Autophagy—Unlocking New Dimensions in the Pathology and Treatment of Depression
Abstract
:1. Introduction
2. Overview of Autophagy
2.1. Macroautophagy
2.2. Chaperone-Mediated Autophagy (CMA)
2.3. Microautophagy
2.4. Mitophagy
3. Molecular Mechanisms of Autophagy and Its Abnormalities in Depression
3.1. Autophagy Dysfunction in Depression
3.1.1. Autophagy Dysfunction in Patients with Depression
3.1.2. Autophagy Dysfunction in Models of Depression
3.2. Autophagy Regulatory Pathways
3.2.1. mTOR-Dependent Pathways
3.2.2. mTOR-Independent Pathways
3.3. Autophagy Markers and Depression
3.3.1. p62
3.3.2. Neighbor of BRCA1 Gene 1 (NBR1)
3.3.3. Mitophagy-Specific Markers (e.g., PINK1/Parkin)
4. Interaction Between Autophagy and Pathological Mechanisms of Depression
4.1. Autophagy and Neuroinflammation in Depression
4.2. Autophagy and Neurogenesis in Depression
4.3. Autophagy and Gut Microbiota in Depression
4.4. Autophagy and HPA Axis Dysregulation in Depression
5. Autophagy Modulation as a New Strategy for the Treatment of Depression
5.1. mTOR Pathway Modulators
5.1.1. Rapamycin and Its Analogs
5.1.2. Natural Products
5.2. Mechanisms of Autophagy Regulation by Antidepressant Drugs
Drug | Experimental Design | Molecular Mechanism | Significance | Ref. | |
---|---|---|---|---|---|
Natural products | Apigenin | Male BALB/c mice (n = 10), CSD for 21 days, Hip detected by WB | ↑ LC3II/I, AMPK, ULK1 protein ↓p62, mTOR protein | ↑ AMPK/ULK1/mTOR-mediated autophagy | [142] |
Modified Xiaoyao San formula | Male ICR mice (n = 10), LPS (1 mg/kg) for 2 weeks, PFC detected by WB and IF | ↑ p62, ATG5 protein ↓ULK1, mTOR, PI3K, Akt protein ↑ LC3B-Iba-1 immunofluorescence colocalization | ↑ PI3K/Akt/mTOR-mediated autophagy | [143] | |
Resveratrol | Female C57BL/6 mice (n = 9), ovariectomized, underwent estradiol benzoate treatment, Hip detected by IF and WB | ↑ LC3II/I, p62, ATG5, SIRT1 protein ↓p62 protein ↑ SIRT1 immunofluorescence | ↑ SIRT1-mediated autophagy | [146] | |
Antidepressant | Fluoxetine | Male SD rats (n = 8), bilateral olfactory bulbectomy, Oral fluoxetine (10 mg/kg) for 30 days, Hip detected by WB | ↑ LC3II, Beclin-1, AMPK, protein ↓p62, mTOR, ULK1 protein | ↑ AMPK/mTOR-mediated autophagy | [67] |
Fluoxetine | Male C57BL/6 mice (n = 6), CMS for 5 weeks, oral fluoxetine (10 mg/kg) for 4 weeks, Hip detected by TEM and WB; primary astrocytes exposed to 1.2 mM CORT, cultured with fluoxetine (10 μM) for 24 h, cells detected by IF and WB | ↑ Parkin protein ↓LC3II/I, p62, TOMM20 protein ↑ Autophagosome ↑ LC3–MitoTracker immunofluorescence colocalization | ↑ Mitophagy | [150] | |
Fluoxetine | Primary microglia cells cultured with fluoxetine (7.5 μM) and LPS (100 ng/mL) for 3 h, cells detected by IF and WB | ↑ LC3-II protein ↑ LC3 immunofluorescence | ↑ Autophagy | [155] | |
Sertraline | Sertraline treatment of nematode strains expressing mCherry::LGG-1 and nematode strains expressing mitochondria-targeted GFP | ↑ PINK1 protein ↑ Autophagosome and mitochondrial fragmentation | ↑ PINK1-mediated mitophagy | [157] |
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Monroe, S.M.; Harkness, K.L. Major Depression and Its Recurrences: Life Course Matters. Annu. Rev. Clin. Psychol. 2022, 18, 329–357. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Mental Disorders Collaborators. Global Prevalence and Burden of Depressive and Anxiety Disorders in 204 Countries and Territories in 2020 Due to the COVID-19 Pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Penninx, B.W.; Milaneschi, Y.; Lamers, F.; Vogelzangs, N. Understanding the Somatic Consequences of Depression: Biological Mechanisms and the Role of Depression Symptom Profile. BMC Med. 2013, 11, 129. [Google Scholar] [CrossRef]
- Richardson, E.; Patterson, R.; Meltzer-Brody, S.; McClure, R.; Tow, A. Transformative Therapies for Depression: Postpartum Depression, Major Depressive Disorder, and Treatment-Resistant Depression. Annu. Rev. Med. 2025, 76, 81–93. [Google Scholar] [CrossRef]
- Virtanen, M.; Törmälehto, S.; Partonen, T.; Elovainio, M.; Ruuhela, R.; Hakulinen, C.; Komulainen, K.; Airaksinen, J.; Väänänen, A.; Koskinen, A.; et al. Seasonal Patterns of Sickness Absence Due to Diagnosed Mental Disorders: A Nationwide 12-Year Register Linkage Study. Epidemiol. Psychiatr. Sci. 2023, 32, e64. [Google Scholar] [CrossRef]
- Basso, M.R.; Bornstein, R.A. Neuropsychological Deficits in Psychotic Versus Nonpsychotic Unipolar Depression. Neuropsychology 1999, 13, 69–75. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Y.; Li, H.; Liu, H.; Wang, D.; Pan, W.; Liu, S.; Xu, Y. Brain Structure and Synaptic Protein Expression Alterations after Antidepressant Treatment in a Wistar-Kyoto Rat Model of Depression. J. Affect. Disord. 2022, 314, 293–302. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, F.; Zhai, M.; He, M.; Hu, Y.; Feng, L.; Li, Y.; Yang, J.; Wu, C. Hyperactive Neuronal Autophagy Depletes Bdnf and Impairs Adult Hippocampal Neurogenesis in a Corticosterone-Induced Mouse Model of Depression. Theranostics 2023, 13, 1059–1075. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Wang, S.; Wu, X.; Liu, Y.; Yu, W.; Wang, Y.; Tang, Y.; Xia, M.; Li, B. Major Depressive Disorder: Hypothesis, Mechanism, Prevention and Treatment. Signal. Transduct. Target. Ther. 2024, 9, 30. [Google Scholar] [CrossRef]
- Dubovsky, S.L.; Ghosh, B.M.; Serotte, J.C.; Cranwell, V. Psychotic Depression: Diagnosis, Differential Diagnosis, and Treatment. Psychother. Psychosom. 2021, 90, 160–177. [Google Scholar] [CrossRef]
- Do, A.; Li, V.W.; Huang, S.; Michalak, E.E.; Tam, E.M.; Chakrabarty, T.; Yatham, L.N.; Lam, R.W. Blue-Light Therapy for Seasonal and Non-Seasonal Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Can. J. Psychiatry 2022, 67, 745–754. [Google Scholar] [CrossRef]
