Weak Acids as Endogenous Inhibitors of the Proton-Activated Chloride Channel
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. hiPSC Cardiomyocyte Cultivation, Directed Cardiac Differentiation, and Maturation
2.3. Patch Clamp Electrophysiology
2.4. Cell Death Experiments
3. Results
3.1. Effects of Acetic Acid on Endogenous PAC Channels in HEK 293T Cells
3.2. Effects of More Physiologically Relevant Weak Acids
3.3. Generation of PAC-like Currents by hiPSC-Derived Cardiomyocytes and Cell Death Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARA | arachidonic acid |
ASIC | acid-sensing ion channels |
ASOR | acid-sensitive outwardly rectifying anion channel |
BSA | bovine serum albumin |
BHB | β-hydroxybutyrate |
DAPI | 4′,6-Diamidin-2-phenylindol |
DPC | diphenylamine-2-carboxylic acid |
DIDS | 4,40-diisothiocyanatostilbene-2,20-disulfonate |
DMEM | Dulbecco’s modified Eagle’s medium |
EDTA | ethylene diamine tetra acetic acid |
FBS | fetal bovine serum |
GPCR | G-protein-coupled receptors |
HCC | hepatocellular carcinoma |
HEK | human embryonic kidney |
hiPSC | human-induced pluripotent stem cell |
HOAc | acetic acid |
NPPB | 5-nitro-2-(3-phenylpropylamino)-benzoic acid |
PAC | proton-activated chloride channel |
PAORAC | proton-activated outwardly rectifying anion channel |
PBS | phosphate-buffered saline |
PFA | Paraformaldehyde |
PI | propidium iodide |
PIP2 | phosphatidylinositol (4,5)-bisphosphate |
PS | pregnenolone sulfate |
TMEM | transmembrane proteins |
WT | wildtype |
References
- Auzanneau, C.; Thoreau, V.; Kitzis, A.; Becq, F. A Novel voltage-dependent chloride current activated by extracellular acidic pH in cultured rat Sertoli cells. J. Biol. Chem. 2003, 278, 19230–19236. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, F.; Blin, S.; Lazarow, K.; Daubitz, T.; von Kries, J.P.; Jentsch, T.J. Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels. eLife 2019, 8, e49187. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, J.; Del Carmen Vitery, M.; Osei-Owusu, J.; Chu, J.; Yu, H.; Sun, S.; Qiu, Z. PAC, an evolutionarily conserved membrane protein, is a proton-activated chloride channel. Science 2019, 364, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Sato-Numata, K.; Sabirov, R.Z.; Numata, T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 2: Functional and Molecular Properties of ASOR/PAC Channels and Their Roles in Cell Volume Dysregulation and Acidotoxic Cell Death. Front. Cell Dev. Biol. 2021, 9, 702317. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Oberwinkler, J. Characterization of a proton-activated, outwardly rectifying anion channel. J. Physiol. 2005, 567, 191–213. [Google Scholar] [CrossRef] [PubMed]
- Sato-Numata, K.; Numata, T.; Okada, T.; Okada, Y. Acid-sensitive outwardly rectifying (ASOR) anion channels in human epithelial cells are highly sensitive to temperature and independent of ClC-3. Pflugers Arch. 2013, 465, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Osei-Owusu, J.; Yang, J.; Leung, K.H.; Ruan, Z.; Lu, W.; Krishnan, Y.; Qiu, Z. Proton-activated chloride channel PAC regulates endosomal acidification and transferrin receptor-mediated endocytosis. Cell Rep. 2021, 34, 108683. [Google Scholar] [CrossRef] [PubMed]
- Osei-Owusu, J.; Yang, J.; Del Carmen Vitery, M.; Tian, M.; Qiu, Z. PAC proton-activated chloride channel contributes to acid-induced cell death in primary rat cortical neurons. Channels 2020, 14, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Shimizu, T.; Numata, T.; Okada, Y. Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells. Pflugers Arch. 2007, 454, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Zeziulia, M.; Blin, S.; Schmitt, F.W.; Lehmann, M.; Jentsch, T.J. Proton-gated anion transport governs macropinosome shrinkage. Nat. Cell Biol. 2022, 24, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Sato-Numata, K.; Numata, T.; Okada, Y. Temperature sensitivity of acid-sensitive outwardly rectifying (ASOR) anion channels in cortical neurons is involved in hypothermic neuroprotection against acidotoxic necrosis. Channels 2014, 8, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.M.; Xiong, Z.G.; Simon, R.P. pH and proton-sensitive receptors in brain ischemia. J. Cereb. Blood Flow. Metab. 2022, 42, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Zhang, W.; Shen, M.; Yang, J.; Chu, J.; Wang, S.; Wan, M.; Zheng, J.; Qiu, Z.; Cao, X. Proton-activated chloride channel increases endplate porosity and pain in a mouse spine degeneration model. J. Clin. Investig. 2024, 134, e168155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, S.Y.; Yang, X.; Wang, Y.Q.; Cheng, Y.X. TMEM206 is a potential prognostic marker of hepatocellular carcinoma. Oncol. Lett. 2020, 20, 174. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Li, H.; Li, J.; Wang, Z. Downregulation of the Proton-Activated Cl-Channel TMEM206 Inhibits Malignant Properties of Human Osteosarcoma Cells. Oxidative Med. Cell. Longev. 2021, 2021, 3672112. [Google Scholar] [CrossRef] [PubMed]
