Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology
Abstract
:1. Introduction
2. Materials and Methods
3. Mild Behavioral Impairment (MBI): Definition, Clinical Features, Assessment Methods and Epidemiology
4. The Role of Amyloid and Tau Pathology in the Neuropsychiatric Symptoms in Alzheimer’s Disease Dementia
5. Clinical Evidence on the Potential Role of Amyloid Pathology in MBI
6. Clinical Evidence on the Potential Role of Tau Pathology in MBI
7. Proposed Amyloid- and Tau-Related Underlying Pathophysiological Mechanisms of MBI
7.1. The Hypothalamic–Pituitary–Adrenal (HPA) Axis
7.2. Dysregulation of Neurotrophic Factors
7.3. Neuroinflammation
7.4. Dysregulation of the Transforming-Growth-Factor-β1 (TGF-β1) Signaling Pathway
7.5. Epigenetic Modifications
7.6. Synaptic Dysfunction and Neurotransmitter Imbalance
7.7. Locus Coeruleus (LC)-Norepinephrine System Dysregulation
7.8. Neuroanatomical Correlates of MBI
8. Therapeutic Implications
8.1. Selective Serotonin Reuptake Inhibitors (SSRIs)
8.2. Noradrenergic and Norepinephrine Blocking Medications
8.3. Cholinesterase Inhibitors
8.4. Other Pharmacological Compounds
8.5. Combined Pharmacological Approaches
8.6. Non-Pharmacological Interventions
9. Discussion and Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wortmann, M. Dementia: A global health priority—Highlights from an ADI and World Health Organization report. Alzheimer’s Res. Ther. 2012, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H. Dementia Epidemiology Fact Sheet 2022. Ann. Rehabil. Med. 2022, 46, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.; Nacmias, B.; Sorbi, S. The diagnosis of dementias: A practical tool not to miss rare causes. Neurol. Sci. 2018, 39, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Nasb, M.; Tao, W.; Chen, N. Alzheimer’s Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis. 2024, 15, 43–73. [Google Scholar] [CrossRef] [PubMed]
- Smid, J.; Studart-Neto, A.; César-Freitas, K.G.; Dourado, M.C.N.; Kochhann, R.; Barbosa, B.; Schilling, L.P.; Balthazar, M.L.F.; Frota, N.A.F.; de Souza, L.C.; et al. Subjective cognitive decline, mild cognitive impairment, and dementia—Syndromic approach: Recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement. Neuropsychol. 2022, 16, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Chételat, G.; Villemagne, V.L.; Pike, K.E.; Ellis, K.A.; Bourgeat, P.; Jones, G.; O’Keefe, G.J.; Salvado, O.; Szoeke, C.; Martins, R.N.; et al. Independent contribution of temporal β-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer’s disease. Brain J. Neurol. 2011, 134, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol. 2013, 12, 357–367. [Google Scholar] [CrossRef]
- Ismail, Z.; Leon, R.; Creese, B.; Ballard, C.; Robert, P.; Smith, E.E. Optimizing detection of Alzheimer’s disease in mild cognitive impairment: A 4-year biomarker study of mild behavioral impairment in ADNI and MEMENTO. Mol. Neurodegener. 2023, 18, 50. [Google Scholar] [CrossRef]
- Gauthier, S.; Albert, M.; Fox, N.; Goedert, M.; Kivipelto, M.; Mestre-Ferrandiz, J.; Middleton, L.T. Why has therapy development for dementia failed in the last two decades? Alzheimer’s Dement. 2016, 12, 60–64. [Google Scholar] [CrossRef]
- Rasmussen, J.; Langerman, H. Alzheimer’s Disease—Why We Need Early Diagnosis. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Pless, A.; Ware, D.; Saggu, S.; Rehman, H.; Morgan, J.; Wang, Q. Understanding neuropsychiatric symptoms in Alzheimer’s disease: Challenges and advances in diagnosis and treatment. Front. Neurosci. 2023, 17, 1263771. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.E.; Ismail, Z.; Schweizer, T.A. Delusions increase functional impairment in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2012, 33, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Karttunen, K.; Karppi, P.; Hiltunen, A.; Vanhanen, M.; Välimäki, T.; Martikainen, J.; Valtonen, H.; Sivenius, J.; Soininen, H.; Hartikainen, S.; et al. Neuropsychiatric symptoms and quality of life in patients with very mild and mild Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2011, 26, 473–482. [Google Scholar] [CrossRef]
- Okura, T.; Plassman, B.L.; Steffens, D.C.; Llewellyn, D.J.; Potter, G.G.; Langa, K.M. Neuropsychiatric symptoms and the risk of institutionalization and death: The aging, demographics, and memory study. J. Am. Geriatr. Soc. 2011, 59, 473–481. [Google Scholar] [CrossRef]
- Wise, E.A.; Rosenberg, P.B.; Lyketsos, C.G.; Leoutsakos, J.-M. Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer’s Coordinating Centers volunteers. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2019, 11, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Soldan, A.; Pettigrew, C.; Wang, M.-C.; Wang, J.; Albert, M.S.; Rosenberg, P.B.; BIOCARD Research Team. Depressive symptoms in relation to clinical symptom onset of mild cognitive impairment. Int. Psychogeriatr. 2019, 31, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Singh-Manoux, A.; Dugravot, A.; Fournier, A.; Abell, J.; Ebmeier, K.; Kivimäki, M.; Sabia, S. Trajectories of Depressive Symptoms Before Diagnosis of Dementia: A 28-Year Follow-up Study. JAMA Psychiatry 2017, 74, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Ismail, Z.; Smith, E.E.; Geda, Y.; Sultzer, D.; Brodaty, H.; Smith, G.; Agüera-Ortiz, L.; Sweet, R.; Miller, D.; Lyketsos, C.G.; et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: Provisional diagnostic criteria for mild behavioral impairment. Alzheimer’s Dement. 2016, 12, 195–202. [Google Scholar] [CrossRef]