- McCarron, R.M.; Shapiro, B.; Rawles, J.; Luo, J. Depression. Ann. Intern. Med. 2021, 174, itc65–itc80. [Google Scholar] [CrossRef]
- Marwaha, S.; Palmer, E.; Suppes, T.; Cons, E.; Young, A.H.; Upthegrove, R. Novel and Emerging Treatments for Major Depression. Lancet 2023, 401, 141–153. [Google Scholar] [CrossRef]
- Zonca, V. Preventive Strategies for Adolescent Depression: What Are We Missing? A Focus on Biomarkers. Brain Behav. Immun. Health 2021, 18, 100385. [Google Scholar] [CrossRef]
- Meng, X.; Navoly, G.; Giannakopoulou, O.; Levey, D.F.; Koller, D.; Pathak, G.A.; Koen, N.; Lin, K.; Adams, M.J.; Rentería, M.E.; et al. Multi-Ancestry Genome-Wide Association Study of Major Depression Aids Locus Discovery, Fine Mapping, Gene Prioritization and Causal Inference. Nat. Genet. 2024, 56, 222–233. [Google Scholar] [CrossRef]
- Tang, M.; Liu, T.; Jiang, P.; Dang, R. The Interaction between Autophagy and Neuroinflammation in Major Depressive Disorder: From Pathophysiology to Therapeutic Implications. Pharmacol. Res. 2021, 168, 105586. [Google Scholar] [CrossRef]
- Pierone, B.C.; Pereira, C.A.; Garcez, M.L.; Kaster, M.P. Stress and Signaling Pathways Regulating Autophagy: From Behavioral Models to Psychiatric Disorders. Exp. Neurol. 2020, 334, 113485. [Google Scholar] [CrossRef]
- Li, W.; He, P.; Huang, Y.; Li, Y.F.; Lu, J.; Li, M.; Kurihara, H.; Luo, Z.; Meng, T.; Onishi, M.; et al. Selective Autophagy of Intracellular Organelles: Recent Research Advances. Theranostics 2021, 11, 222–256. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, M.S. Autophagy--a Key Player in Cellular and Body Metabolism. Nat. Rev. Endocrinol. 2014, 10, 322–337. [Google Scholar] [CrossRef]
- Piletic, K.; Alsaleh, G.; Simon, A.K. Autophagy Orchestrates the Crosstalk between Cells and Organs. EMBO Rep. 2023, 24, e57289. [Google Scholar] [CrossRef]
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of Cells and Tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Romanov, J.; Walczak, M.; Ibiricu, I.; Schüchner, S.; Ogris, E.; Kraft, C.; Martens, S. Mechanism and Functions of Membrane Binding by the Atg5-Atg12/Atg16 Complex During Autophagosome Formation. EMBO J. 2012, 31, 4304–4317. [Google Scholar] [CrossRef]
- Ye, Y.; Tyndall, E.R.; Bui, V.; Bewley, M.C.; Wang, G.; Hong, X.; Shen, Y.; Flanagan, J.M.; Wang, H.G.; Tian, F. Multifaceted Membrane Interactions of Human Atg3 Promote Lc3-Phosphatidylethanolamine Conjugation During Autophagy. Nat. Commun. 2023, 14, 5503. [Google Scholar] [CrossRef]
- Wang, G.; Mao, Z. Chaperone-Mediated Autophagy: Roles in Neurodegeneration. Transl. Neurodegener. 2014, 3, 20. [Google Scholar] [CrossRef]
- Qiao, L.; Hu, J.; Qiu, X.; Wang, C.; Peng, J.; Zhang, C.; Zhang, M.; Lu, H.; Chen, W. Lamp2a, Lamp2b and Lamp2c: Similar Structures, Divergent Roles. Autophagy 2023, 19, 2837–2852. [Google Scholar] [CrossRef]
- Arias, E.; Koga, H.; Diaz, A.; Mocholi, E.; Patel, B.; Cuervo, A.M. Lysosomal Mtorc2/Phlpp1/Akt Regulate Chaperone-Mediated Autophagy. Mol. Cell 2015, 59, 270–284. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Zhou, Y.; Du, H.; Zhang, C.; Zhao, Z.; Chen, Y.; Zhou, Z.; Mei, J.; Wu, W.; et al. High Fat Diet-Induced Obesity Leads to Depressive and Anxiety-Like Behaviors in Mice Via Ampk/Mtor-Mediated Autophagy. Exp. Neurol. 2022, 348, 113949. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, J.A.; Kaushik, S.; Koga, H.; Dall’Armi, C.; Shui, G.; Wenk, M.R.; Di Paolo, G.; Cuervo, A.M. Inhibitory Effect of Dietary Lipids on Chaperone-Mediated Autophagy. Proc. Natl. Acad. Sci. USA 2012, 109, E705–E714. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, L.; Tan, M.S. Chaperone-Mediated Autophagy in Neurodegenerative Diseases: Mechanisms and Therapy. Mol. Cell. Biochem. 2023, 478, 2173–2190. [Google Scholar] [CrossRef]
- Schuck, S. Microautophagy—Distinct Molecular Mechanisms Handle Cargoes of Many Sizes. J. Cell Sci. 2020, 133, jcs246322. [Google Scholar] [CrossRef]
- Wang, L.; Klionsky, D.J.; Shen, H.M. The Emerging Mechanisms and Functions of Microautophagy. Nat. Rev. Mol. Cell Biol. 2023, 24, 186–203. [Google Scholar] [CrossRef]
- Kuchitsu, Y.; Taguchi, T. Lysosomal Microautophagy: An Emerging Dimension in Mammalian Autophagy. Trends Cell Biol. 2024, 34, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Jarocki, M.; Turek, K.; Saczko, J.; Tarek, M.; Kulbacka, J. Lipids Associated with Autophagy: Mechanisms and Therapeutic Targets. Cell Death Discov. 2024, 10, 460. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Lin, Y.; Chen, H.; Yang, Z.; Zha, J.; Jiang, X.; Han, Z.; Wang, K. Mechanisms of Autophagy and Their Implications in Dermatological Disorders. Front. Immunol. 2024, 15, 1486627. [Google Scholar] [CrossRef] [PubMed]
- Lemasters, J.J. Variants of Mitochondrial Autophagy: Types 1 and 2 Mitophagy and Micromitophagy (Type 3). Redox Biol. 2014, 2, 749–754. [Google Scholar] [CrossRef]
- Lou, G.; Palikaras, K.; Lautrup, S.; Scheibye-Knudsen, M.; Tavernarakis, N.; Fang, E.F. Mitophagy and Neuroprotection. Trends Mol. Med. 2020, 26, 8–20. [Google Scholar] [CrossRef]
- Imberechts, D.; Kinnart, I.; Wauters, F.; Terbeek, J.; Manders, L.; Wierda, K.; Eggermont, K.; Madeiro, R.F.; Sue, C.; Verfaillie, C.; et al. Dj-1 Is an Essential Downstream Mediator in Pink1/Parkin-Dependent Mitophagy. Brain 2022, 145, 4368–4384. [Google Scholar] [CrossRef]
- Padman, B.S.; Nguyen, T.N.; Uoselis, L.; Skulsuppaisarn, M.; Nguyen, L.K.; Lazarou, M. Lc3/Gabaraps Drive Ubiquitin-Independent Recruitment of Optineurin and Ndp52 to Amplify Mitophagy. Nat. Commun. 2019, 10, 408. [Google Scholar] [CrossRef]
- Geisler, S.; Holmström, K.M.; Skujat, D.; Fiesel, F.C.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. Pink1/Parkin-Mediated Mitophagy Is Dependent on Vdac1 and P62/Sqstm1. Nat. Cell Biol. 2010, 12, 119–131. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, H.; Yue, Y.; Hao, S.; Huang, S.H.; Zhang, Z. Role of Mitophagy in the Neurodegenerative Diseases and Its Pharmacological Advances: A Review. Front. Mol. Neurosci. 2022, 15, 1014251. [Google Scholar] [CrossRef]