- Osei-Owusu, J.; Kots, E.; Ruan, Z.; Mihaljevic, L.; Chen, K.H.; Tamhaney, A.; Ye, X.; Lü, W.; Weinstein, H.; Qiu, Z. Molecular determinants of pH sensing in the proton-activated chloride channel. Proc. Natl. Acad. Sci. USA 2022, 119, e2200727119. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Ehara, T. Acidic extracellular pH-activated outwardly rectifying chloride current in mammalian cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1905–H1914. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.Y.; Wang, R.; Liu, C.X.; Jiang, H.; Ma, Z.Y.; Li, L.; Zhang, W. Simvastatin inhibits acidic extracellular pH-activated, outward rectifying chloride currents in RAW264.7 monocytic-macrophage and human peripheral monocytes. Int. Immunopharmacol. 2009, 9, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Mihaljevic, L.; Ruan, Z.; Osei-Owusu, J.; Lu, W.; Qiu, Z. Inhibition of the proton-activated chloride channel PAC by PIP(2). elife 2023, 12, e83935. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.; Lee, E.; Kim, J.-E.; Lim, H.-H.; Suh, B.-C. The plasma membrane inner leaflet PI(4,5)P2 is essential for the activation of proton-activated chloride channels. Nat. Commun. 2024, 15, 7008. [Google Scholar] [CrossRef] [PubMed]
- Sato-Numata, K.; Numata, T.; Inoue, R.; Okada, Y. Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel. Pflugers Arch. 2016, 468, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Chi, P.; Wang, X.; Li, J.; Yang, H.; Li, K.; Zhang, Y.; Lin, S.; Yu, L.; Liu, S.; Chen, L.; et al. Molecular insights into the inhibition of proton-activated chloride channel by transfer RNA. Cell Res. 2024, 34, 743–745. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Chang, R.B.; Allgood, S.D.; Silver, W.L.; Liman, E.R. A TRPA1-dependent mechanism for the pungent sensation of weak acids. J. Gen. Physiol. 2011, 137, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Jordt, S.E.; Tominaga, M.; Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl. Acad. Sci. USA 2000, 97, 8134–8139. [Google Scholar] [CrossRef] [PubMed]
- de la Roche, J.; Walther, I.; Leonow, W.; Hage, A.; Eberhardt, M.; Fischer, M.; Reeh, P.W.; Sauer, S.; Leffler, A. Lactate is a potent inhibitor of the capsaicin receptor TRPV1. Sci. Rep. 2016, 6, 36740. [Google Scholar] [CrossRef] [PubMed]
- Haug, F.M.; Pumroy, R.A.; Sridhar, A.; Pantke, S.; Dimek, F.; Fricke, T.C.; Hage, A.; Herzog, C.; Echtermeyer, F.G.; de la Roche, J.; et al. Functional and structural insights into activation of TRPV2 by weak acids. EMBO J. 2024, 43, 2264–2290. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yang, P.; Qin, P.; Lu, Y.; Li, X.; Tian, Q.; Li, Y.; Xie, C.; Tian, J.-B.; Zhang, C.; et al. Selective potentiation of 2-APB-induced activation of TRPV1-3 channels by acid. Sci. Rep. 2016, 6, 20791. [Google Scholar] [CrossRef] [PubMed]
- Haase, A.; Gohring, G.; Martin, U. Generation of non-transgenic iPS cells from human cord blood CD34(+) cells under animal component-free conditions. Stem Cell Res. 2017, 21, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Kriedemann, N.; Triebert, W.; Teske, J.; Mertens, M.; Franke, A.; Ullmann, K.; Manstein, F.; Drakhlis, L.; Haase, A.; Halloin, C.; et al. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat. Protoc. 2024, 19, 1911–1939. [Google Scholar] [CrossRef] [PubMed]
- Halloin, C.; Schwanke, K.; Löbel, W.; Franke, A.; Szepes, M.; Biswanath, S.; Wunderlich, S.; Merkert, S.; Weber, N.; Osten, F.; et al. Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Rep. 2019, 13, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Kriedemann, N.; Manstein, F.; Hernandez-Bautista, C.A.; Ullmann, K.; Triebert, W.; Franke, A.; Mertens, M.; Stein, I.C.A.P.; Leffler, A.; Witte, M.; et al. Protein-free media for cardiac differentiation of hPSCs in 2000 mL suspension culture. Stem Cell Res. Ther. 2024, 15, 213. [Google Scholar] [CrossRef] [PubMed]