- Ruthirakuhan, M.; Ismail, Z.; Herrmann, N.; Gallagher, D.; Lanctôt, K.L. Mild behavioral impairment is associated with progression to Alzheimer’s disease: A clinicopathological study. Alzheimer’s Dement. 2022, 18, 2199–2208. [Google Scholar] [CrossRef]
- Angelopoulou, E.; Koros, C.; Hatzimanolis, A.; Stefanis, L.; Scarmeas, N.; Papageorgiou, S.G. Exploring the Genetic Landscape of Mild Behavioral Impairment as an Early Marker of Cognitive Decline: An Updated Review Focusing on Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 2645. [Google Scholar] [CrossRef] [PubMed]
- Creese, B.; Ismail, Z. Mild behavioral impairment: Measurement and clinical correlates of a novel marker of preclinical Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Xu, J.; Liao, Z.; Zhang, Y.; Wang, Y.; Sun, W.; Yu, E. A review of current evidence for mild behavioral impairment as an early potential novel marker of Alzheimer’s disease. Front. Psychiatry 2023, 14, 1099333. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.P.; Chiew, H.; Rosa-Neto, P.; Kandiah, N.; Ismail, Z.; Gauthier, S. Associations of AT(N) biomarkers with neuropsychiatric symptoms in preclinical Alzheimer’s disease and cognitively unimpaired individuals. Transl. Neurodegener. 2021, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Ismail, Z.; Agüera-Ortiz, L.; Brodaty, H.; Cieslak, A.; Cummings, J.; Fischer, C.E.; Gauthier, S.; Geda, Y.E.; Herrmann, N.; Kanji, J.; et al. The Mild Behavioral Impairment Checklist (MBI-C): A Rating Scale for Neuropsychiatric Symptoms in Pre-Dementia Populations. J. Alzheimer’s Dis. 2017, 56, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Ismail, Z.; McGirr, A.; Gill, S.; Hu, S.; Forkert, N.D.; Smith, E.E. Mild Behavioral Impairment and Subjective Cognitive Decline Predict Cognitive and Functional Decline. J. Alzheimer’s Dis. 2021, 80, 459–469. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, F.; Ismail, Z.; Mortby, M.E.; Barber, P.; Cieslak, A.; Fischer, K.; Granger, R.; Hogan, D.B.; Mackie, A.; Maxwell, C.J.; et al. Prevalence of mild behavioral impairment in mild cognitive impairment and subjective cognitive decline, and its association with caregiver burden. Int. Psychogeriatr. 2018, 30, 233–244. [Google Scholar] [CrossRef]
- Miao, R.; Chen, H.-Y.; Gill, S.; Naude, J.; Smith, E.E.; Ismail, Z.; Alzheimer’s Disease Neuroimaging Initiative. Plasma β-Amyloid in Mild Behavioural Impairment—Neuropsychiatric Symptoms on the Alzheimer’s Continuum. J. Geriatr. Psychiatry Neurol. 2022, 35, 434–441. [Google Scholar] [CrossRef]
- Mallo, S.C.; Ismail, Z.; Pereiro, A.X.; Facal, D.; Lojo-Seoane, C.; Campos-Magdaleno, M.; Juncos-Rabadán, O. Assessing mild behavioral impairment with the mild behavioral impairment checklist in people with subjective cognitive decline. Int. Psychogeriatr. 2019, 31, 231–239. [Google Scholar] [CrossRef]
- Mallo, S.C.; Ismail, Z.; Pereiro, A.X.; Facal, D.; Lojo-Seoane, C.; Campos-Magdaleno, M.; Juncos-Rabadán, O. Assessing Mild Behavioral Impairment with the Mild Behavioral Impairment-Checklist in People with Mild Cognitive Impairment. J. Alzheimer’s Dis. 2018, 66, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Creese, B.; Brooker, H.; Ismail, Z.; Wesnes, K.A.; Hampshire, A.; Khan, Z.; Megalogeni, M.; Corbett, A.; Aarsland, D.; Ballard, C. Mild Behavioral Impairment as a Marker of Cognitive Decline in Cognitively Normal Older Adults. Am. J. Geriatr. Psychiatry 2019, 27, 823–834. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef] [PubMed]
- Sehar, U.; Rawat, P.; Reddy, A.P.; Kopel, J.; Reddy, P.H. Amyloid Beta in Aging and Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 12924. [Google Scholar] [CrossRef] [PubMed]
- Guénette, S.; Strecker, P.; Kins, S. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins. Front. Mol. Neurosci. 2017, 10, 87. [Google Scholar] [CrossRef]
- Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomed. 2019, 14, 5541–5554. [Google Scholar] [CrossRef]
- Ma, C.; Hong, F.; Yang, S. Amyloidosis in Alzheimer’s Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules 2022, 27, 1210. [Google Scholar] [CrossRef]
- Hurtado, D.E.; Molina-Porcel, L.; Iba, M.; Aboagye, A.K.; Paul, S.M.; Trojanowski, J.Q.; Lee, V.M. Aβ accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am. J. Pathol. 2010, 177, 1977–1988. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Y.; Wang, S.; Luo, X.; Li, K.; Xu, X.; Liu, X.; Hong, L.; Li, J.; Li, Z.; et al. Cerebrospinal fluid amyloid-β and cerebral microbleed are associated with distinct neuropsychiatric sub-syndromes in cognitively impaired patients. Alzheimer’s Res. Ther. 2024, 16, 69. [Google Scholar] [CrossRef]
- Banning, L.C.P.; Ramakers, I.; Köhler, S.; Bron, E.E.; Verhey, F.R.J.; de Deyn, P.P.; Claassen, J.; Koek, H.L.; Middelkoop, H.A.M.; van der Flier, W.M.; et al. The Association between Biomarkers and Neuropsychiatric Symptoms across the Alzheimer’s Disease Spectrum. Am. J. Geriatr. Psychiatry 2020, 28, 735–744. [Google Scholar] [CrossRef]
- Mori, T.; Shimada, H.; Shinotoh, H.; Hirano, S.; Eguchi, Y.; Yamada, M.; Fukuhara, R.; Tanimukai, S.; Zhang, M.-R.; Kuwabara, S.; et al. Apathy correlates with prefrontal amyloid β deposition in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2014, 85, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, A.; Giampietri, L.; Pagni, C.; Giorgi, F.S.; Nicoletti, V.; Miccoli, M.; Libertini, P.; Petrozzi, L.; Bonuccelli, U.; Tognoni, G. Association between CSF Beta-Amyloid and Apathy in Early-Stage Alzheimer Disease. J. Geriatr. Psychiatry Neurol. 2019, 32, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Liu, F.; Gong, C.-X.; Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 2010, 7, 656–664. [Google Scholar] [CrossRef]
