Major Traumatic Injury and Exposure to Mitochondrial-Derived Damage-Associated Molecular Patterns Promotes Neutrophil Survival Accompanied by Stabilisation of the Anti-Apoptotic Protein Mcl-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Clinical Data Collection
2.3. Blood Sampling
2.4. Preparation of MtDAMPs, MtDNA, and Serum
2.5. Neutrophil Isolation and Treatment
2.6. Annexin V and Propidium Iodide (PI) Staining
2.7. Measurement of Mitochondrial Membrane Potential
2.8. Assessment of Caspase-3 Activation by Flow Cytometry
2.9. Western Blotting
2.10. Real-Time PCR (RT-PCR)
2.11. Reactive Oxygen Species (ROS) Production
2.12. Neutrophil Phagocytosis
2.13. CD16 Staining
2.14. Morphological Assessment of Neutrophil Apoptosis
2.15. Statistical Analyses
3. Results
3.1. Patient Demographics
3.2. Neutrophil Apoptosis Is Delayed Post-Trauma
3.3. Traumatic Injury Results in Delayed Turnover of Mcl-1, Reduced Mitochondrial Membrane Depolarisation, and Decreased Activation of Caspase 3
3.4. Effect of Serum Treatment on Spontaneous Neutrophil Apoptosis
3.5. Effect of MtDAMP Treatment on Neutrophil Spontaneous Apoptosis and Anti-Microbial Activity
3.6. Exposure to MtDAMPs Delays the Turnover of Mcl-1
3.7. MtDAMP Treatment Delays CHX-Induced Activation of Caspase-3 That Promotes the Turnover of Mcl-1
3.8. Reduced Mitochondrial Membrane Depolarisation and Delayed Turnover of Mcl-1 Are Features of MtDNA-Induced Extension of Neutrophil Lifespan
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
Act D | actinomycin D |
APACHE | Acute Physiology and Chronic Health Evaluation |
APC | allophycocyanin |
ATP | adenosine triphosphate |
AUC | area under the curve |
BBATS | Brain Biomarkers after Trauma Study |
Bax | Bcl-2-associated X protein |
BSA | bovine serum albumin |
CM | complete medium |
CHX | cycloheximide |
CsH | cyclosporin H |
FPR-1 | formyl peptide receptor-1 |
GCS | Glasgow Coma Scale |
GM-CSF | granulocyte macrophage colony stimulating factor |
GPS | glutamine, penicillin, streptomycin |
HBSS | Hank’s balanced salt solution |
HCL | hydrochloric acid |
HCs | healthy controls |
HRP | horseradish peroxidase |
IL | interleukin |
ISS | Injury Severity Score |
JC-1 | 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide |
Mcl-1 | myeloid cell leukaemia 1 |
MFI | mean fluorescence intensity |
MtDAMPs | mitochondrial-derived damage-associated molecular patterns |
MtDNA | mitochondrial-derived DNA |
MODS | multiple organ dysfunction syndrome |
MOF | multiple organ failure |
NAD+ | β-nicotinamide adenine dinucleotide |
PBS | phosphate buffered saline |
PMA | phorbol 12-myristate 13-acetate |
ROS | reactive oxygen species |
RT-PCR | real-time PCR |
RT | room temperature |
SDS | sodium dodecyl sulphate |
TGF-β | transforming growth factor-beta |
TBST | tris-buffered saline containing tween |
TNF-α | tumour necrosis factor-alpha |
References
- Finlay, L.D.; Conway Morris, A.; Deane, A.M.; Wood, A.J. Neutrophil kinetics and function after major trauma: A systematic review. World J. Crit. Care Med. 2021, 10, 260–277. [Google Scholar] [CrossRef]
- Botha, A.J.; Moore, F.A.; Moore, E.E.; Sauaia, A.; Banerjee, A.; Peterson, V.M. Early neutrophil sequestration after injury: A pathogenic mechanism for multiple organ failure. J. Trauma Acute Care Surg. 1995, 39, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Pallister, I.; Dent, C.; Topley, N. Increased neutrophil migratory activity after major trauma: A factor in the etiology of acute respiratory distress syndrome? Crit. Care Med. 2002, 30, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Hampson, P.; Dinsdale, R.J.; Wearn, C.M.; Bamford, A.L.; Bishop, J.R.B.; Hazeldine, J.; Moiemen, N.S.; Harrison, P.; Lord, J.M. Neutrophil Dysfunction, Immature Granulocytes, and Cell-free DNA are Early Biomarkers of Sepsis in Burn-injured Patients: A Prospective Observational Cohort Study. Ann. Surg. 2017, 265, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Janicova, A.; Relja, B. Neutrophil Phenotypes and Functions in Trauma and Trauma-Related Sepsis. Shock 2021, 56, 16–29. [Google Scholar] [CrossRef]