- Terešak, P.; Lapao, A.; Subic, N.; Boya, P.; Elazar, Z.; Simonsen, A. Regulation of Prkn-Independent Mitophagy. Autophagy 2022, 18, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Doblado, L.; Lueck, C.; Rey, C.; Samhan-Arias, A.K.; Prieto, I.; Stacchiotti, A.; Monsalve, M. Mitophagy in Human Diseases. Int. J. Mol. Sci. 2021, 22, 3903. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Cao, Y.; Wan, H.; Memetimin, A.; Cao, Y.; Li, L.; Wu, C.; Wang, M.; Chen, S.; Li, Q.; et al. A Mitophagy Sensor Pptc7 Controls Bnip3 and Nix Degradation to Regulate Mitochondrial Mass. Mol. Cell 2024, 84, 327–344.e9. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Z.; Wang, Y.; Tan, Z.; Zhu, C.; Li, Y.; Han, Z.; Chen, L.; Gao, R.; Liu, L.; et al. Mitophagy Receptor Fundc1 Regulates Mitochondrial Dynamics and Mitophagy. Autophagy 2016, 12, 689–702. [Google Scholar] [CrossRef]
- He, S.; Shi, Y.; Ye, J.; Yin, J.; Yang, Y.; Liu, D.; Shen, T.; Zeng, D.; Zhang, M.; Li, S.; et al. Does Decreased Autophagy and Dysregulation of Lc3a in Astrocytes Play a Role in Major Depressive Disorder? Transl. Psychiatry 2023, 13, 362. [Google Scholar] [CrossRef]
- Sakai, M.; Yu, Z.; Hirayama, R.; Nakasato, M.; Kikuchi, Y.; Ono, C.; Komatsu, H.; Nakanishi, M.; Yoshii, H.; Stellwagen, D.; et al. Deficient Autophagy in Microglia Aggravates Repeated Social Defeat Stress-Induced Social Avoidance. Neural Plast 2022, 2022, 7503553. [Google Scholar] [CrossRef]
- He, J.; Ren, Z.; Xia, W.; Zhou, C.; Bi, B.; Yu, W.; Zuo, L. Identification of Key Genes and Crucial Pathways for Major Depressive Disorder Using Peripheral Blood Samples and Chronic Unpredictable Mild Stress Rat Models. PeerJ 2021, 9, e11694. [Google Scholar] [CrossRef]
- Lu, J.J.; Wu, P.F.; He, J.G.; Li, Y.K.; Long, L.H.; Yao, X.P.; Yang, J.H.; Chen, H.S.; Zhang, X.N.; Hu, Z.L.; et al. Bnip3l/Nix-Mediated Mitophagy Alleviates Passive Stress-Coping Behaviors Induced by Tumor Necrosis Factor-A. Mol. Psychiatry 2023, 28, 5062–5076. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Qi, K.; Xu, W.; Wei, Y. Rosmarinic Acid Relieves Lps-Induced Sickness and Depressive-Like Behaviors in Mice by Activating the Bdnf/Nrf2 Signaling and Autophagy Pathway. Behav. Brain Res. 2022, 433, 114006. [Google Scholar] [CrossRef]
- Tian, X.; Russo, S.J.; Li, L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci. Bull. 2025, 41, 272–288. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Xu, C.; Li, S.; Hu, Y.; Zhang, Z.; Wu, G.; Liu, Y.; Yang, L.; Huang, Y.; et al. (-)-Epigallocatechin Gallate Alleviates Chronic Unpredictable Mild Stress-Induced Depressive Symptoms in Mice by Regulating the Mtor Autophagy Pathway and Inhibiting Nlrp3 Inflammasome Activation. Food Sci. Nutr. 2024, 12, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Lu, H.; Zhang, D.; Zhu, X.; Li, J.; Zong, Y.; Zhao, Y.; He, Z.; Chen, W.; Du, R. Total Paeony Glycoside Relieves Neuroinflammation to Exert Antidepressant Effect Via the Interplay between Nlrp3 Inflammasome, Pyroptosis and Autophagy. Phytomedicine 2024, 128, 155519. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.J.; Huang, J.; Chen, R.; Zhang, Y.; He, X.; Duan, W.X.; Zou, Y.L.; Sun, M.M.; Sun, H.L.; Cheng, S.M.; et al. Autophagy Dysfunction Contributes to Nlrp1 Inflammasome-Linked Depressive-Like Behaviors in Mice. J. Neuroinflamm. 2024, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Shoshan-Barmatz, V.; Pittala, S.; Mizrachi, D. Vdac1 and the Tspo: Expression, Interactions, and Associated Functions in Health and Disease States. Int. J. Mol. Sci. 2019, 20, 3348. [Google Scholar] [CrossRef]
- Li, D.; Zheng, J.; Wang, M.; Feng, L.; Liu, Y.; Yang, N.; Zuo, P. Wuling Powder Prevents the Depression-Like Behavior in Learned Helplessness Mice Model through Improving the Tspo Mediated-Mitophagy. J. Ethnopharmacol. 2016, 186, 181–188. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, X.; Sun, J.; Cui, R.; Yang, W. Adiporon Exerts an Antidepressant Effect by Inhibiting Nlrp3 Inflammasome Activation in Microglia Via Promoting Mitophagy. Int. Immunopharmacol. 2024, 141, 113011. [Google Scholar] [CrossRef]
- Yang, L.; Ao, Y.; Li, Y.; Dai, B.; Li, J.; Duan, W.; Gao, W.; Zhao, Z.; Han, Z.; Guo, R. Morinda Officinalis Oligosaccharides Mitigate Depression-Like Behaviors in Hypertension Rats by Regulating Mfn2-Mediated Mitophagy. J. Neuroinflamm. 2023, 20, 31. [Google Scholar] [CrossRef]
- Kim, Y.C.; Guan, K.L. Mtor: A Pharmacologic Target for Autophagy Regulation. J. Clin. Investig. 2015, 125, 25–32. [Google Scholar] [CrossRef]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted Role of Mtor (Mammalian Target of Rapamycin) Signaling Pathway in Human Health and Disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef]
- Dossou, A.S.; Basu, A. The Emerging Roles of Mtorc1 in Macromanaging Autophagy. Cancers 2019, 11, 1422. [Google Scholar] [CrossRef]
- Smiles, W.J.; Ovens, A.J.; Kemp, B.E.; Galic, S.; Petersen, J.; Oakhill, J.S. New Developments in Ampk and Mtorc1 Cross-Talk. Essays Biochem. 2024, 68, 321–336. [Google Scholar]
- El-Emam, M.A.; Sheta, E.; El-Abhar, H.S.; Abdallah, D.M.; El Kerdawy, A.M.; Eldehna, W.M.; Gowayed, M.A. Morin Suppresses Mtorc1/Ire-1α/Jnk and Ip3r-Vdac-1 Pathways: Crucial Mechanisms in Apoptosis and Mitophagy Inhibition in Experimental Huntington’s Disease, Supported by in Silico Molecular Docking Simulations. Life Sci. 2024, 338, 122362. [Google Scholar] [CrossRef] [PubMed]
- Parekh, P.K.; Johnson, S.B.; Liston, C. Synaptic Mechanisms Regulating Mood State Transitions in Depression. Annu. Rev. Neurosci. 2022, 45, 581–601. [Google Scholar] [CrossRef] [PubMed]