- Irwin, D.J. Tauopathies as clinicopathological entities. Park. Relat. Disord. 2016, 22 (Suppl. 1), S29–S33. [Google Scholar] [CrossRef] [PubMed]
- Malpas, C.B.; Sharmin, S.; Kalincik, T. The histopathological staging of tau, but not amyloid, corresponds to antemortem cognitive status, dementia stage, functional abilities and neuropsychiatric symptoms. Int. J. Neurosci. 2021, 131, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Wiste, H.J.; Botha, H.; Weigand, S.D.; Therneau, T.M.; Knopman, D.S.; Graff-Radford, J.; Jones, D.T.; Ferman, T.J.; Boeve, B.F.; et al. The bivariate distribution of amyloid-β and tau: Relationship with established neurocognitive clinical syndromes. Brain J. Neurol. 2019, 142, 3230–3242. [Google Scholar] [CrossRef] [PubMed]
- Leuzy, A.; Smith, R.; Ossenkoppele, R.; Santillo, A.; Borroni, E.; Klein, G.; Ohlsson, T.; Jögi, J.; Palmqvist, S.; Mattsson-Carlgren, N.; et al. Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease from Other Neurodegenerative Disorders. JAMA Neurol. 2020, 77, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.; Chen, Q.; Zhao, X.; Chen, K.; Li, X.; Zhang, J.; Lu, J.; Ai, L.; Chen, Y.; Zhang, Z. Tau as a biomarker of cognitive impairment and neuropsychiatric symptom in Alzheimer’s disease. Hum. Brain Mapp. 2023, 44, 327–340. [Google Scholar] [CrossRef]
- Tissot, C.; Therriault, J.; Pascoal, T.A.; Chamoun, M.; Lussier, F.Z.; Savard, M.; Mathotaarachchi, S.S.; Benedet, A.L.; Thomas, E.M.; Parsons, M.; et al. Association between regional tau pathology and neuropsychiatric symptoms in aging and dementia due to Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12154. [Google Scholar] [CrossRef]
- Skogseth, R.; Mulugeta, E.; Ballard, C.; Rongve, A.; Nore, S.; Alves, G.; Aarsland, D. Neuropsychiatric correlates of cerebrospinal fluid biomarkers in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2008, 25, 559–563. [Google Scholar] [CrossRef]
- Murray, P.S.; Kirkwood, C.M.; Gray, M.C.; Fish, K.N.; Ikonomovic, M.D.; Hamilton, R.L.; Kofler, J.K.; Klunk, W.E.; Lopez, O.L.; Sweet, R.A. Hyperphosphorylated tau is elevated in Alzheimer’s disease with psychosis. J. Alzheimer’s Dis. 2014, 39, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Pichet Binette, A.; Vachon-Presseau, E.; Morris, J.; Bateman, R.; Benzinger, T.; Collins, D.L.; Poirier, J.; Breitner, J.C.S.; Villeneuve, S.; Dominantly Inherited Alzheimer Network; et al. Amyloid and Tau Pathology Associations with Personality Traits, Neuropsychiatric Symptoms, and Cognitive Lifestyle in the Preclinical Phases of Sporadic and Autosomal Dominant Alzheimer’s Disease. Biol. Psychiatry 2021, 89, 776–785. [Google Scholar] [CrossRef]
- Yasuno, F.; Minami, H.; Hattori, H.; Alzheimer’s Disease Neuroimaging Initiative. Relationship between neuropsychiatric symptoms and Alzheimer’s disease pathology: An in vivo positron emission tomography study. Int. J. Geriatr. Psychiatry 2021, 36, 598–605. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, W.; Chen, K.-L.; Shen, X.-N.; Tan, L.; Yu, J.-T.; Alzheimer’s Disease Neuroimaging Initiative. Mild behavioral impairment correlates of cognitive impairments in older adults without dementia: Mediation by amyloid pathology. Transl. Psychiatry 2021, 11, 577. [Google Scholar] [CrossRef]
- Lussier, F.Z.; Pascoal, T.A.; Chamoun, M.; Therriault, J.; Tissot, C.; Savard, M.; Kang, M.S.; Mathotaarachchi, S.; Benedet, A.L.; Parsons, M.; et al. Mild behavioral impairment is associated with β-amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimer’s Dement. 2020, 16, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Thal, D.R.; Rub, U.; Orantes, M.; Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 2002, 58, 1791–1800. [Google Scholar] [CrossRef]
- Hanseeuw, B.J.; Betensky, R.A.; Mormino, E.C.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Jacobs, H.I.L.; Buckley, R.F.; LaPoint, M.R.; Vannini, P.; et al. PET staging of amyloidosis using striatum. Alzheimer’s Dement. 2018, 14, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Pettigrew, C.; Soldan, A.; Zhu, Y.; Wang, M.-C.; Albert, M.; Rosenberg, P.B.; BIOCARD Research Team. Association between Late-Life Neuropsychiatric Symptoms and Cognitive Decline in Relation to White Matter Hyperintensities and Amyloid Burden. J. Alzheimer’s Dis. 2022, 86, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Donovan, N.J.; Locascio, J.J.; Marshall, G.A.; Gatchel, J.; Hanseeuw, B.J.; Rentz, D.M.; Johnson, K.A.; Sperling, R.A.; Harvard Aging Brain Study. Longitudinal Association of Amyloid Beta and Anxious-Depressive Symptoms in Cognitively Normal Older Adults. Am. J. Psychiatry 2018, 175, 530–537. [Google Scholar] [CrossRef]
- Perin, S.; Harrington, K.D.; Lim, Y.Y.; Ellis, K.; Ames, D.; Pietrzak, R.H.; Schembri, A.; Rainey-Smith, S.; Salvado, O.; Laws, S.M.; et al. Amyloid burden and incident depressive symptoms in preclinical Alzheimer’s disease. J. Affect. Disord. 2018, 229, 269–274. [Google Scholar] [CrossRef]
