Protein Kinase A Regulates the Cell Cycle to Affect the Induction Rate in the Parthenogenetic Reproduction of the Silkworm, Bombyx mori
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silkworm and Cells
2.2. Artificially Induced Parthenogenesis
2.3. Protein Structure and Phylogenetics Analysis
2.4. RNA Isolation, cDNA Synthesis, and qPCR Analysis
2.5. Enzyme Activity Regulation and Detection
2.6. Observation of Ovariole and Embryo
2.7. mRNA Synthesis and Cell Transfection
2.8. Cell Viability and Cycle Assay
2.9. Statistical Analysis
3. Results
3.1. Protein Structures of PKA in Silkworm
3.2. Evolutionary Conservation of PKA Proteins
3.3. Pharmacological Modulators Effectively Regulated PKA Activity Without Toxic
3.4. PKA Activity Affected Parthenogenesis Induction
3.5. Abnormal Elevation of PKA Activity Impeded Embryonic Development
3.6. Knockdown of PKA-C1 Gene Affected Cell Cycle Transition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Chen, J.; Fontes, S.K.; Bautista, E.N.; Chen, Z. Physiological and pathological roles of protein kinase A in the heart. Cardiovasc. Res. 2022, 118, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Søberg, K.; Jahnsen, T.; Rognes, T.; Skålhegg, B.S.; Laerdahl, J.K. Evolutionary paths of the cAMP-dependent protein kinase (PKA) catalytic subunits. PLoS ONE 2013, 8, e60935. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, J.; Cao, J.; Zhu, G. cAMP-PKA signaling pathway and anxiety: Where do we go next? Cell. Signal. 2024, 122, 111311. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Horvath, A.; Azevedo, M.; de Alexandre, R.B.; Stratakis, C.A. Phosphodiesterase function and endocrine cells: Links to human disease and roles in tumor development and treatment. Curr. Opin. Pharmacol. 2011, 11, 689–697. [Google Scholar] [CrossRef]
- Cheng, X.; Ji, Z.; Tsalkova, T.; Mei, F. Epac and PKA: A tale of two intracellular cAMP receptors. Acta Biochim. Biophys. Sinica 2008, 40, 651–662. [Google Scholar] [CrossRef]
- Yang, H.; Yang, L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J. Mol. Endocrinol. 2016, 57, R93–R108. [Google Scholar] [CrossRef]
- Shabb, J.B. Physiological substrates of cAMP-dependent protein kinase. Chem. Rev. 2001, 101, 2381–2411. [Google Scholar] [CrossRef]
- Zambon, A.C.; Zhang, L.; Minovitsky, S.; Kanter, J.R.; Prabhakar, S.; Salomonis, N.; Vranizan, K.; Dubchak, I.; Conklin, B.R.; Insel, P.A. Gene expression patterns define key transcriptional events in cell-cycle regulation by cAMP and protein kinase. Proc. Natl. Acad. Sci. USA 2005, 102, 8561–8566. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Yi, L.; Yang, L.; Wang, W.E.; Zeng, C.; Mi, M.; Chen, X. Hepatic PKA inhibition accelerates the lipid accumulation in liver. Nutr. Metab. 2019, 16, 69. [Google Scholar] [CrossRef]
- He, M.; Zhang, T.; Yang, Y.; Wang, C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front. Cell. Dev. Biol. 2021, 9, 654028. [Google Scholar] [CrossRef]
- Nishimura, T.; Sugiura, K.; Naito, K. A-kinase anchor protein 1 (AKAP1) regulates cAMP-dependent protein kinase (PKA) localization and is involved in meiotic maturation of porcine oocytes. Biol. Reprod. 2013, 88, 85. [Google Scholar] [CrossRef] [PubMed]
- Leadsham, J.E.; Gourlay, C.W. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol. 2010, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Stival, C.; Graf, C.B.; Visconti, P.E.; Krapf, D. Quantification of Protein Kinase A (PKA) Activity by an in vitro Radioactive Assay Using the Mouse Sperm Derived Enzyme. Bio-Protocol 2020, 10, e3658. [Google Scholar] [CrossRef]