- Querfurth, H.; Lee, H.K. Mammalian/Mechanistic Target of Rapamycin (Mtor) Complexes in Neurodegeneration. Mol. Neurodegener. 2021, 16, 44. [Google Scholar] [CrossRef] [PubMed]
- Tariq, K.; Cullen, E.; Getz, S.A.; Conching, A.K.S.; Goyette, A.R.; Prina, M.L.; Wang, W.; Li, M.; Weston, M.C.; Luikart, B.W. Disruption of Mtorc1 Rescues Neuronal Overgrowth and Synapse Function Dysregulated by Pten Loss. Cell Rep. 2022, 41, 111574. [Google Scholar] [CrossRef]
- Kosillo, P.; Ahmed, K.M.; Aisenberg, E.E.; Karalis, V.; Roberts, B.M.; Cragg, S.J.; Bateup, H.S. Dopamine Neuron Morphology and Output Are Differentially Controlled by Mtorc1 and Mtorc2. Elife 2022, 11, e75398. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, X.; Wang, Z.; Feng, L.; Wang, L.; Liu, X.; Pan, R.; Liao, Y.; Chang, Q. Hippocampus Metabolic Disturbance and Autophagy Deficiency in Olfactory Bulbectomized Rats and the Modulatory Effect of Fluoxetine. Int. J. Mol. Sci. 2019, 20, 4282. [Google Scholar] [CrossRef]
- Mihaylova, M.M.; Shaw, R.J. The Ampk Signalling Pathway Coordinates Cell Growth, Autophagy and Metabolism. Nat. Cell Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef]
- Yang, K.; Wu, J.; Li, S.; Wang, S.; Zhang, J.; Wang, Y.P.; Yan, Y.S.; Hu, H.Y.; Xiong, M.F.; Bai, C.B.; et al. Ntrk1 Knockdown Induces Mouse Cognitive Impairment and Hippocampal Neuronal Damage through Mitophagy Suppression via Inactivating the Ampk/Ulk1/Fundc1 Pathway. Cell Death Discov. 2023, 9, 404. [Google Scholar] [CrossRef]
- Kazyken, D.; Dame, S.G.; Wang, C.; Wadley, M.; Fingar, D.C. Unexpected Roles for Ampk in the Suppression of Autophagy and the Reactivation of Mtorc1 Signaling During Prolonged Amino Acid Deprivation. Autophagy 2024, 20, 2017–2040. [Google Scholar] [CrossRef]
- Park, J.M.; Lee, D.H.; Kim, D.H. Redefining the Role of Ampk in Autophagy and the Energy Stress Response. Nat. Commun. 2023, 14, 2994. [Google Scholar] [CrossRef]
- Wang, J.Q.; Mao, L. The Erk Pathway: Molecular Mechanisms and Treatment of Depression. Mol. Neurobiol. 2019, 56, 6197–6205. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wu, Q.; Wu, W.; Tian, Y.; Zhang, J.; Chen, C.; Sheng, X.; Zhao, F.; Ding, L.; Wang, T.; et al. Urolithin a Hijacks Erk1/2-Ulk1 Cascade to Improve Cd8(+) T Cell Fitness for Antitumor Immunity. Adv. Sci. 2024, 11, e2310065. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wang, H.; Chen, C.; Fu, J.; Zhao, L.; Zhao, X.; Geng, M.; Ren, M.; Tong, L.; Li, Y.; et al. Mkp1 May Be Involved in the Occurrence of Depression by Regulating Hippocampal Autophagy in Rats. Behav. Brain Res. 2024, 465, 114962. [Google Scholar] [CrossRef]
- Al-Bari, M.A.A.; Xu, P. Molecular Regulation of Autophagy Machinery by Mtor-Dependent and -Independent Pathways. Ann. N. Y. Acad. Sci. 2020, 1467, 3–20. [Google Scholar] [CrossRef]
- Kumar, A.V.; Mills, J.; Lapierre, L.R. Selective Autophagy Receptor P62/Sqstm1, a Pivotal Player in Stress and Aging. Front. Cell Dev. Biol. 2022, 10, 793328. [Google Scholar] [CrossRef]
- Feng, X.; Sun, D.; Li, Y.; Zhang, J.; Liu, S.; Zhang, D.; Zheng, J.; Xi, Q.; Liang, H.; Zhao, W.; et al. Local Membrane Source Gathering by P62 Body Drives Autophagosome Formation. Nat. Commun. 2023, 14, 7338. [Google Scholar] [CrossRef]
- Huang, X.; Yao, J.; Liu, L.; Chen, J.; Mei, L.; Huangfu, J.; Luo, D.; Wang, X.; Lin, C.; Chen, X.; et al. S-Acylation of P62 Promotes P62 Droplet Recruitment into Autophagosomes in Mammalian Autophagy. Mol. Cell 2023, 83, 3485–3501.e11. [Google Scholar] [CrossRef]
- Ye, X.; Zhu, M.; Che, X.; Wang, H.; Liang, X.J.; Wu, C.; Xue, X.; Yang, J. Lipopolysaccharide Induces Neuroinflammation in Microglia by Activating the Mtor Pathway and Downregulating Vps34 to Inhibit Autophagosome Formation. J. Neuroinflamm. 2020, 17, 18. [Google Scholar] [CrossRef]
- Seibenhener, M.L.; Zhao, T.; Du, Y.; Calderilla-Barbosa, L.; Yan, J.; Jiang, J.; Wooten, M.W.; Wooten, M.C. Behavioral Effects of Sqstm1/P62 Overexpression in Mice: Support for a Mitochondrial Role in Depression and Anxiety. Behav. Brain Res. 2013, 248, 94–103. [Google Scholar] [CrossRef]
- Ramesh Babu, J.; Lamar Seibenhener, M.; Peng, J.; Strom, A.L.; Kemppainen, R.; Cox, N.; Zhu, H.; Wooten, M.C.; Diaz-Meco, M.T.; Moscat, J.; et al. Genetic Inactivation of P62 Leads to Accumulation of Hyperphosphorylated Tau and Neurodegeneration. J. Neurochem. 2008, 106, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Qi, A.; Lu, Z.; You, Z.; Wang, Z.; Tang, H.; Li, X.; Xu, Q.; Weng, X.; Du, X.; et al. Dual Roles of Atnbr1 in Regulating Selective Autophagy Via Liquid-Liquid Phase Separation and Recognition of Non-Ubiquitinated Substrates in Arabidopsis. Autophagy 2024, 20, 2804–2815. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, N.L.; Kournoutis, A.; Lamark, T.; Johansen, T. Nbr1: The Archetypal Selective Autophagy Receptor. J. Cell Biol. 2022, 221, e202208092. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Suklabaidya, S.; Vo, M.T.; Choi, Y.B.; Harhaj, E.W. Multifaceted Roles of Tax1bp1 in Autophagy. Autophagy 2023, 19, 44–53. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, B.; Hu, L.; Shi, P.; Xie, L.; Yang, L.; Yang, Q. Mir-129-5p Targets Fez1/Scoc/Ulk1/Nbr1 Complex to Restore Neuronal Function in Mice with Post-Stroke Depression. Bioengineered 2022, 13, 9708–9728. [Google Scholar]
- Yu, Y.; Tan, Y.; Liao, X.; Yu, L.; Lai, H.; Li, X.; Wang, C.; Wu, S.; Feng, D.; Liu, C. Hif-1a Regulates Cognitive Deficits of Post-Stroke Depressive Rats. Behav. Brain Res. 2024, 458, 114685. [Google Scholar] [CrossRef]
- Jo, D.S.; Cho, D.H. Peroxisomal Dysfunction in Neurodegenerative Diseases. Arch. Pharm. Res. 2019, 42, 393–406. [Google Scholar] [CrossRef]