- Ghahremani, M.; Wang, M.; Chen, H.Y.; Zetterberg, H.; Smith, E.; Ismail, Z.; Alzheimer’s Disease Neuroimaging Initiative. Plasma Phosphorylated Tau at Threonine 181 and Neuropsychiatric Symptoms in Preclinical and Prodromal Alzheimer Disease. Neurology 2023, 100, e683–e693. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, C.M.; Therriault, J.; Pascoal, T.A.; Cheung, V.; Savard, M.; Tuominen, L.; Chamoun, M.; McCall, A.; Celebi, S.; Lussier, F.; et al. Association of locus coeruleus integrity with Braak stage and neuropsychiatric symptom severity in Alzheimer’s disease. Neuropsychopharmacology 2022, 47, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Stomrud, E.; Insel, P.S.; Leuzy, A.; Johansson, P.M.; Smith, R.; Ismail, Z.; Janelidze, S.; Palmqvist, S.; van Westen, D.; et al. Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer’s disease. Transl. Psychiatry 2021, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Narumoto, J.; Morii-Kitani, F.; Niwa, F.; Mizuno, T.; Abe, M.; Takano, H.; Wakasugi, N.; Shima, A.; Sawamoto, N.; et al. Contribution of amyloid and putative Lewy body pathologies in neuropsychiatric symptoms. Int. J. Geriatr. Psychiatry 2023, 38, e5993. [Google Scholar] [CrossRef] [PubMed]
- Naude, J.; Wang, M.; Leon, R.; Smith, E.; Ismail, Z. Tau-PET in early cortical Alzheimer brain regions in relation to mild behavioral impairment in older adults with either normal cognition or mild cognitive impairment. Neurobiol. Aging 2024, 138, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, W.; Li, G.; Xiao, S.; Alzheimer’s Disease Neuroimaging Initiative. Prefrontal Aβ pathology influencing the pathway from apathy to cognitive decline in non-dementia elderly. Transl. Psychiatry 2021, 11, 534. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, A.; Mégret, L.; Lista, S.; Cavedo, E.; Zetterberg, H.; Blennow, K.; Vanmechelen, E.; De Vos, A.; Habert, M.O.; Potier, M.C.; et al. Plasma amyloid β 40/42 ratio predicts cerebral amyloidosis in cognitively normal individuals at risk for Alzheimer’s disease. Alzheimer’s Dement. 2019, 15, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Javaherian, K.; Newman, B.M.; Weng, H.; Hassenstab, J.; Xiong, C.; Coble, D.; Fagan, A.M.; Benzinger, T.; Morris, J.C. Examining the Complicated Relationship between Depressive Symptoms and Cognitive Impairment in Preclinical Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 2019, 33, 15–20. [Google Scholar] [CrossRef]
- Gatchel, J.R.; Rabin, J.S.; Buckley, R.F.; Locascio, J.J.; Quiroz, Y.T.; Yang, H.-S.; Vannini, P.; Amariglio, R.E.; Rentz, D.M.; Properzi, M.; et al. Longitudinal Association of Depression Symptoms with Cognition and Cortical Amyloid Among Community-Dwelling Older Adults. JAMA Netw. Open 2019, 2, e198964. [Google Scholar] [CrossRef]
- Hanseeuw, B.J.; Jonas, V.; Jackson, J.; Betensky, R.A.; Rentz, D.M.; Johnson, K.A.; Sperling, R.A.; Donovan, N.J. Correction: Association of anxiety with subcortical amyloidosis in cognitively normal older adults. Mol. Psychiatry 2020, 25, 2644. [Google Scholar] [CrossRef]
- Ehrenberg, A.J.; Suemoto, C.K.; Franca Resende, E.P.; Petersen, C.; Leite, R.E.P.; Rodriguez, R.D.; Ferretti-Rebustini, R.E.L.; You, M.; Oh, J.; Nitrini, R.; et al. Neuropathologic Correlates of Psychiatric Symptoms in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 66, 115–126. [Google Scholar] [CrossRef]
- Gatchel, J.R.; Donovan, N.J.; Locascio, J.J.; Schultz, A.P.; Becker, J.A.; Chhatwal, J.; Papp, K.V.; Amariglio, R.E.; Rentz, D.M.; Blacker, D.; et al. Depressive Symptoms and Tau Accumulation in the Inferior Temporal Lobe and Entorhinal Cortex in Cognitively Normal Older Adults: A Pilot Study. J. Alzheimer’s Dis. 2017, 59, 975–985. [Google Scholar] [CrossRef]
- Babulal, G.M.; Ghoshal, N.; Head, D.; Vernon, E.K.; Holtzman, D.M.; Benzinger, T.L.S.; Fagan, A.M.; Morris, J.C.; Roe, C.M. Mood Changes in Cognitively Normal Older Adults are Linked to Alzheimer Disease Biomarker Levels. Am. J. Geriatr. Psychiatry 2016, 24, 1095–1104. [Google Scholar] [CrossRef]
- Ramakers, I.H.; Verhey, F.R.; Scheltens, P.; Hampel, H.; Soininen, H.; Aalten, P.; Rikkert, M.O.; Verbeek, M.M.; Spiru, L.; Blennow, K.; et al. Anxiety is related to Alzheimer cerebrospinal fluid markers in subjects with mild cognitive impairment. Psychol. Med. 2013, 43, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Karikari, T.K.; Benedet, A.L.; Ashton, N.J.; Lantero Rodriguez, J.; Snellman, A.; Suárez-Calvet, M.; Saha-Chaudhuri, P.; Lussier, F.; Kvartsberg, H.; Rial, A.M.; et al. Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer’s Disease Neuroimaging Initiative. Mol. Psychiatry 2021, 26, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.M.; Hagen, C.E.; Xu, J.; Chai, X.; Vemuri, P.; Lowe, V.J.; Airey, D.C.; Knopman, D.S.; Roberts, R.O.; Machulda, M.M.; et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimer’s Dement. 2018, 14, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, Y.; Sekiya, M.; Saito, T.; Saido, T.C.; Iijima, K.M. Cognitive and emotional alterations in App knock-in mouse models of Aβ amyloidosis. BMC Neurosci. 2018, 19, 46. [Google Scholar] [CrossRef]
- Latif-Hernandez, A.; Shah, D.; Craessaerts, K.; Saido, T.; Saito, T.; De Strooper, B.; Van der Linden, A.; D’Hooge, R. Subtle behavioral changes and increased prefrontal-hippocampal network synchronicity in APP(NL-G-F) mice before prominent plaque deposition. Behav. Brain Res. 2019, 364, 431–441. [Google Scholar] [CrossRef]
- Milligan Armstrong, A.; Porter, T.; Quek, H.; White, A.; Haynes, J.; Jackaman, C.; Villemagne, V.; Munyard, K.; Laws, S.M.; Verdile, G.; et al. Chronic stress and Alzheimer’s disease: The interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol. Rev. Camb. Philos. Soc. 2021, 96, 2209–2228. [Google Scholar] [CrossRef]
- Guo, Q.; Zheng, H.; Justice, N.J. Central CRF system perturbation in an Alzheimer’s disease knockin mouse model. Neurobiol. Aging 2012, 33, 2678–2691. [Google Scholar] [CrossRef] [PubMed]
