 50, D687–D692. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Kensler, K.H.; Sankar, V.N.; Wang, J.; Zhang, X.; Rubadue, C.A.; Baker, G.M.; Parker, J.S.; Hoadley, K.A.; Stancu, A.L.; Pyle, M.E.; et al. PAM50 Molecular Intrinsic Subtypes in the Nurses’ Health Study Cohorts. Cancer Epidemiol. Biomark. Prev. 2019, 28, 798–806. [Google Scholar] [CrossRef]
- Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; et al. Repeated Observation of Breast Tumor Subtypes in Independent Gene Expression Data Sets. Proc. Natl. Acad. Sci. USA 2003, 100, 8418–8423. [Google Scholar] [CrossRef]
- Ankill, J.; Aure, M.R.; Bjørklund, S.; Langberg, S.; Bathen, T.F.; Borgen, E.; Engebråten, O.; Fritzman, B.; Garred, N.Ø.; Geisler, J.; et al. Epigenetic Alterations at Distal Enhancers Are Linked to Proliferation in Human Breast Cancer. NAR Cancer 2022, 4, zcac008. [Google Scholar] [CrossRef]
- Safarpour, D.; Pakneshan, S.; Fattaneh, T.A. Androgen Receptor (AR) Expression in 400 Breast: Is Routine AR Assessment Justified? Am. J. Cancer Res. 2014, 4, 353–368. [Google Scholar]
- Rakha, E.A.; Reis-Filho, J.S.; Ellis, I.O. Basal-like Breast Cancer: A Critical Review. J. Clin. Oncol. 2008, 26, 2568–2581. [Google Scholar] [CrossRef]
- Sutton, L.M.; Cao, D.; Sarode, V.; Molberg, K.H.; Torgbe, K.; Haley, B.; Peng, Y. Decreased Androgen Receptor Expression Is Associated with Distant Metastases in Patients with Androgen Receptor-Expressing Triple-Negative Breast Carcinoma. Am. J. Clin. Pathol. 2012, 138, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Hon, J.D.C.; Singh, B.; Sahin, A.; Du, G.; Wang, J.; Wang, V.Y.; Deng, F.-M.; Zhang, D.Y.; Monaco, M.E.; Lee, P. Breast Cancer Molecular Subtypes: From TNBC to QNBC. Am. J. Cancer Res. 2016, 6, 1864–1872. [Google Scholar]
- Bhattarai, S.; Saini, G.; Gogineni, K.; Aneja, R. Quadruple-Negative Breast Cancer: Novel Implications for a New Disease. Breast Cancer Res. 2020, 22, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, S.; Sugita, B.M.; Bortoletto, S.M.; Fonseca, A.S.; Cavalli, L.R.; Aneja, R. QNBC Is Associated with High Genomic Instability Characterized by Copy Number Alterations and MiRNA Deregulation. Int. J. Mol. Sci. 2021, 22, 11548. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Pietenpol, J.A.; Tan, A.R. Triple-Negative Breast Cancer: Molecular Subtypes and New Targets for Therapy. In American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2015; pp. e31–e39. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef] [PubMed]
- Tecalco-Cruz, A.C.; Ríos-López, D.G.; Vázquez-Victorio, G.; Rosales-Alvarez, R.E.; Macías-Silva, M. Transcriptional Cofactors Ski and SnoN Are Major Regulators of the TGF-β/Smad Signaling Pathway in Health and Disease. Signal Transduct. Target. Ther. 2018, 3, 15. [Google Scholar] [CrossRef]
- Liao, H.-Y.; Da, C.-M.; Wu, Z.-L.; Zhang, H.-H. Ski: Double Roles in Cancers. Clin. Biochem. 2021, 87, 1–12. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeong, J.-H.; Kang, S.H.; Kang, J.; Kim, E.A.; Lee, J.; Jung, J.H.; Park, H.Y.; Chae, Y.S. MicroRNA-137 Inhibits Cancer Progression by Targeting Del-1 in Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2019, 20, 6162. [Google Scholar] [CrossRef]
- Du, F.; Yu, L.; Wu, Y.; Wang, S.; Yao, J.; Zheng, X.; Xie, S.; Zhang, S.; Lu, X.; Liu, Y.; et al. MiR-137 Alleviates Doxorubicin Resistance in Breast Cancer through Inhibition of Epithelial-Mesenchymal Transition by Targeting DUSP4. Cell Death Dis. 2019, 10, 922–932. [Google Scholar] [CrossRef]
- Chen, F.; Luo, N.; Hu, Y.; Li, X.; Zhang, K. MiR-137 Suppresses Triple-Negative Breast Cancer Stemness and Tumorigenesis by Perturbing BCL11A-DNMT1 Interaction. Cell. Physiol. Biochem. 2018, 47, 2147–2158. [Google Scholar] [CrossRef]