- Duncan, F.E.; Padilla-Banks, E.; Bernhardt, M.L.; Ord, T.S.; Jefferson, W.N.; Moss, S.B.; Williams, C.J. Transducin-like enhancer of split-6 (TLE6) is a substrate of protein kinase A activity during mouse oocyte maturation. Biol. Reprod. 2014, 90, 63. [Google Scholar] [CrossRef]
- Das, D.; Arur, S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol. Reprod. Dev. 2022, 89, 353–374. [Google Scholar] [CrossRef]
- Jitjumnong, J.; Tang, P.C. Improving the meiotic competence of small antral follicle-derived porcine oocytes by using dibutyryl-cAMP and melatonin. Anim. Biosci. 2024, 37, 1007–1020. [Google Scholar] [CrossRef]
- Jing, Y.P.; Wang, D.; Han, X.L.; Dong, D.J.; Wang, J.X.; Zhao, X.F. The Steroid Hormone 20-Hydroxyecdysone Enhances Gene Transcription through the cAMP Response Element-binding Protein (CREB) Signaling Pathway. J. Biol. Chem. 2016, 291, 12771–12785. [Google Scholar] [CrossRef]
- Lane, M.E.; Kalderon, D. RNA localization along the anteroposterior axis of the Drosophila oocyte requires PKA-mediated signal transduction to direct normal microtubule organization. Genes Dev. 1994, 8, 2986–2995. [Google Scholar] [CrossRef]
- Daar, I.; Yew, N.; Woude, G.F.V. Inhibition of mos-induced oocyte maturation by protein kinase A. J. Cell Biol. 1993, 120, 1197–1202. [Google Scholar] [CrossRef]
- Normark, B.B.; Kirkendall, L.R. Parthenogenesis in insects and mites. In Encyclopedia of Insects; Elsevier: Amsterdam, The Netherlands, 2009; pp. 753–757. [Google Scholar]
- Goldsmith, M.R.; Shimada, T.; Abe, H. The genetics and genomics of the silkworm, Bombyx mori. Annu. Rev. Entomol. 2005, 50, 71–100. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Du, X.; Yao, L.; Li, F.; Meng, Z. Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm. PLoS ONE 2015, 10, e0135215. [Google Scholar] [CrossRef] [PubMed]
- Grenier, A.M.; Da Rocha, M.; Jalabert, A.; Royer, C.; Mauchamp, B.; Chavancy, G. Artificial parthenogenesis and control of voltinism to manage transgenic populations in Bombyx mori. J. Insect Physiol. 2004, 50, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Gangopadhyay, D.; Singh, R. An Improved Method of Parthenogenetic Development and Analysis of Combining Ability in Bivoltine Breeds of the Silkworm, Bombyx mori L. Int. J. Ind. Entomol. Biomater. 2006, 13, 63–72. [Google Scholar]
- Strunnikov, V.A. Research on the artificial regulation of sex in animals in the USSR. Ontogenez 1978, 9, 3–19. [Google Scholar]
- Priyadarshini, A.; Basu, D.; Navneet, A.K.; Bhattacharya, A.; Bhattacharya, S.; Maitra, S.; Bhattacharya, S. Activation of both Mos and Cdc25 is required for G2-M transition in perch oocyte. Mol. Reprod. Dev. 2009, 76, 289–300. [Google Scholar] [CrossRef]
- Ma, C.; Xu, F.; Hu, C.; Cui, C.; Du, X.; Chen, J.; Zhu, L.; Yu, S.; He, X.; Yu, W.; et al. MPF regulates oocyte and embryo development during parthenogenesis induction in silkworm, Bombyx mori. Insects 2025, 16, 361. [Google Scholar] [CrossRef]
- Hu, C.; Jiang, Y.; Ma, C.; Xu, F.; Cui, C.; Du, X.; Chen, J.; Zhu, L.; Yu, S.; He, X.; et al. Decreased Cdk2 activity hindered embryonic development and parthenogenesis induction in silkworm, Bombyx mori L. Int. J. Mol. Sci. 2025, 26, 3341. [Google Scholar] [CrossRef]
- Chen, J.; Du, X.; Xu, X.; Zhang, S.; Yao, L.; He, X.; Wang, Y. Comparative proteomic analysis provides new insights into the molecular basis of thermal-induced parthenogenesis in silkworm (Bombyx mori). Insects 2023, 14, 134. [Google Scholar] [CrossRef]