- Brureau, A.; Zussy, C.; Delair, B.; Ogier, C.; Ixart, G.; Maurice, T.; Givalois, L. Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiol. Aging 2013, 34, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- España, J.; Giménez-Llort, L.; Valero, J.; Miñano, A.; Rábano, A.; Rodriguez-Alvarez, J.; LaFerla, F.M.; Saura, C.A. Intraneuronal β-amyloid accumulation in the amygdala enhances fear and anxiety in Alzheimer’s disease transgenic mice. Biol. Psychiatry 2010, 67, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Caraci, F.; Spampinato, S.F.; Morgese, M.G.; Tascedda, F.; Salluzzo, M.G.; Giambirtone, M.C.; Caruso, G.; Munafò, A.; Torrisi, S.A.; Leggio, G.M.; et al. Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacol. Res. 2018, 130, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, D.; Moretti, F.; Bartoccetti, A.; Mauro, S.; Crocamo, C.; Carrà, G.; Bartoli, F. The role of BDNF in major depressive disorder, related clinical features, and antidepressant treatment: Insight from meta-analyses. Neurosci. Biobehav. Rev. 2023, 149, 105159. [Google Scholar] [CrossRef] [PubMed]
- Schindowski, K.; Belarbi, K.; Buée, L. Neurotrophic factors in Alzheimer’s disease: Role of axonal transport. Genes Brain Behav. 2008, 7 (Suppl. 1), 43–56. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, Y.; Zeng, Z.; Lian, Y.; Wei, J.; Zhu, H.; Jia, Y.; Zhao, X.; Xu, Y. BDNF gene polymorphisms are associated with Alzheimer’s disease-related depression and antidepressant response. J. Alzheimer’s Dis. 2011, 26, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Elliott, E.; Atlas, R.; Lange, A.; Ginzburg, I. Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3 Kinase signalling mechanism. Eur. J. Neurosci. 2005, 22, 1081–1089. [Google Scholar] [CrossRef]
- Garzon, D.J.; Fahnestock, M. Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J. Neurosci. 2007, 27, 2628–2635. [Google Scholar] [CrossRef]
- Gulaj, E.; Pawlak, K.; Bien, B.; Pawlak, D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci. 2010, 55, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Widner, B.; Leblhuber, F.; Walli, J.; Tilz, G.P.; Demel, U.; Fuchs, D. Tryptophan degradation and immune activation in Alzheimer’s disease. J. Neural Transm. 2000, 107, 343–353. [Google Scholar] [CrossRef]
- Willette, A.A.; Pappas, C.; Hoth, N.; Wang, Q.; Klinedinst, B.; Willette, S.A.; Larsen, B.; Pollpeter, A.; Li, T.; Le, S.; et al. Inflammation, negative affect, and amyloid burden in Alzheimer’s disease: Insights from the kynurenine pathway. Brain Behav. Immun. 2021, 95, 216–225. [Google Scholar] [CrossRef]
- Luterman, J.D.; Haroutunian, V.; Yemul, S.; Ho, L.; Purohit, D.; Aisen, P.S.; Mohs, R.; Pasinetti, G.M. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch. Neurol. 2000, 57, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Caraci, F.; Tascedda, F.; Merlo, S.; Benatti, C.; Spampinato, S.F.; Munafò, A.; Leggio, G.M.; Nicoletti, F.; Brunello, N.; Drago, F.; et al. Fluoxetine Prevents Aβ1–42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Front. Pharmacol. 2016, 7, 389. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhen, H.; Sun, Y.; Rong, S.; Li, B.; Song, Z.; Liu, Z.; Li, Z.; Ding, J.; Yang, H.; et al. Plasma Exo-miRNAs Correlated with AD-Related Factors of Chinese Individuals Involved in Aβ Accumulation and Cognition Decline. Mol. Neurobiol. 2022, 59, 6790–6804. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Hu, P.; Chen, Y.; Sun, H.; Cai, J.; He, X.; Cao, Q.; Yin, M.; Zhang, Y.; Li, Q.; et al. Decreased miR-451a in cerebrospinal fluid, a marker for both cognitive impairment and depressive symptoms in Alzheimer’s disease. Theranostics 2023, 13, 3021–3040. [Google Scholar] [CrossRef] [PubMed]
- Swingler, T.E.; Niu, L.; Pontifex, M.G.; Vauzour, D.; Clark, I.M. The microRNA-455 Null Mouse Has Memory Deficit and Increased Anxiety, Targeting Key Genes Involved in Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 554. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Lai, T.J.; Hemrungrojn, S.; Mohandas, E.; Yun Kim, S.; Nair, G.; Dash, A. Role of Donepezil in the Management of Neuropsychiatric Symptoms in Alzheimer’s Disease and Dementia with Lewy Bodies. CNS Neurosci. Ther. 2016, 22, 159–166. [Google Scholar] [CrossRef]
- Fagiani, F.; Lanni, C.; Racchi, M.; Govoni, S. (Dys)regulation of Synaptic Activity and Neurotransmitter Release by β-Amyloid: A Look Beyond Alzheimer’s Disease Pathogenesis. Front. Mol. Neurosci. 2021, 14, 635880. [Google Scholar] [CrossRef]
- Preda, S.; Govoni, S.; Lanni, C.; Racchi, M.; Mura, E.; Grilli, M.; Marchi, M. Acute β-amyloid administration disrupts the cholinergic control of dopamine release in the nucleus accumbens. Neuropsychopharmacology 2008, 33, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Theofilas, P.; Ehrenberg, A.J.; Dunlop, S.; Di Lorenzo Alho, A.T.; Nguy, A.; Leite, R.E.P.; Rodriguez, R.D.; Mejia, M.B.; Suemoto, C.K.; Ferretti-Rebustini, R.E.L.; et al. Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: A stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimer’s Dement. 2017, 13, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.; Che, P.; Chen, Y.; Jiao, K.; Roberson, E.D.; Wang, Q. Noradrenergic dysfunction in Alzheimer’s disease. Front. Neurosci. 2015, 9, 220. [Google Scholar] [CrossRef]
- Elrod, R.; Peskind, E.R.; DiGiacomo, L.; Brodkin, K.I.; Veith, R.C.; Raskind, M.A. Effects of Alzheimer’s disease severity on cerebrospinal fluid norepinephrine concentration. Am. J. Psychiatry 1997, 154, 25–30. [Google Scholar] [CrossRef]