- Jones, C.N.; Moore, M.; Dimisko, L.; Alexander, A.; Ibrahim, A.; Hassell, B.A.; Warren, H.S.; Tompkins, R.G.; Fagan, S.P.; Irimia, D. Spontaneous neutrophil migration patterns during sepsis after major burns. PLoS ONE 2014, 9, e114509. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, P.; Guo, F.; Zhang, Z.Y.; Zhang, Z. Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS ONE 2013, 8, e68963. [Google Scholar] [CrossRef]
- Qi, X.; Yang, Y.; Huang, J.; Sun, R.; Liu, L.; Sun, B. Mechanism of delayed apoptosis of peripheral blood neutrophils in severely burned patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019, 31, 1208–1211. [Google Scholar] [CrossRef]
- Botha, A.J.; Moore, F.A.; Moore, E.E.; Peterson, V.M.; Goode, A.W. Base deficit after major trauma directly relates to neutrophil CD11b expression: A proposed mechanism of shock-induced organ injury. Intensive Care Med. 1997, 23, 504–509. [Google Scholar] [CrossRef]
- Hietbrink, F.; Koenderman, L.; Althuizen, M.; Leenen, L.P.H. Modulation of the innate immune response after trauma visualised by a change in functional PMN phenotype. Injury 2009, 40, 851–855. [Google Scholar] [CrossRef]
- Laggner, M.; Lingitz, M.-T.; Copic, D.; Direder, M.; Klas, K.; Bormann, D.; Gugerell, A.; Moser, B.; Radtke, C.; Hacker, S.; et al. Severity of thermal burn injury is associated with systemic neutrophil activation. Sci. Rep. 2022, 12, 1654. [Google Scholar] [CrossRef]
- Hazeldine, J.; Naumann, D.N.; Toman, E.; Davies, D.; Bishop, J.R.B.; Su, Z.; Hampson, P.; Dinsdale, R.J.; Crombie, N.; Duggal, N.A.; et al. Prehospital immune responses and development of multiple organ dysfunction syndrome following traumatic injury: A prospective cohort study. PLoS Med. 2017, 14, e1002338. [Google Scholar] [CrossRef]
- Hietbrink, F.; Koenderman, L.; Althuizen, M.; Pillay, J.; Kamp, V.; Leenen, L.P.H. Kinetics of the innate immune response after trauma: Implications for the development of late onset sepsis. Shock 2013, 40, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, L.; Guo, Z.; Li, L.; Shao, Y.; Song, M.; Sun, B. Investigation and assessment of neutrophil dysfunction early after severe burn injury. Burns 2021, 47, 1851–1862. [Google Scholar] [CrossRef] [PubMed]
- Biffl, W.L.; Moore, E.E.; Zallen, G.; Johnson, J.L.; Gabriel, J.; Offner, P.J.; Silliman, C.C. Neutrophils are primed for cytotoxicity and resist apoptosis in injured patients at risk for multiple organ failure. Surgery 1999, 126, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Paunel-Görgülü, A.; Kirichevska, T.; Lögters, T.; Windolf, J.; Flohé, S. Molecular mechanisms underlying delayed apoptosis in neutrophils from multiple trauma patients with and without sepsis. Mol. Med. 2012, 18, 325–335. [Google Scholar] [CrossRef]
- Nolan, B.; Collette, H.; Baker, S.; Duffy, A.; De, M.; Miller, C.; Bankey, P. Inhibition of neutrophil apoptosis after severe trauma is NFkappabeta dependent. J. Trauma Acute Care Surg. 2000, 48, 599–605. [Google Scholar] [CrossRef]
- Paunel-Görgülü, A.; Flohé, S.; Scholz, M.; Windolf, J.; Lögters, T. Increased serum soluble Fas after major trauma is associated with delayed neutrophil apoptosis and development of sepsis. Crit. Care 2011, 15, R20. [Google Scholar] [CrossRef]