- Khurad, A.M.; Zhang, M.J.; Deshmukh, C.G.; Bahekar, R.S.; Tiple, A.D.; Zhang, C.X. A new continuous cell line from larval ovaries of silkworm, Bombyx mori. Vitr. Cell. Dev. Biol. Anim. 2009, 45, 414–419. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, Y.; Cai, G.; Cai, R.; Hu, Z.; Wang, H. Tree Visualization By One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023, 51, W587–W592. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Zhang, Z.; He, G.; Yang, L.; Li, F. Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects. J. Insect Sci. 2012, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Song, R.; Ma, J.; Liu, C.; Wu, Z.; Cao, G.; Liu, J.; Zhang, G.; Zhang, H.; Sun, R.; et al. Receptor activity-modifying protein 1 regulates mouse skin fibroblast proliferation via the Gαi3-PKA-CREB-YAP axis. Cell Commun. Signal. 2022, 20, 52. [Google Scholar] [CrossRef]
- Mafune, E.; Takahashi, M.; Takasugi, N. Effect of vehicles on percutaneous absorption of bucladesine (dibutyryl cyclic amp) in normal and damaged rat skin. Biol. Pharm. Bull. 1995, 18, 1539. [Google Scholar] [CrossRef]
- Salehi, F.; Hosseini-Zare, M.S.; Aghajani, H.; Seyedi, S.Y.; Hosseini-Zare, M.S.; Sharifzadeh, M. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain. Fundam. Clin. Pharmacol. 2017, 31, 411–419. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Guan, R.; Du, M.; Yin, X.; Zhao, W.; An, S. Trehalase is required for sex pheromone biosynthesis in Helicoverpa armigera. Insect Mol. Biol. 2022, 31, 334–345. [Google Scholar] [CrossRef]
- Blazev, R.; Hussain, M.; Bakker, A.J.; Head, S.I.; Lamb, G.D. Effects of the PKA inhibitor H-89 on excitation-contraction coupling in skinned and intact skeletal muscle fibres. J. Muscle Res. Cell Motil. 2001, 22, 277–286. [Google Scholar] [CrossRef]
- Chijiwa, T.; Mishima, A.; Hagiwara, M.; Sano, M.; Hayashi, K.; Inoue, T.; Naito, K.; Toshioka, T.; Hidaka, H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem. 1990, 265, 5267–5272. [Google Scholar]
- Hu, Z.; Wang, L.; Shi, Z.; Jiang, J.; Li, X.; Chen, Y.; Li, K.; Luo, D. Customized one-step preparation of sgRNA transcription templates via overlapping PCR Using short primers and its application in vitro and in vivo gene editing. Cell Biosci. 2019, 9, 87. [Google Scholar] [CrossRef]
- Das, R.; Esposito, V.; Abu-Abed, M.; Anand, G.S.; Taylor, S.S.; Melacini, G. cAMP activation of PKA defines an ancient signaling mechanism. Proc. Natl. Acad. Sci. USA 2007, 104, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Cheng, C.Y.; Saldanha, S.A.; Taylor, S.S. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 2007, 130, 1032–1043. [Google Scholar] [CrossRef] [PubMed]
- Skålhegg, B.S.; Taskén, K. Specificity in the cAMP/PKA signaling pathway. differential expression, regulation, and subcellular localization of subunits of PKA. Front. Biosci. 1997, 2, d331–d342. [Google Scholar] [CrossRef]
- Reikhardt, B.A.; Shabanov, P.D. Catalytic Subunit of PKA as a Prototype of the Eukaryotic Protein Kinase Family. Biochemistry 2020, 85, 409–424. [Google Scholar] [CrossRef]
- Cheng, W.M.; Sun, X.L.; An, L.; Zhu, S.E.; Li, X.H.; Li, Y.; Tian, J.H. Effect of different parthenogenetic activation methods on the developmental competence of in vitro matured porcine oocytes. Anim. Biotechnol. 2007, 18, 131–141. [Google Scholar] [CrossRef]
- Santoni, M.; Meneau, F.; Sekhsoukh, N.; Castella, S.; Le, T.; Miot, M.; Daldello, E.M. Unraveling the interplay between PKA inhibition and Cdk1 activation during oocyte meiotic maturation. Cell Rep. 2024, 43, 113782. [Google Scholar] [CrossRef]
- Pei, Z.; Deng, K.; Xu, C.; Zhang, S. The molecular regulatory mechanisms of meiotic arrest and resumption in Oocyte development and maturation. Reprod. Biol. Endocrinol. 2023, 21, 90. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Liu, J.; Chen, J.; Wang, J.; Hua, H.; Jiang, Y. cAMP-PKA/EPAC signaling and cancer: The interplay in tumor microenvironment. J. Hematol. Oncol. 2024, 17, 5. [Google Scholar] [CrossRef]