- Jacobs, H.I.L.; Riphagen, J.M.; Ramakers, I.; Verhey, F.R.J. Alzheimer’s disease pathology: Pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms. Mol. Psychiatry 2021, 26, 897–906. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.-Z. From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits. Front. Neural Circuits 2017, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Barbas, H. Specificity of Primate Amygdalar Pathways to Hippocampus. J. Neurosci. 2018, 38, 10019–10041. [Google Scholar] [CrossRef]
- Sawant, N.; Kshirsagar, S.; Reddy, P.H.; Reddy, A.P. Protective effects of SSRI, Citalopram in mutant APP and mutant Tau expressed dorsal raphe neurons in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166942. [Google Scholar] [CrossRef]
- Sheline, Y.I.; West, T.; Yarasheski, K.; Swarm, R.; Jasielec, M.S.; Fisher, J.R.; Ficker, W.D.; Yan, P.; Xiong, C.; Frederiksen, C.; et al. An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice. Sci. Transl. Med. 2014, 6, 236re234. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.P.; Yin, X.; Sawant, N.; Reddy, P.H. Protective effects of antidepressant citalopram against abnormal APP processing and amyloid beta-induced mitochondrial dynamics, biogenesis, mitophagy and synaptic toxicities in Alzheimer’s disease. Hum. Mol. Genet. 2021, 30, 847–864. [Google Scholar] [CrossRef]
- Yuede, C.M.; Wallace, C.E.; Davis, T.A.; Gardiner, W.D.; Hettinger, J.C.; Edwards, H.M.; Hendrix, R.D.; Doherty, B.M.; Yuede, K.M.; Burstein, E.S.; et al. Pimavanserin, a 5HT2A receptor inverse agonist, rapidly suppresses Aβ production and related pathology in a mouse model of Alzheimer’s disease. J. Neurochem. 2021, 156, 658–673. [Google Scholar] [CrossRef]
- Mowla, A.; Mosavinasab, M.; Pani, A. Does fluoxetine have any effect on the cognition of patients with mild cognitive impairment? A double-blind, placebo-controlled, clinical trial. J. Clin. Psychopharmacol. 2007, 27, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Bartels, C.; Wagner, M.; Wolfsgruber, S.; Ehrenreich, H.; Schneider, A.; Alzheimer’s Disease Neuroimaging Initiative. Impact of SSRI Therapy on Risk of Conversion from Mild Cognitive Impairment to Alzheimer’s Dementia in Individuals with Previous Depression. Am. J. Psychiatry 2018, 175, 232–241. [Google Scholar] [CrossRef]
- Wang, L.Y.; Shofer, J.B.; Rohde, K.; Hart, K.L.; Hoff, D.J.; McFall, Y.H.; Raskind, M.A.; Peskind, E.R. Prazosin for the treatment of behavioral symptoms in patients with Alzheimer disease with agitation and aggression. Am. J. Geriatr. Psychiatry 2009, 17, 744–751. [Google Scholar] [CrossRef] [PubMed]
- David, M.C.B.; Del Giovane, M.; Liu, K.Y.; Gostick, B.; Rowe, J.B.; Oboh, I.; Howard, R.; Malhotra, P.A. Cognitive and neuropsychiatric effects of noradrenergic treatment in Alzheimer’s disease: Systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 1080–1090. [Google Scholar] [CrossRef]
- Holmes, C.; Wilkinson, D.; Dean, C.; Vethanayagam, S.; Olivieri, S.; Langley, A.; Pandita-Gunawardena, N.D.; Hogg, F.; Clare, C.; Damms, J. The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology 2004, 63, 214–219. [Google Scholar] [CrossRef]
- Cummings, J.L.; McRae, T.; Zhang, R.; Donepezil-Sertraline Study Group. Effects of donepezil on neuropsychiatric symptoms in patients with dementia and severe behavioral disorders. Am. J. Geriatr. Psychiatry 2006, 14, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.; Gauthier, S.; Hecker, J.; Vellas, B.; Xu, Y.; Ieni, J.R.; Schwam, E.M. Efficacy and safety of donepezil in patients with more severe Alzheimer’s disease: A subgroup analysis from a randomized, placebo-controlled trial. Int. J. Geriatr. Psychiatry 2005, 20, 559–569. [Google Scholar] [CrossRef]
- Esmaeili, M.H.; Bahari, B.; Salari, A.-A. ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer’s disease. Brain Res. Bull. 2018, 137, 265–276. [Google Scholar] [CrossRef]
- Aminyavari, S.; Zahmatkesh, M.; Khodagholi, F.; Sanati, M. Anxiolytic impact of Apelin-13 in a rat model of Alzheimer’s disease: Involvement of glucocorticoid receptor and FKBP5. Peptides 2019, 118, 170102. [Google Scholar] [CrossRef]
- Amani, M.; Shokouhi, G.; Salari, A.-A. Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer’s disease. Psychopharmacology 2019, 236, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Corpas, R.; Griñán-Ferré, C.; Palomera-Avalos, V.; Porquet, D.; Garcia de Frutos, P.; Franciscato Cozzolino, S.M.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C.; Cardoso, B.R. Melatonin induces mechanisms of brain resilience against neurodegeneration. J. Pineal Res. 2018, 65, e12515. [Google Scholar] [CrossRef]
- Naik, S.; Katariya, R.; Shelke, S.; Patravale, V.; Umekar, M.; Kotagale, N.; Taksande, B. Nattokinase prevents β-amyloid peptide (Aβ1–42) induced neuropsychiatric complications, neuroinflammation and BDNF signalling disruption in mice. Eur. J. Pharmacol. 2023, 952, 175821. [Google Scholar] [CrossRef] [PubMed]