- Deosaran, E.; Larsen, K.B.; Hua, R.; Sargent, G.; Wang, Y.; Kim, S.; Lamark, T.; Jauregui, M.; Law, K.; Lippincott-Schwartz, J.; et al. Nbr1 Acts as an Autophagy Receptor for Peroxisomes. J. Cell Sci. 2013, 126 Pt 4, 939–952. [Google Scholar] [CrossRef]
- Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D.F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R.J. Pink1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS Biol. 2010, 8, e1000298. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Zhang, Y.; Zhu, H.; Wang, J.; Xu, X.; Jin, S.; Wang, C.; Zhang, F.; Zhao, M.; et al. Curcuma Wenyujin Extract Alleviates Cognitive Deficits and Restrains Pyroptosis through Pink1/Parkin Mediated Autophagy in Alzheimer’s Disease. Phytomedicine 2025, 139, 156482. [Google Scholar] [CrossRef]
- Li, Z.; Shu, Y.; Liu, D.; Xie, S.; Xian, L.; Luo, J.; Huang, X.; Jiang, H. Pink1/Parkin Signaling Mediates Pineal Mitochondrial Autophagy Dysfunction and Its Biological Role in a Comorbid Rat Model of Depression and Insomnia. Brain Res. Bull. 2025, 220, 111141. [Google Scholar] [CrossRef] [PubMed]
- Bader, V.; Winklhofer, K.F. Pink1 and Parkin: Team Players in Stress-Induced Mitophagy. Biol. Chem. 2020, 401, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Sawa-Makarska, J.; Khuu, G.; Lam, W.K.; Adriaenssens, E.; Fracchiolla, D.; Shoebridge, S.; Bernklau, D.; Padman, B.S.; Skulsuppaisarn, M.; et al. Unconventional Initiation of Pink1/Parkin Mitophagy by Optineurin. Mol. Cell 2023, 83, 1693–1709.e9. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, Y.; Wang, Z.; Wang, L.; Xia, T.; Yan, M.; Chang, Q. Cajaninstilbene Acid Ameliorates Depression-Like Behaviors in Mice by Suppressing Tlr4/Nf-Κb Mediated Neuroinflammation and Promoting Autophagy. Behav. Brain Res. 2024, 471, 115142. [Google Scholar] [CrossRef]
- He, S.; Deng, Z.; Li, Z.; Gao, W.; Zeng, D.; Shi, Y.; Zhao, N.; Xu, F.; Li, T.; Li, H.; et al. Signatures of 4 Autophagy-Related Genes as Diagnostic Markers of Mdd and Their Correlation with Immune Infiltration. J. Affect. Disord. 2021, 295, 11–20. [Google Scholar] [CrossRef]
- He, S.; Zeng, D.; Xu, F.; Zhang, J.; Zhao, N.; Wang, Q.; Shi, J.; Lin, Z.; Yu, W.; Li, H. Baseline Serum Levels of Beclin-1, but Not Inflammatory Factors, May Predict Antidepressant Treatment Response in Chinese Han Patients with Mdd: A Preliminary Study. Front. Psychiatry 2019, 10, 378. [Google Scholar] [CrossRef]
- Wu, A.; Zhang, J. Neuroinflammation, Memory, and Depression: New Approaches to Hippocampal Neurogenesis. J. Neuroinflamm. 2023, 20, 283. [Google Scholar] [CrossRef]
- Behl, T.; Rana, T.; Alotaibi, G.H.; Shamsuzzaman, M.; Naqvi, M.; Sehgal, A.; Singh, S.; Sharma, N.; Almoshari, Y.; Abdellatif, A.A.H.; et al. Polyphenols Inhibiting Mapk Signalling Pathway Mediated Oxidative Stress and Inflammation in Depression. Biomed. Pharmacother. 2022, 146, 112545. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Sheng, H.; Ni, X.; Lu, J. Exercise Amelioration of Depression-Like Behavior in Ovx Mice Is Associated with Suppression of Nlrp3 Inflammasome Activation in Hippocampus. Behav. Brain Res. 2016, 307, 18–24. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Y.; Yang, T.; Song, M.; Wang, C.; Yao, Y.; Fan, H. Glucocorticoid-Driven Nlrp3 Inflammasome Activation in Hippocampal Microglia Mediates Chronic Stress-Induced Depressive-Like Behaviors. Front. Mol. Neurosci. 2019, 12, 210. [Google Scholar] [CrossRef]
- Shen, F.; Xie, P.; Li, C.; Bian, Z.; Wang, X.; Peng, D.; Zhu, G. Polysaccharides from Polygonatum Cyrtonema Hua Reduce Depression-Like Behavior in Mice by Inhibiting Oxidative Stress-Calpain-1-Nlrp3 Signaling Axis. Oxidative Med. Cell. Longev. 2022, 2022, 2566917. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.Y.; Guo, Y.X.; Lian, W.W.; Yan, Y.; Ma, B.Z.; Cheng, Y.C.; Xu, J.K.; He, J.; Zhang, W.K. The Nlrp3 Inflammasome in Depression: Potential Mechanisms and Therapies. Pharmacol. Res. 2023, 187, 106625. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, F.N.; Costa, A.P.; Ghisleni, G.; Diaz, A.P.; Rodrigues, A.L.S.; Peluffo, H.; Kaster, M.P. Nlrp3 Inflammasome-Driven Pathways in Depression: Clinical and Preclinical Findings. Brain Behav. Immun. 2017, 64, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.; Ma, Q.; Hao, W.; Yang, N.; Chen, Z.S.; Deng, L.; Chen, J. Targeting Autophagy to Counteract Neuroinflammation: A Novel Antidepressant Strategy. Pharmacol. Res. 2024, 202, 107112. [Google Scholar] [CrossRef]
- Takahashi, K.; Kurokawa, K.; Hong, L.; Miyagawa, K.; Mochida-Saito, A.; Takeda, H.; Tsuji, M. Hippocampal and Gut Ampk Activation Attenuates Enterocolitis-Like Symptoms and Co-Occurring Depressive-Like Behavior in Ulcerative Colitis Model Mice: Involvement of Brain-Gut Autophagy. Exp. Neurol. 2024, 373, 114671. [Google Scholar] [CrossRef]
- Park, J.; Lee, C.; Kim, Y.T. Effects of Natural Product-Derived Compounds on Inflammatory Pain Via Regulation of Microglial Activation. Pharmaceuticals 2023, 16, 941. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, M.; Xie, X.; Zhao, Q.; Hu, N.; He, H.; Liu, G.; Huang, S.; Peng, C.; Xiao, Y.; et al. Ginsenoside Rb1 Induces a Pro-Neurogenic Microglial Phenotype Via Pparγ Activation in Male Mice Exposed to Chronic Mild Stress. J. Neuroinflamm. 2021, 18, 171. [Google Scholar] [CrossRef]
- Xu, K.; Wang, M.; Wang, H.; Zhao, S.; Tu, D.; Gong, X.; Li, W.; Liu, X.; Zhong, L.; Chen, J.; et al. Hmgb1/Stat3/P65 Axis Drives Microglial Activation and Autophagy Exert a Crucial Role in Chronic Stress-Induced Major Depressive Disorder. J. Adv. Res. 2024, 59, 79–96. [Google Scholar] [CrossRef]
- Niklison-Chirou, M.V.; Agostini, M.; Amelio, I.; Melino, G. Regulation of Adult Neurogenesis in Mammalian Brain. Int. J. Mol. Sci. 2020, 21, 4869. [Google Scholar] [CrossRef]
- Ma, Y.; Qiao, Y.; Gao, X. Potential Role of Hippocampal Neurogenesis in Spinal Cord Injury Induced Post-Trauma Depression. Neural Regen. Res. 2024, 19, 2144–2156. [Google Scholar] [CrossRef]