- Xing, M.; Ooi, W.F.; Tan, J.; Qamra, A.; Lee, P.-H.; Li, Z.; Xu, C.; Padmanabhan, N.; Lim, J.Q.; Guo, Y.A.; et al. Genomic and Epigenomic EBF1 Alterations Modulate TERT Expression in Gastric Cancer. J. Clin. Investig. 2020, 130, 3005–3020. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.; Chen, Y.; Liu, L.; Huang, Y.; Chen, H.; Qi, F.; Lin, J.; Shen, Z.; Wu, X.; Wu, M.; et al. EBF1-Mediated Upregulation of Ribosome Assembly Factor PNO1 Contributes to Cancer Progression by Negatively Regulating the P53 Signaling Pathway. Cancer Res. 2019, 79, 2257–2270. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Guo, W.; Dong, B.; Wang, Y.; Deng, P.; Wang, C.; Liu, J.; Zhang, Q.; Grosschedl, R.; Yu, Z.; et al. EBF1 Promotes Triple-Negative Breast Cancer Progression by Surveillance of the HIF1α Pathway. Proc. Natl. Acad. Sci. USA 2022, 119, e2119518119. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, T.; Wang, S.; Yang, R.; Jiao, Z.; Lu, K.; Li, H.; Jiang, W.; Zhang, X. Targeting of HBP1/TIMP3 Axis as a Novel Strategy against Breast Cancer. Pharmacol. Res. 2023, 194, 106846. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhen, F.; Zheng, X.-S.; Hu, J.; Chen, X.-S. Systematic Analysis of the Expression and Prognostic Value of ITPR1 and Correlation with Tumor Infiltrating Immune Cells in Breast Cancer. BMC Cancer 2022, 22, 297. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Yu, J.; Björkholm, M.; Xu, D. ASF1a Inhibition Induces P53-Dependent Growth Arrest and Senescence of Cancer Cells. Cell Death Dis. 2019, 10, 76. [Google Scholar] [CrossRef]
- Kalna, V.; Yang, Y.; Peghaire, C.R.; Frudd, K.; Hannah, R.; Shah, A.V.; Osuna Almagro, L.; Boyle, J.J.; Göttgens, B.; Ferrer, J.; et al. The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program. Circ. Res. 2019, 124, 1337–1349. [Google Scholar] [CrossRef]
- Zhang, Z.; Lanz, R.B.; Xiao, L.; Wang, L.; Hartig, S.M.; Ittmann, M.M.; Feng, Q.; He, B. The Tumor Suppressive MiR-200b Subfamily Is an ERG Target Gene in Human Prostate Tumors. Oncotarget 2016, 7, 37993–38003. [Google Scholar] [CrossRef]
- Cavallari, I.; Ciccarese, F.; Sharova, E.; Urso, L.; Raimondi, V.; Silic-Benussi, M.; D’Agostino, D.M.; Ciminale, V. The MiR-200 Family of MicroRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers 2021, 13, 5874. [Google Scholar] [CrossRef]
- Dai, W.; He, J.; Zheng, L.; Bi, M.; Hu, F.; Chen, M.; Niu, H.; Yang, J.; Luo, Y.; Tang, W.; et al. MiR-148b-3p, MiR-190b, and MiR-429 Regulate Cell Progression and Act as Potential Biomarkers for Breast Cancer. J. Breast Cancer 2019, 22, 219–236. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Song, H.; Xu, H.; Zhao, B.; Wu, C.; Hu, J.; Wu, T.; Xie, D.; Zhao, J.; et al. The MicroRNAs MiR-200b-3p and MiR-429-5p Target the LIMK1/CFL1 Pathway to Inhibit Growth and Motility of Breast Cancer Cells. Oncotarget 2017, 8, 85276–85289. [Google Scholar] [CrossRef]
- Li, Y.; Meng, X.; Luo, Y.; Luo, S.; Li, J.; Zeng, J.; Huang, X.; Wang, J. The Oncogenic MiR-429 Promotes Triple-Negative Breast Cancer Progression by Degrading DLC1. Aging 2023, 15, 9809–9821. [Google Scholar] [CrossRef]
- Pflueger, D.; Rickman, D.S.; Sboner, A.; Perner, S.; LaFargue, C.J.; Svensson, M.A.; Moss, B.J.; Kitabayashi, N.; Pan, Y.; de la Taille, A.; et al. N-Myc Downstream Regulated Gene 1 (NDRG1) Is Fused to ERG in Prostate Cancer. Neoplasia 2009, 11, 804–811. [Google Scholar] [CrossRef]
