The Expression of Shmt Genes in Amphioxus Suggests a Role in Tissue Proliferation Rather than in Neurotransmission
Abstract
1. Introduction
2. Materials and Methods
2.1. Amphioxus Spawning and Material Collection
2.2. Identification of Amphioxus Shmt Genes and Phylogenetic Analyses
2.3. Gene Cloning, Probe Synthesis and In Situ Hybridization
3. Results
3.1. Evolutionary History of SHMT in Metazoans
3.2. Expression of Shmt Genes in Amphioxus
4. Discussion
4.1. Shmt Gene Duplication Took Place During Early Metazoan Evolution
4.2. SHMTs Are Not Involved in Neurotransmission in Amphioxus
4.3. SHMT1 Is Important in Proliferating Tissues During Amphioxus Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GlyT | Glycine transporters |
SHMT | Serine hydroxymethyltransferase |
THF | Tetrahydrofolate |
References
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef]
- Stover, P.J. One-Carbon Metabolism–Genome Interactions in Folate-Associated Pathologies. J. Nutr. 2009, 139, 2402–2405. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.R.; Hirowatari, A.; Nai, N.; Furuya, S.; Yamamoto, K. Serine Hydroxymethyltransferase from the Silkworm Bombyx mori: Identification, Distribution, and Biochemical Characterization. Arch. Insect Biochem. Physiol. 2019, 102, e21594. [Google Scholar] [CrossRef]
- Garrow, T.A.; Brenner, A.A.; Whitehead, V.M.; Chen, X.N.; Duncan, R.G.; Korenberg, J.R.; Shane, B. Cloning of Human cDNAs Encoding Mitochondrial and Cytosolic Serine Hydroxymethyltransferases and Chromosomal Localization. J. Biol. Chem. 1993, 268, 11910–11916. [Google Scholar] [CrossRef] [PubMed]
- Winkler, F.; Kriebel, M.; Clever, M.; Gröning, S.; Großhans, J. Essential Function of the Serine Hydroxymethyl Transferase (SHMT) Gene During Rapid Syncytial Cell Cycles in Drosophila. G3 2017, 7, 2305–2314. [Google Scholar] [CrossRef]
- Konrad, K.D.; Campbell, R.A.; Thiel, V.; Sullivan-Brown, J. The Folic Acid Metabolism Gene mel-32/Shmt Is Required for Normal Cell Cycle Lengths in Caenorhabditis elegans. Int. J. Dev. Biol. 2018, 62, 641–645. [Google Scholar] [CrossRef]
- Sah, N.; Stenhouse, C.; Halloran, K.M.; Moses, R.M.; Seo, H.; Burghardt, R.C.; Johnson, G.A.; Wu, G.; Bazer, F.W. Inhibition of SHMT2 mRNA Translation Increases Embryonic Mortality in Sheep. Biol. Reprod. 2022, 107, 1279–1295. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Huai, Y.; Deng, T.; Zhang, C.; Song, J.; Wang, J.; Zhang, Y.; Chen, Z.J.; Zhao, H.; Wu, K.; et al. SHMT2 is Essential for Mammalian Preimplantation Embryonic Development through De Novo Biosynthesis of Nucleotide Metabolites. Mol. Ther. Nucleic Acids 2025, 36, 102499. [Google Scholar] [CrossRef]
- Beaudin, A.E.; Abarinov, E.V.; Noden, D.M.; Perry, C.A.; Chu, S.; Stabler, S.P.; Allen, R.H.; Stover, P.J. Shmt1 and De Novo Thymidylate Biosynthesis Underlie Folate-Responsive Neural Tube Defects in Mice. Am. J. Clin. Nutr. 2011, 93, 789–798. [Google Scholar] [CrossRef]
- Rebekah, P.K.; Tella, S.; Buragadda, S.; Tiruvatturu, M.K.; Akka, J. Interaction between Maternal and Paternal SHMT1 C1420T Predisposes to Neural Tube Defects in the Fetus: Evidence from Case–Control and Family-Based Triad Approaches. Birth Defects Res. 2017, 109, 1020–1029. [Google Scholar] [CrossRef]
- Beaudin, A.E.; Abarinov, E.V.; Malysheva, O.; Perry, C.A.; Caudill, M.; Stover, P.J. Dietary Folate, but Not Choline, Modifies Neural Tube Defect Risk in Shmt1 Knockout Mice. Am. J. Clin. Nutr. 2012, 95, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.A.B.; Venda, A.M.; Homem, C.C.F. Serine Hydroxymethyl Transferase Is Required for Optic Lobe Neuroepithelia Development in Drosophila. Development 2023, 150, dev201152. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, E.; Yang, W.; Zhang, X.; Zhang, W.; Rao, Y. D-Serine Made by Serine Racemase in Drosophila Intestine Plays a Physiological Role in Sleep. Nat. Commun. 2019, 10, 1986. [Google Scholar] [CrossRef]