- Ehrnthaller, C.; Braumüller, S.; Kellermann, S.; Gebhard, F.; Perl, M.; Huber-Lang, M. Complement Factor C5a Inhibits Apoptosis of Neutrophils-A Mechanism in Polytrauma? J. Clin. Med. 2021, 10, 3157. [Google Scholar] [CrossRef]
- Junger, W.G.; Rhind, S.G.; Rizoli, S.B.; Cuschieri, J.; Baker, A.J.; Shek, P.N.; Hoyt, D.B.; Bulger, E.M. Prehospital hypertonic saline resuscitation attenuates the activation and promotes apoptosis of neutrophils in patients with severe traumatic brain injury. Shock 2013, 40, 366–374. [Google Scholar] [CrossRef]
- Paunel-Görgülü, A.; Zörnig, M.; Lögters, T.; Altrichter, J.; Rabenhorst, U.; Cinatl, J.; Windolf, J.; Scholz, M. Mcl-1-mediated impairment of the intrinsic apoptosis pathway in circulating neutrophils from critically ill patients can be overcome by Fas stimulation. J. Immunol. 2009, 183, 6198–6206. [Google Scholar] [CrossRef]
- Chitnis, D.; Dickerson, C.; Munster, A.M.; Winchurch, R.A. Inhibition of apoptosis in polymorphonuclear neutrophils from burn patients. J. Leukoc. Biol. 1996, 59, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Hornstein, T.; Lehmann, S.; Philipp, D.; Detmer, S.; Hoffmann, M.; Peter, C.; Wesselborg, S.; Unfried, K.; Windolf, J.; Flohé, S.; et al. Staurosporine resistance in inflammatory neutrophils is associated with the inhibition of caspase- and proteasome-mediated Mcl-1 degradation. J. Leukoc. Biol. 2016, 99, 163–174. [Google Scholar] [CrossRef]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019, 20, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Nagata, S. Apoptosis and Clearance of Apoptotic Cells. Annu. Rev. Immunol. 2018, 36, 489–517. [Google Scholar] [CrossRef] [PubMed]
- Milot, E.; Filep, J.G. Regulation of neutrophil survival/apoptosis by Mcl-1. Sci. World J. 2011, 11, 1948–1962. [Google Scholar] [CrossRef]
- Tantawy, S.I.; Timofeeva, N.; Sarkar, A.; Gandhi, V. Targeting MCL-1 protein to treat cancer: Opportunities and challenges. Front. Oncol. 2023, 13, 1226289. [Google Scholar] [CrossRef]
- Senichkin, V.; Streletskaia, A.Y.; Gorbunova, A.S.; Zhivotovsky, B.; Kopeina, G.S. Saga of Mcl-1: Regulation from transcription to degradation. Cell Death Differ. 2020, 27, 405–419. [Google Scholar] [CrossRef]
- El Kebir, D.; Filep, J.G. Role of neutrophil apoptosis in the resolution of inflammation. Sci. World J. 2010, 10, 1731–1748. [Google Scholar] [CrossRef]
- Hu, Z.; Sayeed, M.M. Suppression of mitochondria-dependent neutrophil apoptosis with thermal injury. Am. J. Physiol. Cell Physiol. 2004, 286, C170–C178. [Google Scholar] [CrossRef]
- Biffl, W.L.; West, K.E.; Moore, E.E.; Gonzalez, R.J.; Carnaggio, R.; Offner, P.J.; Silliman, C.C. Neutrophil apoptosis is delayed by trauma patients’ plasma via a mechanism involving proinflammatory phospholipids protein kinase C. Surg. Infect. 2001, 2, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Sarabhai, T.; Peter, C.; Bär, A.-K.; Windolf, J.; Relja, B.; Wesselborg, S.; Wahlers, T.; Paunel-Görgülü, A. Serum α-1 Antitrypsin (AAT) antagonizes intrinsic apoptosis induction in neutrophils from patients with systemic inflammatory response syndrome. PLoS ONE 2017, 12, e0177450. [Google Scholar] [CrossRef]
- Hazeldine, J.; Dinsdale, R.J.; Harrison, P.; Lord, J.M. Traumatic Injury and Exposure to Mitochondrial-Derived Damage Associated Molecular Patterns Suppresses Neutrophil Extracellular Trap Formation. Front. Immunol. 2019, 10, 685. [Google Scholar] [CrossRef]
- Kaczmarek, E.; Hauser, C.J.; Kwon, W.Y.; Riça, I.; Chen, L.; Sandler, N.M.; Otterbein, L.E.; Campbell, Y.; Cook, C.H.; Yaffe, M.B.; et al. A subset of five human mitochondrial formyl peptides mimics bacterial peptides and functionally deactivates human neutrophils. J. Trauma Acute Care Surg. 2018, 85, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Lam, N.Y.L.; Rainer, T.H.; Chiu, R.W.K.; Joynt, G.M.; Lo, Y.M.D. Plasma mitochondrial DNA concentrations after trauma. Clin. Chem. 2004, 50, 213–216. [Google Scholar] [CrossRef]