- Surget, A.; Belzung, C. Adult Hippocampal Neurogenesis Shapes Adaptation and Improves Stress Response: A Mechanistic and Integrative Perspective. Mol. Psychiatry 2022, 27, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Mourtzi, T.; Antoniou, N.; Dimitriou, C.; Gkaravelas, P.; Athanasopoulou, G.; Kostantzo, P.N.; Stathi, O.; Theodorou, E.; Anesti, M.; Matsas, R.; et al. Enhancement of Endogenous Midbrain Neurogenesis by Microneurotrophin Bnn-20 after Neural Progenitor Grafting in a Mouse Model of Nigral Degeneration. Neural Regen. Res. 2024, 19, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Choe, S.; Woo, H.; Jeong, H.; An, H.K.; Moon, H.; Ryu, H.Y.; Yeo, B.K.; Lee, Y.W.; Choi, H.; et al. Autophagic Death of Neural Stem Cells Mediates Chronic Stress-Induced Decline of Adult Hippocampal Neurogenesis and Cognitive Deficits. Autophagy 2020, 16, 512–530. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Deng, Q.; Zhu, Q.; Hu, Z.L.; Long, L.H.; Wu, P.F.; He, J.G.; Chen, H.S.; Yue, Z.; Lu, J.H.; et al. Cell Type-Specific Nrbf2 Orchestrates Autophagic Flux and Adult Hippocampal Neurogenesis in Chronic Stress-Induced Depression. Cell Discov. 2023, 9, 90. [Google Scholar] [CrossRef]
- Hanson, N.D.; Owens, M.J.; Nemeroff, C.B. Depression, Antidepressants, and Neurogenesis: A Critical Reappraisal. Neuropsychopharmacology 2011, 36, 2589–2602. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Chen, X.; Zhang, Y.; Zhang, H.; Xie, P. Gut Microbiota and Its Metabolites in Depression: From Pathogenesis to Treatment. EBioMedicine 2023, 90, 104527. [Google Scholar] [CrossRef]
- Qin, Y.; Havulinna, A.S.; Liu, Y.; Jousilahti, P.; Ritchie, S.C.; Tokolyi, A.; Sanders, J.G.; Valsta, L.; Brożyńska, M.; Zhu, Q.; et al. Combined Effects of Host Genetics and Diet on Human Gut Microbiota and Incident Disease in a Single Population Cohort. Nat. Genet. 2022, 54, 134–142. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, S.; Chen, G.; Zhong, S.; Zhong, H.; Sun, S.; Chen, P.; Tang, X.; Yang, H.; Jia, Y.; et al. Disruption of the Gut Microbiota-Inflammation-Brain Axis in Unmedicated Bipolar Disorder Ii Depression. Transl. Psychiatry 2024, 14, 495. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, M.; Wang, J.; Yao, J.; Yu, J.; Liu, W.; Wu, L.; Wang, J.; Gao, R. Involvement of the Microbiota-Gut-Brain Axis in Chronic Restraint Stress: Disturbances of the Kynurenine Metabolic Pathway in Both the Gut and Brain. Gut Microbes 2021, 13, 1869501. [Google Scholar] [CrossRef]
- Wigner, P.; Czarny, P.; Galecki, P.; Su, K.P.; Sliwinski, T. The Molecular Aspects of Oxidative & Nitrosative Stress and the Tryptophan Catabolites Pathway (Trycats) as Potential Causes of Depression. Psychiatry Res. 2018, 262, 566–574. [Google Scholar]
- Wang, G.; Cao, L.; Li, S.; Zhang, M.; Li, Y.; Duan, J.; Li, Y.; Hu, Z.; Wu, J.; Ni, J.; et al. Gut Microbiota Dysbiosis-Mediated Ceramides Elevation Contributes to Corticosterone-Induced Depression by Impairing Mitochondrial Function. NPJ Biofilms Microbiomes 2024, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, C.; Yuan, B.; Liu, L.; Zhang, H.; Zhu, M.; Chai, H.; Peng, J.; Huang, Y.; Zhou, S.; et al. Akkermansia Muciniphila and Its Metabolite Propionic Acid Maintains Neuronal Mitochondrial Division and Autophagy Homeostasis During Alzheimer’s Disease Pathologic Process Via Gpr41 and Gpr43. Microbiome 2025, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.X.; Chen, Y.X.; Wang, Z.X.; Wang, R.; Dong, Y.L. Lactiplantibacillus Plantarum Cr12 Attenuates Chronic Unforeseeable Mild Stress Induced Anxiety and Depression-Like Behaviors by Modulating the Gut Microbiota-Brain Axis. J. Funct. Foods 2023, 107, 105710. [Google Scholar] [CrossRef]
- Miller, W.L. The Hypothalamic-Pituitary-Adrenal Axis: A Brief History. Horm. Res. Paediatr. 2018, 89, 212–223. [Google Scholar] [CrossRef]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 2726. [Google Scholar] [CrossRef]
- Fries, G.R.; Saldana, V.A.; Finnstein, J.; Rein, T. Molecular Pathways of Major Depressive Disorder Converge on the Synapse. Mol. Psychiatry 2023, 28, 284–297. [Google Scholar] [CrossRef]
- Zheng, J.; Han, J.; Wang, Y.; Xu, Y.; Yu, J.; Han, B.; Tian, Z. Antidepressant and Anxiolytic Effects of Wuling Capsule in Csds Mice: Alleviating Hpa Axis Hyperactivity Via the Nesfatin-1/Nf-Κb Signaling Pathway. J. Ethnopharmacol. 2025, 338 Pt 3, 119111. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Gu, J.H.; Wang, C.N.; Guan, W.; Liu, Y.; Tang, W.Q.; Ji, C.H.; Chen, Y.M.; Huang, J.; et al. Salt-Inducible Kinase 1-Creb-Regulated Transcription Coactivator 1 Signalling in the Paraventricular Nucleus of the Hypothalamus Plays a Role in Depression by Regulating the Hypothalamic-Pituitary-Adrenal Axis. Mol. Psychiatry 2024, 29, 1660–1670. [Google Scholar] [CrossRef]
- Sbardella, D.; Tundo, G.R.; Coletta, M.; Manni, G.; Oddone, F. Dexamethasone Downregulates Autophagy through Accelerated Turn-over of the Ulk-1 Complex in a Trabecular Meshwork Cells Strain: Insights on Steroid-Induced Glaucoma Pathogenesis. Int. J. Mol. Sci. 2021, 22, 5891. [Google Scholar] [CrossRef]
- Luft, C.; Haute, G.V.; Wearick-Silva, L.E.; Antunes, K.H.; da Costa, M.S.; de Oliveira, J.R.; Donadio, M.V.F. Prenatal Stress and Kcl-Induced Depolarization Modulate Cell Death, Hypothalamic-Pituitary-Adrenal Axis Genes, Oxidative and Inflammatory Response in Primary Cortical Neurons. Neurochem. Int. 2021, 147, 105053. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, T.N.; Knight, J.K.; Goodwin, J.E. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019, 8, 1227. [Google Scholar] [CrossRef] [PubMed]