- Nirenberg, M.; Leder, P.; Bernfield, M.; Brimacombe, R.; Trupin, J.; Rottman, F.; O’Neal, C. RNA Codewords and Protein Synthesis, VII. On the General Nature of the RNA Code. Proc. Natl. Acad. Sci. USA 1965, 53, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.J.; Yee, B.K. Glycine Transporters as Novel Therapeutic Targets in Schizophrenia, Alcohol Dependence and Pain. Nat. Rev. Drug. Discov. 2013, 12, 866–885. [Google Scholar] [CrossRef]
- Zafra, F.; Ibáñez, I.; Bartolomé-Martín, D.; Piniella, D.; Arribas-Blázquez, M.; Giménez, C. Glycine Transporters and its Coupling with NMDA Receptors. Adv. Neurobiol. 2017, 16, 55–83. [Google Scholar] [CrossRef] [PubMed]
- Legendre, P. The Glycinergic Inhibitory Synapse. Cell. Mol. Life Sci. 2001, 58, 760–793. [Google Scholar] [CrossRef]
- Beyoğlu, D.; Idle, J.R. The Glycine Deportation System and its Pharmacological Consequences. Pharmacol. Ther. 2012, 135, 151–167. [Google Scholar] [CrossRef]
- Cuthbertson, C.R.; Arabzada, Z.; Bankhead, A.; Kyani, A.; Neamati, N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol. Transl. Sci. 2021, 4, 624–646. [Google Scholar] [CrossRef]
- Ma, W.; Liu, R.; Zhao, K.; Zhong, J. Vital Role of SHMT2 in Diverse Disease. Biochem. Biophys. Res. Commun. 2023, 671, 160–165. [Google Scholar] [CrossRef]
- Daly, E.C.; Aprison, M.H. Distribution of Serine Hydroxymethyltransferase and Glycine Transaminase in Several Areas of the Central Nervous System of the Rat. J. Neurochem. 1974, 22, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Holland, L.Z.; Holland, N.D. Cephalochordates: A Window into Vertebrate Origins. Curr. Top. Dev. Biol. 2021, 141, 119–147. [Google Scholar] [CrossRef] [PubMed]
- Albuixech-Crespo, B.; López-Blanch, L.; Burguera, D.; Maeso, I.; Sánchez-Arrones, L.; Moreno-Bravo, J.A.; Somorjai, I.; Pascual-Anaya, J.; Puelles, E.; Bovolenta, P.; et al. Molecular Regionalization of the Developing Amphioxus Neural Tube Challenges Major Partitions of the Vertebrate Brain. PLoS Biol. 2017, 15, e2001573. [Google Scholar] [CrossRef]
- Pergner, J.; Vavrova, A.; Kozmikova, I.; Kozmik, Z. Molecular Fingerprint of Amphioxus Frontal Eye Illuminates the Evolution of Homologous Cell Types in the Chordate Retina. Front. Cell Dev. Biol. 2020, 8, 705. [Google Scholar] [CrossRef]
- Bozzo, M.; Macrì, S.; Calzia, D.; Sgarra, R.; Manfioletti, G.; Ramoino, P.; Lacalli, T.; Vignali, R.; Pestarino, M.; Candiani, S. The HMGA Gene Family in Chordates: Evolutionary Perspectives from Amphioxus. Dev. Genes Evol. 2017, 227, 201–211. [Google Scholar] [CrossRef]
- Candiani, S.; Moronti, L.; Ramoino, P.; Schubert, M.; Pestarino, M. A Neurochemical Map of the Developing Amphioxus Nervous System. BMC Neurosci. 2012, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.; Schubert, M.; Dalfo, D.; Candiani, S.; Benito, E.; Gardenyes, J.; Godoy, L.; Moret, F.; Illas, M.; Patten, I.; et al. Preliminary Observations on the Spawning Conditions of the European Amphioxus (Branchiostoma lanceolatum) in Captivity. J. Exp. Zool. B 2004, 302, 384–391. [Google Scholar] [CrossRef]
- Guarneri, I.; Bozzo, M.; Perez Criado, N.; Serafini, E.; Manfè, G.; Tagliapietra, D.; Fiorin, R.; Scapin, L.; Povero, P.; Bellitto, D.; et al. Amphioxus (Branchiostoma lanceolatum) in the North Adriatic Sea: Ecological Observations and Spawning Behavior. Integr. Zool. 2025, 20, 331–343. [Google Scholar] [CrossRef]
- Bozzo, M.; Candiani, S.; Schubert, M. Whole Mount In Situ Hybridization and Immunohistochemistry for Studying Retinoic Acid Signaling in Developing Amphioxus. Methods Enzymol. 2020, 637, 419–452. [Google Scholar] [CrossRef]
- Carvalho, J.E.; Lahaye, F.; Yong, L.W.; Croce, J.C.; Escrivá, H.; Yu, J.K.; Schubert, M. An Updated Staging System for Cephalochordate Development: One Table Suits Them All. Front. Cell Dev. Biol. 2021, 9, 668006. [Google Scholar] [CrossRef]