- Saponaro, C.; Damato, M.; Stanca, E.; Aboulouard, S.; Zito, F.A.; De Summa, S.; Traversa, D.; Schirosi, L.; Bravaccini, S.; Pirini, F.; et al. Unraveling the Protein Kinase C/NDRG1 Signaling Network in Breast Cancer. Cell Biosci. 2024, 14, 156. [Google Scholar] [CrossRef]
- Muhammad, N.; Bhattacharya, S.; Steele, R.; Phillips, N.; Ray, R.B. Involvement of C-Fos in the Promotion of Cancer Stem-like Cell Properties in Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2017, 23, 3120–3128. [Google Scholar] [CrossRef]
- Chang, D.; Li, L.; Xu, Z.; Chen, X. Targeting FOS Attenuates Malignant Phenotypes of Breast Cancer: Evidence from in Silico and in Vitro Studies. J. Biochem. Mol. Toxicol. 2023, 37, e23358. [Google Scholar] [CrossRef]
- Schwab, K.; Riege, K.; Coronel, L.; Stanko, C.; Förste, S.; Hoffmann, S.; Fischer, M. P53 Target ANKRA2 Cooperates with RFX7 to Regulate Tumor Suppressor Genes. Cell Death Discov. 2024, 10, 376. [Google Scholar] [CrossRef]
- Gupta, P.; Sambyal, V.; Bali, J.S.; Guleria, K.; Uppal, M.S.; Sudan, M. MiR-107 and MiR-126 and Risk of Breast Cancer: A Case–Control Study. Genet. Test. Mol. Biomark. 2024, 28, 165–168. [Google Scholar] [CrossRef]
- Pan, H.; Peng, H.; Dai, Y.; Han, B.; Yang, G.; Jiang, N.; Zhou, P. Effects of MiR-107 on Breast Cancer Cell Growth and Death via Regulation of the PTEN/AKT Signaling Pathway. J. Oncol. 2023, 2023, 1244067. [Google Scholar] [CrossRef]
- Bergamaschi, A.; Christensen, B.L.; Katzenellenbogen, B.S. Reversal of Endocrine Resistance in Breast Cancer: Interrelationships among 14-3-3ζ, FOXM1, and a Gene Signature Associated with Mitosis. Breast Cancer Res. 2011, 13, R70. [Google Scholar] [CrossRef]
- Barger, C.J.; Branick, C.; Chee, L.; Karpf, A.R. Pan-Cancer Analyses Reveal Genomic Features of FOXM1 Overexpression in Cancer. Cancers 2019, 11, 251. [Google Scholar] [CrossRef]
- Lu, X.-F.; Zeng, D.; Liang, W.-Q.; Chen, C.-F.; Sun, S.-M.; Lin, H.-Y. FoxM1 Is a Promising Candidate Target in the Treatment of Breast Cancer. Oncotarget 2017, 9, 842–852. [Google Scholar] [CrossRef]
- Madaras, L.; Balint, N.; Gyorffy, B.; Tokes, A.-M.; Barshack, I.; Yosepovich, A.; Friedman, E.; Paluch-Shimon, S.; Zippel, D.; Baghy, K.; et al. BRCA Mutation-Related and Claudin-Low Breast Cancer: Blood Relatives or Stepsisters? Pathobiology 2016, 83, 1–12. [Google Scholar] [CrossRef]
- Luo, Y.; Kishi, S.; Sasaki, T.; Ohmori, H.; Fujiwara-Tani, R.; Mori, S.; Goto, K.; Nishiguchi, Y.; Mori, T.; Kawahara, I.; et al. Targeting Claudin-4 Enhances Chemosensitivity in Breast Cancer. Cancer Sci. 2020, 111, 1840–1850. [Google Scholar] [CrossRef]
- Murakami-Nishimagi, Y.; Sugimoto, K.; Kobayashi, M.; Tachibana, K.; Kojima, M.; Okano, M.; Hashimoto, Y.; Saji, S.; Ohtake, T.; Chiba, H. Claudin-4-Adhesion Signaling Drives Breast Cancer Metabolism and Progression via Liver X Receptor β. Breast Cancer Res. 2023, 25, 41. [Google Scholar] [CrossRef]
- Fan, J.; Tang, Y.; Wang, K.; Yang, S.; Ma, B. Predictive MiRNAs Patterns in Blood of Breast Cancer Patients Demonstrating Resistance Towards Neoadjuvant Chemotherapy. Breast Cancer Targets Ther. 2023, 15, 591–604. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, T.; Cheng, A.S.L.; Yu, J.; Kang, W.; To, K.F. The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Int. J. Mol. Sci. 2016, 17, 138. [Google Scholar] [CrossRef]
- Holden, J.K.; Cunningham, C.N. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Cancers 2018, 10, 81. [Google Scholar] [CrossRef]
- Gibault, F.; Sturbaut, M.; Bailly, F.; Melnyk, P.; Cotelle, P. Targeting Transcriptional Enhanced Associate Domains (TEADs). J. Med. Chem. 2018, 61, 5057–5072. [Google Scholar] [CrossRef]