- Immke, D.C.; McCleskey, E.W. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat. Neurosci. 2001, 4, 869–870. [Google Scholar] [CrossRef] [PubMed]
- López-Ramírez, O.; González-Garrido, A. The role of acid sensing ion channels in the cardiovascular function. Front. Physiol. 2023, 14, 1194948. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Osei-Owusu, J.; Du, J.; Qiu, Z.; Lu, W. Structures and pH-sensing mechanism of the proton-activated chloride channel. Nature 2020, 588, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Angelova, M.I.; Bitbol, A.-F.; Seigneuret, M.; Staneva, G.; Kodama, A.; Sakuma, Y.; Kawakatsu, T.; Imai, M.; Puff, N. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. Biochim. et Biophys. Acta (BBA)-Biomembr. 2018, 1860, 2042–2063. [Google Scholar] [CrossRef] [PubMed]
- Guldfeldt, L.U.; Arneborg, N. Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy. Appl. Environ. Microbiol. 1998, 64, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Raphael, R.M. Effect of salicylate on the elasticity, bending stiffness, and strength of SOPC membranes. Biophys. J. 2005, 89, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Yermolaieva, O.; Leonard, A.S.; Schnizler, M.K.; Abboud, F.M.; Welsh, M.J. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA 2004, 101, 6752–6757. [Google Scholar] [CrossRef] [PubMed]
- Gunthorpe, M.; Smith, G.; Davis, J.; Randall, A. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. Pflügers Arch. 2001, 442, 668–674. [Google Scholar] [PubMed]
- Jang, J.; Kim, S.R.; Lee, J.E.; Lee, S.; Son, H.J.; Choe, W.; Yoon, K.S.; Kim, S.S.; Yeo, E.J.; Kang, I. Molecular mechanisms of neuroprotection by ketone bodies and ketogenic diet in cerebral ischemia and neurodegenerative diseases. Int. J. Mol. Sci. 2023, 25, 124. [Google Scholar] [CrossRef] [PubMed]
- Makievskaya, C.I.; Popkov, V.A.; Andrianova, N.V.; Liao, X.; Zorov, D.B.; Plotnikov, E.Y. Ketogenic diet and ketone bodies against ischemic injury: Targets, mechanisms, and therapeutic potential. Int. J. Mol. Sci. 2023, 24, 2576. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Shan, W.; Xu, Q.; Guo, A.; Wu, J.; Wang, Q. Ketone bodies inhibit the opening of acid-sensing ion channels (asics) in rat hippocampal excitatory neurons in vitro. Front. Neurol. 2019, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Bambouskova, M.; Potuckova, L.; Paulenda, T.; Kerndl, M.; Mogilenko, D.A.; Lizotte, K.; Swain, A.; Hayes, S.; Sheldon, R.D.; Kim, H.; et al. Itaconate confers tolerance to late nlrp3 inflammasome activation. Cell Rep. 2021, 34, 108756. [Google Scholar] [CrossRef] [PubMed]
- Swain, A.; Bambouskova, M.; Kim, H.; Andhey, P.S.; Duncan, D.; Auclair, K.; Chubukov, V.; Simons, D.M.; Roddy, T.P.; Stewart, K.M.; et al. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type i interferon regulation in macrophages. Nat. Metab. 2020, 2, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.; Chu, J.; Limjunyawong, N.; Chen, J.; Ye, Y.; Chen, K.H.; Koylass, N.; Sun, S.; Dong, X.; Qiu, Z. Phagosome-mediated anti-bacterial immunity is governed by the proton-activated chloride channel in peritoneal macrophages. bioRxiv 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pombeiro Stein, I.C.A.; Schulz, M.; Rudolf, D.; Herzog, C.; Echtermeyer, F.; Kriedemann, N.; Zweigerdt, R.; Leffler, A. Weak Acids as Endogenous Inhibitors of the Proton-Activated Chloride Channel. Cells 2025, 14, 1110. https://doi.org/10.3390/cells14141110
Pombeiro Stein ICA, Schulz M, Rudolf D, Herzog C, Echtermeyer F, Kriedemann N, Zweigerdt R, Leffler A. Weak Acids as Endogenous Inhibitors of the Proton-Activated Chloride Channel. Cells. 2025; 14(14):1110. https://doi.org/10.3390/cells14141110
Chicago/Turabian StylePombeiro Stein, Inês C. A., Maren Schulz, Daniel Rudolf, Christine Herzog, Frank Echtermeyer, Nils Kriedemann, Robert Zweigerdt, and Andreas Leffler. 2025. "Weak Acids as Endogenous Inhibitors of the Proton-Activated Chloride Channel" Cells 14, no. 14: 1110. https://doi.org/10.3390/cells14141110
APA StylePombeiro Stein, I. C. A., Schulz, M., Rudolf, D., Herzog, C., Echtermeyer, F., Kriedemann, N., Zweigerdt, R., & Leffler, A. (2025). Weak Acids as Endogenous Inhibitors of the Proton-Activated Chloride Channel. Cells, 14(14), 1110. https://doi.org/10.3390/cells14141110