- Gassen, N.C.; Hartmann, J.; Zschocke, J.; Stepan, J.; Hafner, K.; Zellner, A.; Kirmeier, T.; Kollmannsberger, L.; Wagner, K.V.; Dedic, N.; et al. Association of Fkbp51 with Priming of Autophagy Pathways and Mediation of Antidepressant Treatment Response: Evidence in Cells, Mice, and Humans. PLoS Med. 2014, 11, e1001755. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Mehlkop, O.; Scharn, A.; Nolte, H.; Klemm, P.; Henschke, S.; Steuernagel, L.; Sotelo-Hitschfeld, T.; Kaya, E.; Wunderlich, C.M.; et al. Nutrient-Sensing Agrp Neurons Relay Control of Liver Autophagy During Energy Deprivation. Cell Metab. 2023, 35, 786–806.e13. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Hou, X.; Zhu, C.; Yang, Q.; Li, K.; Fan, L.; Zhang, X.; Jiang, X.; Jin, X.; et al. Crhr1 Antagonist Alleviated Depression-Like Behavior by Downregulating P62 in a Rat Model of Post-Stroke Depression. Exp. Neurol. 2024, 378, 114822. [Google Scholar] [CrossRef]
- Li, Y.Y.; Qin, Z.H.; Sheng, R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci. Bull. 2024, 40, 363–382. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, X. Research Progress of Mtor Inhibitors. Eur. J. Med. Chem. 2020, 208, 112820. [Google Scholar] [CrossRef]
- Kara, N.Z.; Flaisher-Grinberg, S.; Anderson, G.W.; Agam, G.; Einat, H. Mood-Stabilizing Effects of Rapamycin and Its Analog Temsirolimus: Relevance to Autophagy. Behav. Pharmacol. 2018, 29, 379–384. [Google Scholar] [CrossRef]
- Ryskalin, L.; Limanaqi, F.; Frati, A.; Busceti, C.L.; Fornai, F. Mtor-Related Brain Dysfunctions in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2018, 19, 2226. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Z.; Ren, Y.; Jiang, Y.; Zhao, Y.; Li, M.; Zhang, Z. Rapamycin Attenuates Anxiety and Depressive Behavior Induced by Helicobacter Pylori in Association with Reduced Circulating Levels of Ghrelin. Neural Plast 2022, 2022, 2847672. [Google Scholar] [CrossRef]
- Li, C.; Zhu, Y.; Wu, Y.; Fu, M.; Wu, Y.; Wu, Y.; Qiu, Y.; Zhang, H.; Ding, M. Oridonin Alleviates Lps-Induced Depression by Inhibiting Nlrp3 Inflammasome Via Activation of Autophagy. Front. Med. 2021, 8, 813047. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Tian, Y.; Zhang, J. Rapamycin Improves Sevoflurane-Induced Cognitive Dysfunction in Aged Rats by Mediating Autophagy through the Tlr4/Myd88/Nf-Κb Signaling Pathway. Mol. Med. Rep. 2019, 20, 3085–3094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bu, H.; Jiang, Y.; Sun, G.; Jiang, R.; Huang, X.; Duan, H.; Huang, Z.; Wu, Q. The Antidepressant Effects of Apigenin Are Associated with The promotion of Autophagy Via the Mtor/Ampk/Ulk1 Pathway. Mol. Med. Rep. 2019, 20, 2867–2874. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Wu, M.; Yin, X.; Li, M.; Li, Y.; Bai, M.; Wang, B.; Xu, E. Modified Xiaoyao San Reverses Lipopolysaccharide-Induced Depression-Like Behavior through Suppressing Microglia M1 Polarization Via Enhancing Autophagy Involved in Pi3k/Akt/Mtor Pathway in Mice. J. Ethnopharmacol. 2023, 315, 116659. [Google Scholar] [CrossRef]
- Menegas, S.; Keller, G.S.; Possamai-Della, T.; Aguiar-Geraldo, J.M.; Quevedo, J.; Valvassori, S.S. Potential Mechanisms of Action of Resveratrol in Prevention and Therapy for Mental Disorders. J. Nutr. Biochem. 2023, 121, 109435. [Google Scholar] [CrossRef]
- Tabassum, S.; Misrani, A.; Huang, H.X.; Zhang, Z.Y.; Li, Q.W.; Long, C. Resveratrol Attenuates Chronic Unpredictable Mild Stress-Induced Alterations in the Sirt1/Pgc1α/Sirt3 Pathway and Associated Mitochondrial Dysfunction in Mice. Mol. Neurobiol. 2023, 60, 5102–5116. [Google Scholar] [CrossRef]
- Ye, S.; Fang, L.; Xie, S.; Hu, Y.; Chen, S.; Amin, N.; Fang, M.; Hu, Z. Resveratrol Alleviates Postpartum Depression-Like Behavior by Activating Autophagy Via Sirt1 and Inhibiting Akt/Mtor Pathway. Behav. Brain Res. 2023, 438, 114208. [Google Scholar] [CrossRef]
- Hosseini, K.; Cediel-Ulloa, A.; Al-Sabri, M.H.; Forsby, A.; Fredriksson, R. Assessing the Neurodevelopmental Impact of Fluoxetine, Citalopram, and Paroxetine on Neural Stem Cell-Derived Neurons. Pharmaceuticals 2024, 17, 1392. [Google Scholar] [CrossRef]
- Gędek, A.; Modrzejewski, S.; Materna, M.; Szular, Z.; Wichniak, A.; Mierzejewski, P.; Dominiak, M. Efficacy and Safety of Agomelatine in Depressed Patients with Diabetes: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 12631. [Google Scholar] [CrossRef]
- Hetrick, S.E.; McKenzie, J.E.; Bailey, A.P.; Sharma, V.; Moller, C.I.; Badcock, P.B.; Cox, G.R.; Merry, S.N.; Meader, N. New Generation Antidepressants for Depression in Children and Adolescents: A Network Meta-Analysis. Cochrane Database Syst. Rev. 2021, 5, Cd013674. [Google Scholar]
- Shu, X.; Sun, Y.; Sun, X.; Zhou, Y.; Bian, Y.; Shu, Z.; Ding, J.; Lu, M.; Hu, G. The Effect of Fluoxetine on Astrocyte Autophagy Flux and Injured Mitochondria Clearance in a Mouse Model of Depression. Cell Death Dis. 2019, 10, 577. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Sun, Z.; Ren, S.; Liu, M.; Wang, G.; Yang, J. Microglia in Depression: An Overview of Microglia in the Pathogenesis and Treatment of Depression. J. Neuroinflamm. 2022, 19, 132. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Wu, Z.; Guo, Y.; Zhu, W.; Wan, C.; Yuan, N.; Chen, J.; Hao, W.; Mo, X.; Guo, X.; et al. Roles of Microglia in Adult Hippocampal Neurogenesis in Depression and Their Therapeutics. Front. Immunol. 2023, 14, 1193053. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Gao, Z.; Hu, H. Microglia in Depression: Current Perspectives. Sci. China Life Sci. 2021, 64, 911–925. [Google Scholar] [CrossRef]
- Liang, L.; Wang, H.; Hu, Y.; Bian, H.; Xiao, L.; Wang, G. Oridonin Relieves Depressive-Like Behaviors by Inhibiting Neuroinflammation and Autophagy Impairment in Rats Subjected to Chronic Unpredictable Mild Stress. Phytother. Res. 2022, 36, 3335–3351. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, Y.S.; Yang, H.J.; Song, G.J. Fluoxetine Potentiates Phagocytosis and Autophagy in Microglia. Front. Pharmacol. 2021, 12, 770610. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Shim, J.S.; Kim, D.; Kwon, H.J. Antidepressant Drug Sertraline Modulates Ampk-Mtor Signaling-Mediated Autophagy Via Targeting Mitochondrial Vdac1 Protein. Autophagy 2021, 17, 2783–2799. [Google Scholar] [CrossRef]