- Marlétaz, F.; Firbas, P.N.; Maeso, I.; Tena, J.J.; Bogdanovic, O.; Perry, M.; Wyatt, C.D.R.; de la Calle-Mustienes, E.; Bertrand, S.; Burguera, D.; et al. Amphioxus Functional Genomics and the Origins of Vertebrate Gene Regulation. Nature 2018, 564, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Candiani, S.; Garbarino, G.; Pestarino, M. Detection of mRNA and MicroRNA Expression in Basal Chordates, Amphioxus and Ascidians. In In Situ Hybridization Methods; Humana Press: New York, NY, USA, 2015; Volume 99, pp. 279–292. [Google Scholar] [CrossRef]
- Zafra, F.; Aragón, C.; Giménez, C. Molecular Biology of Glycinergic Neurotransmission. Mol. Neurobiol. 1997, 14, 117–142. [Google Scholar] [CrossRef]
- Bozzo, M.; Costa, S.; Obino, V.; Bachetti, T.; Marcenaro, E.; Pestarino, M.; Schubert, M.; Candiani, S. Functional Conservation and Genetic Divergence of Chordate Glycinergic Neurotransmission: Insights from Amphioxus Glycine Transporters. Cells 2021, 10, 3392. [Google Scholar] [CrossRef] [PubMed]
- Bozzo, M.; Lacalli, T.C.; Obino, V.; Caicci, F.; Marcenaro, E.; Bachetti, T.; Manni, L.; Pestarino, M.; Schubert, M.; Candiani, S. Amphioxus Neuroglia: Molecular Characterization and Evidence for Early Compartmentalization of the Developing Nerve Cord. Glia 2021, 69, 1654–1678. [Google Scholar] [CrossRef] [PubMed]
- Frenkel, L.; Muraro, N.I.; Beltrán González, A.N.; Marcora, M.S.; Bernabó, G.; Hermann-Luibl, C.; Romero, J.I.; Helfrich-Förster, C.; Castaño, E.M.; Marino-Busjle, C.; et al. Organization of Circadian Behavior Relies on Glycinergic Transmission. Cell Rep. 2017, 19, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, G.; Motokawa, Y.; Yoshida, T.; Hiraga, K. Glycine Cleavage System: Reaction Mechanism, Physiological Significance, and Hyperglycinemia. Proc. Jpn. Acad. B 2008, 84, 246–263. [Google Scholar] [CrossRef]
- Gattoni, G.; Andrews, T.G.R.; Benito-Gutiérrez, È. Restricted Proliferation During Neurogenesis Contributes to Regionalisation of the Amphioxus Nervous System. Front. Neurosci. 2022, 16, 812223. [Google Scholar] [CrossRef]
- Korsmo, H.W.; Jiang, X. One Carbon Metabolism and Early Development: A Diet-Dependent Destiny. Trends Endocrinol. Metabol. 2021, 32, 579–593. [Google Scholar] [CrossRef]
- Menezo, Y.; Elder, K.; Clement, A.; Clement, P. Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles. Biomolecules 2022, 12, 197. [Google Scholar] [CrossRef]
Primer | Sequence |
---|---|
Shmt1 forward | 5′-CTACAGGCCTTGGGGTCTTG-3′ |
Shmt1 reverse | 5′-GGTGTTCCAAAACGCAGACC-3′ |
Shmt2 forward | 5′-CGTTCGTCTCCAGTTCAACC-3′ |
Shmt2 reverse | 5′-CTGTAAGGCATGGACTCAAAGT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozzo, M.; Serafini, E.; Rosa, G.; Bazzurro, V.; Amaroli, A.; Ferrando, S.; Schubert, M.; Candiani, S. The Expression of Shmt Genes in Amphioxus Suggests a Role in Tissue Proliferation Rather than in Neurotransmission. Cells 2025, 14, 1071. https://doi.org/10.3390/cells14141071
Bozzo M, Serafini E, Rosa G, Bazzurro V, Amaroli A, Ferrando S, Schubert M, Candiani S. The Expression of Shmt Genes in Amphioxus Suggests a Role in Tissue Proliferation Rather than in Neurotransmission. Cells. 2025; 14(14):1071. https://doi.org/10.3390/cells14141071
Chicago/Turabian StyleBozzo, Matteo, Emanuele Serafini, Giacomo Rosa, Virginia Bazzurro, Andrea Amaroli, Sara Ferrando, Michael Schubert, and Simona Candiani. 2025. "The Expression of Shmt Genes in Amphioxus Suggests a Role in Tissue Proliferation Rather than in Neurotransmission" Cells 14, no. 14: 1071. https://doi.org/10.3390/cells14141071
APA StyleBozzo, M., Serafini, E., Rosa, G., Bazzurro, V., Amaroli, A., Ferrando, S., Schubert, M., & Candiani, S. (2025). The Expression of Shmt Genes in Amphioxus Suggests a Role in Tissue Proliferation Rather than in Neurotransmission. Cells, 14(14), 1071. https://doi.org/10.3390/cells14141071