- Sin, Y.Y.; Cameron, R.T.; Schepers, M.; MacLeod, R.; Wright, T.A.; Paes, D.; van den Hove, D.; Willems, E.; Vanmierlo, T.; Prickaerts, J.; et al. Beta-amyloid interacts with and activates the long-form phosphodiesterase PDE4D5 in neuronal cells to reduce cAMP availability. FEBS Lett. 2024. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.-F.; Liu, F.-W.; Xu, L.; Song, S.-S.; Shen, X.-R.; Liu, D.; Hou, X.-Q.; Zhang, H.-T. Rolipram Ameliorates Memory Deficits and Depression-Like Behavior in APP/PS1/tau Triple Transgenic Mice: Involvement of Neuroinflammation and Apoptosis via cAMP Signaling. Int. J. Neuropsychopharmacol. 2023, 26, 585–598. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, N.; Xu, W.; Ye, H.; Liu, K.; Wu, F.; Zhang, M.; Ding, Y.; Zhang, C.; Zhang, H.; et al. Inhibition of Phosphodiesterase-4 Reverses Aβ-Induced Memory Impairment by Regulation of HPA Axis Related cAMP Signaling. Front. Aging Neurosci. 2018, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, F.-F.; Xu, Y.; Fu, H.-R.; Wang, X.-D.; Wang, L.; Chen, W.; Xu, X.-Y.; Gao, Y.-F.; Zhang, J.-G.; et al. The Phosphodiesterase-4 Inhibitor Roflumilast, a Potential Treatment for the Comorbidity of Memory Loss and Depression in Alzheimer’s Disease: A Preclinical Study in APP/PS1 Transgenic Mice. Int. J. Neuropsychopharmacol. 2020, 23, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.; Kamar, S.A.; Rady, H.Y.; Abdelrahim, D.S.; Abdel Hay Ibrahim, N.H.; Lasheen, N.N. A study of roflumilast treatment on functional and structural changes in hippocampus in depressed Adult male Wistar rats. PLoS ONE 2024, 19, e0296187. [Google Scholar] [CrossRef] [PubMed]
- Zabot, G.C.; Medeiros, E.B.; Macarini, B.M.N.; Peruchi, B.B.; Keller, G.S.; Lídio, A.V.; Boaventura, A.; de Jesus, L.C.; de Bem Silveira, G.; Silveira, P.C.L.; et al. The involvement of neuroinflammation in an animal model of dementia and depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 133, 110999. [Google Scholar] [CrossRef]
- Yang, L.; Wu, C.; Li, Y.; Dong, Y.; Wu, C.Y.; Lee, R.H.; Brann, D.W.; Lin, H.W.; Zhang, Q. Long-term exercise pre-training attenuates Alzheimer’s disease-related pathology in a transgenic rat model of Alzheimer’s disease. GeroScience 2022, 44, 1457–1477. [Google Scholar] [CrossRef]
- Rosa, J.M.; Pazini, F.L.; Camargo, A.; Wolin, I.A.V.; Olescowicz, G.; Eslabão, L.B.; Romero, O.B.; Winkelmann-Duarte, E.C.; AL, S.R. Prophylactic effect of physical exercise on Aβ1–40-induced depressive-like behavior and gut dysfunction in mice. Behav. Brain Res. 2020, 393, 112791. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, H.; Enayati, M.; Bashiri, A.; Salari, A.-A. Swimming exercise improves cognitive and behavioral disorders in male NMRI mice with sporadic Alzheimer-like disease. Physiol. Behav. 2020, 223, 113003. [Google Scholar] [CrossRef] [PubMed]
- García-Mesa, Y.; Pareja-Galeano, H.; Bonet-Costa, V.; Revilla, S.; Gómez-Cabrera, M.C.; Gambini, J.; Giménez-Llort, L.; Cristòfol, R.; Viña, J.; Sanfeliu, C. Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology 2014, 45, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Tolar, M.; Hey, J.; Power, A.; Abushakra, S. Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer’s Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int. J. Mol. Sci. 2021, 22, 6355. [Google Scholar] [CrossRef] [PubMed]
- Sideris, D.I.; Danial, J.S.H.; Emin, D.; Ruggeri, F.S.; Xia, Z.; Zhang, Y.P.; Lobanova, E.; Dakin, H.; De, S.; Miller, A.; et al. Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer’s disease. Brain Commun. 2021, 3, fcab147. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, M.; Nathan, S.; Smith, E.E.; McGirr, A.; Goodyear, B.; Ismail, Z. Functional connectivity and mild behavioral impairment in dementia-free elderly. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2023, 9, e12371. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Front. Aging Neurosci. 2022, 14, 870517. [Google Scholar] [CrossRef] [PubMed]
- King, A.; Bodi, I.; Troakes, C. The Neuropathological Diagnosis of Alzheimer’s Disease-The Challenges of Pathological Mimics and Concomitant Pathology. Brain Sci. 2020, 10, 479. [Google Scholar] [CrossRef]
- Fischer, C.E.; Qian, W.; Schweizer, T.A.; Millikin, C.P.; Ismail, Z.; Smith, E.E.; Lix, L.M.; Shelton, P.; Munoz, D.G. Lewy Bodies, Vascular Risk Factors, and Subcortical Arteriosclerotic Leukoencephalopathy, but not Alzheimer Pathology, are Associated with Development of Psychosis in Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 50, 283–295. [Google Scholar] [CrossRef]
- Miao, R.; Chen, H.-Y.; Robert, P.; Smith, E.E.; Ismail, Z.; MEMENTO Study Group. White matter hyperintensities and mild behavioral impairment: Findings from the MEMENTO cohort study. Cereb. Circ.-Cogn. Behav. 2021, 2, 100028. [Google Scholar] [CrossRef]
- Naude, J.P.; Gill, S.; Hu, S.; McGirr, A.; Forkert, N.D.; Monchi, O.; Stys, P.K.; Smith, E.E.; Ismail, Z.; Alzheimer’s Disease Neuroimaging Initiative. Plasma Neurofilament Light: A Marker of Neurodegeneration in Mild Behavioral Impairment. J. Alzheimer’s Dis. 2020, 76, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Creese, B.; Arathimos, R.; Brooker, H.; Aarsland, D.; Corbett, A.; Lewis, C.; Ballard, C.; Ismail, Z. Genetic risk for Alzheimer’s disease, cognition, and mild behavioral impairment in healthy older adults. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 13, e12164. [Google Scholar] [CrossRef] [PubMed]
- Koppel, J.; Acker, C.; Davies, P.; Lopez, O.L.; Jimenez, H.; Azose, M.; Greenwald, B.S.; Murray, P.S.; Kirkwood, C.M.; Kofler, J.; et al. Psychotic Alzheimer’s disease is associated with gender-specific tau phosphorylation abnormalities. Neurobiol. Aging 2014, 35, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Llort, L.; García, Y.; Buccieri, K.; Revilla, S.; Suñol, C.; Cristofol, R.; Sanfeliu, C. Gender-Specific Neuroimmunoendocrine Response to Treadmill Exercise in 3xTg-AD Mice. Int. J. Alzheimer’s Dis. 2010, 2010, 128354. [Google Scholar] [CrossRef] [PubMed]
- Scholl, M.; Ossenkoppele, R.; Strandberg, O.; Palmqvist, S.; Swedish BioFINDER Study; Jogi, J.; Ohlsson, T.; Smith, R.; Hansson, O. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer’s disease. Brain J. Neurol. 2017, 140, 2286–2294. [Google Scholar] [CrossRef]