- Tjahjono, E.; Pei, J.; Revtovich, A.V.; Liu, T.E.; Swadi, A.; Hancu, M.C.; Tolar, J.G.; Kirienko, N.V. Mitochondria-Affecting Small Molecules Ameliorate Proteostasis Defects Associated with Neurodegenerative Diseases. Sci. Rep. 2021, 11, 17733. [Google Scholar] [CrossRef]
- Alcocer-Gómez, E.; Casas-Barquero, N.; Williams, M.R.; Romero-Guillena, S.L.; Cañadas-Lozano, D.; Bullón, P.; Sánchez-Alcazar, J.A.; Navarro-Pando, J.M.; Cordero, M.D. Antidepressants Induce Autophagy Dependent-Nlrp3-Inflammasome Inhibition in Major Depressive Disorder. Pharmacol. Res. 2017, 121, 114–121. [Google Scholar] [CrossRef]
- Li, G.; Sherchan, P.; Tang, Z.; Tang, J. Autophagy & Phagocytosis in Neurological Disorders and Their Possible Cross-Talk. Curr. Neuropharmacol. 2021, 19, 1912–1924. [Google Scholar]
- Fleming, A.; Bourdenx, M.; Fujimaki, M.; Karabiyik, C.; Krause, G.J.; Lopez, A.; Martín-Segura, A.; Puri, C.; Scrivo, A.; Skidmore, J.; et al. The Different Autophagy Degradation Pathways and Neurodegeneration. Neuron 2022, 110, 935–966. [Google Scholar] [CrossRef]
- Filippone, A.; Esposito, E.; Mannino, D.; Lyssenko, N.; Praticò, D. The Contribution of Altered Neuronal Autophagy to Neurodegeneration. Pharmacol. Ther. 2022, 238, 108178. [Google Scholar] [CrossRef] [PubMed]
Species | The Model of Animals or Cells | Experimental Design | Behavioral Changes | Autophagy Changes | Significance | Ref. |
---|---|---|---|---|---|---|
Human | SnRNA-seq (n = 17) and transcriptome data validation from GEO | ↓ LAMP2, LC3A, ATG4B, ATG9A, LC3B, ATG4D genes | ↓ Autophagy initiation | [45] | ||
PB analyzed by RNA-seq (n = 17–19) and verified by qPCR (n = 32–33) | ↓ LC3A mRNA | |||||
Analysis of postmortem PFC microarray data in GEO database (n = 29–56) | ↑ ATG5, ATG6, ATG7, ATG12, LC3B mRNA ↓ p62 mRNA | ↑ Autophagy initiation | [46] | |||
PB detected by RNA-seq (n = 4), qRT-PCR (n = 50), and ELISA (n = 44) | ↑ p62 genes, mRNA and protein | ↓ Autophagy degradation | [47] | |||
Patients with MDD and healthy volunteers (n = 10–14), detected by qPCR | ↓ LC3A, NIX mRNA | ↓ NiX-mediated mitophagy | [48] | |||
Animal | LPS mice | Male C57BL/6 mice (n = 9), detected by IF and WB in the Hip | ↓ Sucrose preference ↓ Number of crossings in OFT | ↓ LC3 immunofluorescence ↓ LC3-II, Beclin-1 protein | ↓ Autophagosome formation | [49] |
CORT mice | Male C57BL/6 mice (n = 12) exposed to CORT for 8 weeks, and hippocampal DG detected by IF, WB, confocal imaging, and TEM | ↑ Immobility time in FST and TST ↓ Open arm time in EPM, central area time in OFT, exploration time in NORT | ↑ LC3-II, ATG5 protein ↓ p62 protein ↑ Autophagosome, lysosome ↑ LC3-NeuN immunofluorescence colocalization ↑ Adeno-associated virus mCherry-GFP-LC3 fusion protein | ↑ Autophagy | [8] | |
CUMS mice | Male C57BL/6 mice (n = 6), CUMS for 6 weeks, brain tissue detected by qPCR and WB | ↓ Sucrose preference ↑ Immobility time in FST | ↓ Beclin-1, LC3 mRNA and protein ↑ p62, mTOR mRNA and protein | ↓ Autophagy degradation | [51] | |
CUMS mice | Female C57BL/6 mice (n = 8), CUMS for 8 weeks, Hip detected by IF, TEM, and WB | ↓ Sucrose preference ↑ Immobility time in OFT, TST, FST ↑ Feeding latency in NSFT | ↓ PINK1, Parkin, ATG5, LC3II/I protein ↓ Autophagosome ↓ PINK1 immunofluorescence | ↓ PINK1/Parkin-mediated mitophagy | [52] | |
CSDS mice | Male C57BL/6 mice (n = 9), CSDS for 10 days, Hip detected by TEM and WB | ↓ Sucrose preference, total travel distance in OFT, social interaction rate in SIT ↑ Immobility time in TST, FST | ↓ LC3-II/I, Beclin-1, ATG5, ATG7 protein ↑ Autophagosome ↑ p62, p-PI3K, p-AKT, p-mTOR protein | ↓ PI3K/AKT/mTOR-mediated autophagy | [53] | |
LH mice | Male ICR mice (n = 15), LH for 2 weeks, midbrain detected by WB | ↑ Immobility time in FST, feeding latency in NSFT | ↓ TSPO, PINK1, Beclin-1 protein ↑ Parkin protein | ↓ TSPO-mediated mitophagy | [55] | |
Cell | BV2 cell exposed to LPS and ATP | Cultured with LPS (1 μg/mL) for 24 h and ATP (5 mM) for 30 min, cells detected by IF and WB | ↓ LC3-II, PINK1, Parkin protein ↑ p62, TOM, TIM protein ↑ p62-TOM immunofluorescence colocalization | ↓ Mitophagy degradation | [56] | |
Primary astrocytes exposed to LPS | Cultured with LPS (1 μg/mL) for 24 h, cells detected by WB and confocal imaging | ↓ LC3 protein ↑ p62 protein ↓ Adeno-associated virus GFP-mRFP-LC3 fusion protein | ↓ Autophagy degradation | [57] | ||
HT22 cell exposed to CORT | Cultured with CORT (100 μM) for 24 h, cells detected by IF, qPCR, and TEM | ↓ ATG5 immunofluorescence ↓ PINK1, Parkin, ATG5, LC3 mRNA ↓ Autophagosome | ↓ Mitophagy | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Zhao, Y.; Ren, P.; Liu, X.; Chen, Y.; Ying, Q.; Zhou, J. Autophagy—Unlocking New Dimensions in the Pathology and Treatment of Depression. Cells 2025, 14, 795. https://doi.org/10.3390/cells14110795
Luo Q, Zhao Y, Ren P, Liu X, Chen Y, Ying Q, Zhou J. Autophagy—Unlocking New Dimensions in the Pathology and Treatment of Depression. Cells. 2025; 14(11):795. https://doi.org/10.3390/cells14110795
Chicago/Turabian StyleLuo, Qiang, Yulong Zhao, Peng Ren, Xu Liu, Yingjian Chen, Qianru Ying, and Junjie Zhou. 2025. "Autophagy—Unlocking New Dimensions in the Pathology and Treatment of Depression" Cells 14, no. 11: 795. https://doi.org/10.3390/cells14110795
APA StyleLuo, Q., Zhao, Y., Ren, P., Liu, X., Chen, Y., Ying, Q., & Zhou, J. (2025). Autophagy—Unlocking New Dimensions in the Pathology and Treatment of Depression. Cells, 14(11), 795. https://doi.org/10.3390/cells14110795