- McIlroy, D.J.; Jarnicki, A.G.; Au, G.G.; Lott, N.; Smith, D.W.; Hansbro, P.M.; Balogh, Z.J. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J. Crit. Care 2014, 29, 1133.e1–1133.e5. [Google Scholar] [CrossRef] [PubMed]
- Bhagirath, V.C.; Dwivedi, D.J.; Liaw, P.C. Comparison of the Proinflammatory and Procoagulant Properties of Nuclear, Mitochondrial, and Bacterial DNA. Shock 2015, 44, 265–271. [Google Scholar] [CrossRef]
- Hazeldine, J.; Hampson, P.; Opoku, F.A.; Foster, M.; Lord, J.M. N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways. Injury 2015, 46, 975–984. [Google Scholar] [CrossRef]
- Butcher, S.K.; Chahal, H.; Nayak, L.; Sinclair, A.; Henriquez, N.V.; Sapey, E.; O’Mahony, D.; Lord, J.M. Senescence in innate immune responses: Reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J. Leukoc. Biol. 2001, 70, 881–886. [Google Scholar] [CrossRef]
- Dransfield, I.; Buckle, A.M.; Savill, J.S.; McDowall, A.; Haslett, C.; Hogg, N. Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J. Immunol. 1994, 153, 1254–1263. [Google Scholar] [CrossRef]
- Wardle, D.J.; Burgon, J.; Sabroe, I.; Bingle, C.D.; Whyte, M.K.B.; Renshaw, S.A. Effective caspase inhibition blocks neutrophil apoptosis and reveals Mcl-1 as both a regulator and a target of neutrophil caspase activation. PLoS ONE 2011, 6, e15768. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Itagaki, K.; Sandler, N.; Gallo, D.; Galenkamp, A.; Kaczmarek, E.; Livingston, D.H.; Zeng, Y.; Lee, Y.T.; Tang, I.T.; et al. Mitochondrial damage-associated molecular patterns from fractures suppress pulmonary immune responses via formyl peptide receptors 1 and 2. J. Trauma Acute Care Surg. 2015, 78, 272–281. [Google Scholar] [CrossRef]
- Zhang, Q.; Itagaki, K.; Hauser, C.J. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock 2010, 34, 55–59. [Google Scholar] [CrossRef]
- Itagaki, K.; Kaczmarek, E.; Lee, Y.T.; Tang, I.T.; Isal, B.; Adibnia, Y.; Sandler, N.; Grimm, M.J.; Segal, B.H.; Otterbein, L.E.; et al. Mitochondrial DNA released by trauma induces neutrophil extracellular traps. PLoS ONE 2015, 10, e0120549. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Li, X.; Kovacs, E.J.; Gamelli, R.L.; Choudhry, M.A. Interleukin-18 delays neutrophil apoptosis following alcohol intoxication and burn injury. Mol. Med. 2011, 17, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Moulding, D.A.; Quayle, J.A.; Hart, C.A.; Edwards, S.W. Mcl-1 expression in human neutrophils: Regulation by cytokines and correlation with cell survival. Blood 1998, 92, 2495–2502. [Google Scholar] [CrossRef]
- Hu, Z.; Sayeed, M.M. Activation of PI3-kinase/PKB contributes to delay in neutrophil apoptosis after thermal injury. Am. J. Physiol. Cell Physiol. 2005, 288, C1171–C1178. [Google Scholar] [CrossRef]
- Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464, 104–107. [Google Scholar] [CrossRef]
- Kobayashi, S.D.; Voyich, J.M.; Whitney, A.R.; DeLeo, F.R. Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J. Leukoc. Biol. 2005, 78, 1408–1418. [Google Scholar] [CrossRef]
- Briggs, G.D.; Gelzinnis, S.; Meakes, S.; King, K.L.; Balogh, Z.J. Not all cell-free mitochondrial DNA is equal in trauma patients. Shock 2022, 58, 231–235. [Google Scholar] [CrossRef]
- Simmons, J.D.; Lee, Y.-L.; Mulekar, S.B.; Kuck, J.L.B.; Brevard, S.B.; Gonzalez, R.P.; Gillespie, M.N.; Richards, W.O. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann. Surg. 2013, 258, 591–596. [Google Scholar] [CrossRef]