- Fu, M.; Hu, Y.; Lan, T.; Guan, K.-L.; Luo, T.; Luo, M. The Hippo Signalling Pathway and Its Implications in Human Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 376. [Google Scholar] [CrossRef]
- Casamassimi, A.; Rienzo, M.; Di Zazzo, E.; Sorrentino, A.; Fiore, D.; Proto, M.C.; Moncharmont, B.; Gazzerro, P.; Bifulco, M.; Abbondanza, C. Multifaceted Role of PRDM Proteins in Human Cancer. Int. J. Mol. Sci. 2020, 21, 2648. [Google Scholar] [CrossRef]
- Maharry, S.E.; Walker, C.J.; Liyanarachchi, S.; Mehta, S.; Patel, M.; Bainazar, M.A.; Huang, X.; Lankenau, M.A.; Hoag, K.W.; Ranganathan, P.; et al. Dissection of the Major Hematopoietic Quantitative Trait Locus in Chromosome 6q23.3 Identifies MiR-3662 as a Player in Hematopoiesis and Acute Myeloid Leukemia. Cancer Discov. 2016, 6, 1036–1051. [Google Scholar] [CrossRef]
- Powrózek, T.; Krawczyk, P.; Kowalski, D.M.; Winiarczyk, K.; Olszyna-Serementa, M.; Milanowski, J. Plasma Circulating MicroRNA-944 and MicroRNA-3662 as Potential Histologic Type-Specific Early Lung Cancer Biomarkers. Transl. Res. 2015, 166, 315–323. [Google Scholar] [CrossRef]
- Guo, C.M.; Liu, S.Q.; Sun, M.Z. MiR-429 as Biomarker for Diagnosis, Treatment and Prognosis of Cancers and Its Potential Action Mechanisms: A Systematic Literature Review. Neoplasma 2020, 67, 215–228. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Bure, I.V.; Nemtsova, M.V.; Kuznetsova, E.B. Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int. J. Mol. Sci. 2022, 23, 5801. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, F.; Teschendorff, A.E.; Zhao, Y.; Yao, L.; Li, J.; He, Y. Insights into the Role of Long Non-Coding RNAs in DNA Methylation Mediated Transcriptional Regulation. Front. Mol. Biosci. 2022, 9, 1067406. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A CeRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [PubMed]
ENCODE/CHIP-X | multiMir | |||
---|---|---|---|---|
TF–GENE | TF-MIR | MIR-GENE | MIR-TF | |
Hypomethylated | ||||
#Interaction | 637 | 127 | 199 | 93 |
#gene | 82 | - | 54 | - |
#miRNA | - | 35 | 50 | 30 |
#TF | 26 | 13 | - | 22 |
Hypermethylated | ||||
#Interaction | 195 | 67 | 108 | 76 |
#gene | 40 | - | 35 | - |
#miRNA | - | 23 | 37 | 24 |
#TF | 21 | 12 | - | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okano, L.M.; de Azevedo, A.L.K.; Carvalho, T.M.; Resende, J.; Magno, J.M.; Figueiredo, B.C.; Malta, T.M.; Castro, M.A.A.; Cavalli, L.R. Identification of Epigenetic Regulatory Networks of Gene Methylation–miRNA–Transcription Factor Feed-Forward Loops in Basal-like Breast Cancer. Cells 2025, 14, 1235. https://doi.org/10.3390/cells14161235
Okano LM, de Azevedo ALK, Carvalho TM, Resende J, Magno JM, Figueiredo BC, Malta TM, Castro MAA, Cavalli LR. Identification of Epigenetic Regulatory Networks of Gene Methylation–miRNA–Transcription Factor Feed-Forward Loops in Basal-like Breast Cancer. Cells. 2025; 14(16):1235. https://doi.org/10.3390/cells14161235
Chicago/Turabian StyleOkano, Larissa M., Alexandre L. K. de Azevedo, Tamyres M. Carvalho, Jean Resende, Jessica M. Magno, Bonald C. Figueiredo, Tathiane M. Malta, Mauro A. A. Castro, and Luciane R. Cavalli. 2025. "Identification of Epigenetic Regulatory Networks of Gene Methylation–miRNA–Transcription Factor Feed-Forward Loops in Basal-like Breast Cancer" Cells 14, no. 16: 1235. https://doi.org/10.3390/cells14161235
APA StyleOkano, L. M., de Azevedo, A. L. K., Carvalho, T. M., Resende, J., Magno, J. M., Figueiredo, B. C., Malta, T. M., Castro, M. A. A., & Cavalli, L. R. (2025). Identification of Epigenetic Regulatory Networks of Gene Methylation–miRNA–Transcription Factor Feed-Forward Loops in Basal-like Breast Cancer. Cells, 14(16), 1235. https://doi.org/10.3390/cells14161235