- Song, B.H.; Choi, S.C.; Han, J.K. Local activation of protein kinase A inhibits morphogenetic movements during Xenopus gastrulation. Dev. Dyn. 2003, 227, 91–103. [Google Scholar] [CrossRef]
- Park, E.; Kim, G.H.; Choi, S.C.; Han, J.K. Role of PKA as a negative regulator of PCP signaling pathway during Xenopus gastrulation movements. Dev. Biol. 2006, 292, 344–357. [Google Scholar] [CrossRef]
- Cazzanelli, G.; Pereira, F.; Alves, S.; Francisco, R.; Azevedo, L.; Carvalho, P.D.; Almeida, A.; Côrte-Real, M.; Oliveira, M.J.; Lucas, C.; et al. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells 2018, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Medina, D.L.; Toro, M.J.; Santisteban, P. Somatostatin interferes with thyrotropin-induced G1-S transition mediated by cAMP-dependent protein kinase and phosphatidylinositol 3-kinase. Involvement of RhoA and cyclin E x cyclin-dependent kinase 2 complexes. J. Biol. Chem. 2000, 275, 15549–15556. [Google Scholar] [CrossRef]
Primer Name | Primer Sequence (5′-3′) |
---|---|
qRT-PCR | |
BmPKA-C1-F | TTCGCTGATCAACCCATTCA |
BmPKA-C1-R | TGCAGCGAGGTATGAATGGA |
Bmrp49-F | TCAATCGGATCGCTATGACA |
Bmrp49-R | ATGACGGGTCTTCTTGTTGG |
mRNA synthesis | |
sgRNA-C1-F1 | TAATACGACTCACTATAGGACAACTCTAACTTGTACAGTTTTAGAGCTAGAAATAGCAA |
sgRNA-C1-F2 | TAATACGACTCACTATAGGTTGATCAGCGAAAAAGGGGTTTTAGAGCTAGAAATAGCAA |
sgRNA-R | AGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCT |
Species Name | GenBank Accession Number | Order | |||
---|---|---|---|---|---|
PKA-C1 | PKA-C3 | PKA-R1 | PKA-R2 | ||
Bombyx mori | NP_001093303.1 | XP_004929251.2 | NP_001093295.1 | NP_001104823.1 | Lepidoptera |
Bombyx mandarina | XP_028034091.1 | XP_028043672.1 | XP_028029886.1 | XP_028029886.1 | Lepidoptera |
Drosophila melanogaster | NP_476977.1 | NP_524097.2 | NP_001014593.1 | NP_523671.1 | Diptera |
Xenopus laevis | NP_001080696.1 | XP_018101650.1 | XP_018091896.1 | NP_001084637.1 | Anura |
Homo sapiens | NP_002722.1 | NP_005035.1 | NP_001158230.1 | NP_001308911.1 | Primates |
Sus scrofa | XP_003123401.1 | XP_020935351.1 | XP_020941591.1 | NP_999423.2 | Artiodactyla |
Mus musculus | NP_032880.1 | NP_058675.1 | NP_001300902.1 | NP_032950.1 | Rodentia |
Parasteatoda tepidariorum | XP_015929533.1 | XP_042904975.1 | XP_015922609.1 | XP_015906869.1 | Araneae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Yu, W.; Ma, C.; Hu, C.; Cui, C.; Du, X.; Chen, J.; Zhu, L.; Yu, S.; He, X.; et al. Protein Kinase A Regulates the Cell Cycle to Affect the Induction Rate in the Parthenogenetic Reproduction of the Silkworm, Bombyx mori. Cells 2025, 14, 793. https://doi.org/10.3390/cells14110793
Xu F, Yu W, Ma C, Hu C, Cui C, Du X, Chen J, Zhu L, Yu S, He X, et al. Protein Kinase A Regulates the Cell Cycle to Affect the Induction Rate in the Parthenogenetic Reproduction of the Silkworm, Bombyx mori. Cells. 2025; 14(11):793. https://doi.org/10.3390/cells14110793
Chicago/Turabian StyleXu, Fang, Wei Yu, Chenkai Ma, Chengjie Hu, Chunguang Cui, Xin Du, Jine Chen, Linbao Zhu, Shaofang Yu, Xingjian He, and et al. 2025. "Protein Kinase A Regulates the Cell Cycle to Affect the Induction Rate in the Parthenogenetic Reproduction of the Silkworm, Bombyx mori" Cells 14, no. 11: 793. https://doi.org/10.3390/cells14110793
APA StyleXu, F., Yu, W., Ma, C., Hu, C., Cui, C., Du, X., Chen, J., Zhu, L., Yu, S., He, X., Wang, Y., & Xu, X. (2025). Protein Kinase A Regulates the Cell Cycle to Affect the Induction Rate in the Parthenogenetic Reproduction of the Silkworm, Bombyx mori. Cells, 14(11), 793. https://doi.org/10.3390/cells14110793