- Faust, H.E.; Reilly, J.P.; Anderson, B.J.; Ittner, C.A.; Forker, C.M.; Zhang, P.; Weaver, B.A.; Holena, D.N.; Lanken, P.N.; Christie, J.D.; et al. Plasma Mitochondrial DNA Levels Are Associated With ARDS in Trauma and Sepsis Patients. Chest 2020, 157, 67–76. [Google Scholar] [CrossRef]
- Klein, J.B.; Buridi, A.; Coxon, P.Y.; Rane, M.J.; Manning, T.; Kettritz, R.; McLeish, K.R. Role of extracellular signal-regulated kinase and phosphatidylinositol-3 kinase in chemoattractant and LPS delay of constitutive neutrophil apoptosis. Cell Signal. 2001, 13, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, K.R.; Stokes, L.; Prince, L.R.; Marriott, H.M.; Meis, S.; Kassack, M.U.; Bingle, C.D.; Sabroe, I.; Surprenant, A.; Whyte, M.K.B. Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J. Immunol. 2007, 179, 8544–8553. [Google Scholar] [CrossRef] [PubMed]
- Pliyev, B.K.; Ivanova, A.V.; Savchenko, V.G. Extracellular NAD(+) inhibits human neutrophil apoptosis. Apoptosis 2014, 19, 581–593. [Google Scholar] [CrossRef]
- Cauwels, A.; Rogge, E.; Vandendriessche, B.; Shiva, S.; Brouckaert, P. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis. 2014, 5, e1102. [Google Scholar] [CrossRef] [PubMed]
- Faroqi, A.H.; Lim, M.J.; Kee, E.C.; Lee, J.H.; Burgess, J.D.; Chen, R.; Di Virgilio, F.; Delenclos, M.; McLean, P.J. In Vivo Detection of Extracellular Adenosine Triphosphate in a Mouse Model of Traumatic Brain Injury. J. Neurotrauma 2021, 38, 655–664. [Google Scholar] [CrossRef]
- Dsouza, C.; Moussa, M.S.; Mikolajewicz, N.; Komarova, S.V. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Rep. 2022, 17, 101608. [Google Scholar] [CrossRef]
- Horner, E.; Lord, J.M.; Hazeldine, J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front. Immunol. 2023, 14, 1239683. [Google Scholar] [CrossRef]
Characteristics | Patients (n = 73) |
---|---|
Age, years (range) | 41 (19–95) |
Gender, (M:F) | 65:8 |
Time to pre-hospital sample, minutes post-injury (range) | 40 (14–60) |
ISS (range) # | 25 (9–66) |
Admission GCS score (range) | 10 (3–15) |
Mechanism of injury | |
Fall, n (%) | 9 (58) |
A/P, n (%) | 18 (25) |
Blunt, n (%) | 4 (12) |
RTC, n (%) | 42 (5) |
ICU-free days (range) | 20 (0–30) |
Hospital-free days (range) | 9 (0–29) |
Mortality, n (%) | 8 (11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicholson, T.; Macleod, M.; Belli, A.; Lord, J.M.; Hazeldine, J. Major Traumatic Injury and Exposure to Mitochondrial-Derived Damage-Associated Molecular Patterns Promotes Neutrophil Survival Accompanied by Stabilisation of the Anti-Apoptotic Protein Mcl-1. Cells 2025, 14, 754. https://doi.org/10.3390/cells14100754
Nicholson T, Macleod M, Belli A, Lord JM, Hazeldine J. Major Traumatic Injury and Exposure to Mitochondrial-Derived Damage-Associated Molecular Patterns Promotes Neutrophil Survival Accompanied by Stabilisation of the Anti-Apoptotic Protein Mcl-1. Cells. 2025; 14(10):754. https://doi.org/10.3390/cells14100754
Chicago/Turabian StyleNicholson, Thomas, Michael Macleod, Antonio Belli, Janet M. Lord, and Jon Hazeldine. 2025. "Major Traumatic Injury and Exposure to Mitochondrial-Derived Damage-Associated Molecular Patterns Promotes Neutrophil Survival Accompanied by Stabilisation of the Anti-Apoptotic Protein Mcl-1" Cells 14, no. 10: 754. https://doi.org/10.3390/cells14100754
APA StyleNicholson, T., Macleod, M., Belli, A., Lord, J. M., & Hazeldine, J. (2025). Major Traumatic Injury and Exposure to Mitochondrial-Derived Damage-Associated Molecular Patterns Promotes Neutrophil Survival Accompanied by Stabilisation of the Anti-Apoptotic Protein Mcl-1. Cells, 14(10), 754. https://doi.org/10.3390/cells14100754