- Falgàs, N.; Allen, I.E.; Spina, S.; Grant, H.; Pina Escudero, S.D.; Merrilees, J.; Gearhart, R.; Rosen, H.J.; Kramer, J.H.; Seeley, W.W.; et al. The severity of neuropsychiatric symptoms is higher in early-onset than late-onset Alzheimer’s disease. Eur. J. Neurol. 2022, 29, 957–967. [Google Scholar] [CrossRef]
- Van Loenhoud, A.C.; Groot, C.; Bocancea, D.I.; Barkhof, F.; Teunissen, C.; Scheltens, P.; van de Flier, W.M.; Ossenkoppele, R. Association of Education and Intracranial Volume with Cognitive Trajectories and Mortality Rates across the Alzheimer Disease Continuum. Neurology 2022, 98, e1679–e1691. [Google Scholar] [CrossRef]
Reference | Study Type | Aims of the Study | Study Population | MBI Assessment | Amyloid and/or Tau Pathology Assessment | Main Findings |
---|---|---|---|---|---|---|
[54] (data from ADNI) | Longitudinal | To investigate the modulatory effects of AD pathology on the relationship between MBI and cognitive impairment | 1129 non-demented participants (543 with MCI, 586 with normal cognition) | NPI-Q | Amyloid: Amyloid PET Tau: tau PET | Cross-sectionally: MBI was related with increased amyloid burden At baseline, Aβ partially mediated the relationship between MBI and cognitive impairment (global cognition, memory, executive function, language) No significant association was found between MBI and tau burden, and neurodegeneration assessed by FDG PET Longitudinally: MBI was associated with a more rapid increase in amyloid burden and an increased risk of cognitive decline |
[58] (data from BIOCARD study) | Longitudinal | To investigate whether amyloid burden and WMH affect the relationship between NPS and cognitive decline in non-demented individuals | 193 cognitively intact individuals | NPI (and GDS) | Amyloid: Amyloid PET | NPS were unrelated to amyloid or WMH burden Amyloid burden did not affect the relationship between NPS and cognitive decline |
[61] (data from ADNI) | Longitudinal | To investigate the relationship between MBI and p-tau181, cognitive performance and incident dementia | 571 non-demented individuals (201 with normal cognition, 370 with MCI) | NPI MBI defined as NPI > 0 in both visits (baseline and year 1) NPS-not-MBI: defined as NPI > 0 in 1 visit No-NPS: NPI = 0 in both visits | Tau: Plasma p-tau181 | Cross-sectionally, MBI (but not NPS-not-MBI) was related to higher levels of plasma p-tau181, compared to no-NPS. Longitudinally, MBI was related to higher levels of p-tau181, as well as cognitive decline (memory, executive function) |
[62] | Cross-sectional | To investigate the relationship between the integrity of the locus coeruleus-norepinephrine system, AD stage, and NPS, independent of amyloid or tau burden | 118 individuals with normal cognition, 44 with MCI, 28 with AD dementia | MBI assessed by MBI-C | Tau and amyloid PET (locus coeruleus-norepinephrine system integrity was assessed by neuromelanin-sensitive MRI) | In tau-positive participants, higher LC signal was correlated with more severe NPS, independent of tau or amyloid burden This correlation was driven mainly by the MBI domain of impulse dyscontrol |
[63] (data from the BioFINDER-2 study) | Cross-sectional | To investigate the relationship between MBI and tau pathology | 50 cognitively normal individuals with amyloid pathology (defined by the CSF Aβ42/Aβ40 ratio) | MBI assessed by MBI-C | Tau: tau PET and CSF p-tau181 | Increased signal in entorhinal cortex/hippocampus (Braak region I–II) in tau PET and p-tau181 levels in the CSF were correlated with higher MBI-C scores These relationships remained significant after adjustments for cognitive function |
[55] (data from the TRIAD cohort | Cross-sectional | To investigate the relationship between MBI and AD biomarkers (amyloid, tau, neurodegeneration) | 96 cognitively normal individuals | MBI assessed by MBI-C | Tau and amyloid PET | MBI-C score was associated with increased amyloid burden in amyloid PET No significant associations were detected between tau pathology and MBI-C scores |
[20] (data from the NACC) | Longitudinal | To investigate whether MBI and MBI domains could predict the progression to clinical and neuropathologically confirmed AD | 11.372 cognitively normal individuals at baseline, 300 of which with postmortem data | NPI-Q | Postmortem samples and neuropathological examination (amyloid plaques, NFTs) | MBI could predict the progression to both the clinical and the neuropathologically confirmed diagnosis of AD [defined by intermediate or high NIA-AA ADNC (ABC score)]. Psychosis was the MBI domain with the largest effect on this association, followed by social inappropriateness, impulse dyscontrol, decreased motivation and affective dysregulation MBI could not predict the progression to AD with none or low NIA-AA ADNC |
[64] | Cross-sectional | To investigate the differences in NPS between preclinical/prodromal AD versus prodromal PDD/DLB | 103 non-demented individuals | NPI-Q | Amyloid: amyloid PET (dopaminergic neurodegeneration also assessed by DAT-SPECT) | MBI-psychosis scores were higher in Group 1 (amyloid-positive, abnormal DAT-SPECT) compared to Group 5 (normal cognition, amyloid-negative, normal DAT-SPECT) MBI total scores and MBI impulse dyscontrol scores in Group 4 (MCI unlikely due to AD, normal DAT-SPECT) were higher compared to Group 5 |
[9] (data from two cohorts: ADNI and MEMENTO) | Cross-sectional and longitudinal | To investigate cross-sectioally and longitudinally the relationship between MBI in individuals with MCI and ADCSF biomarkers (amyloid, p-tau, total-tau) | 510 individuals with MCI (352 from ADNI, 158 from MEMENTO), with available NPI or NPI-Q data in two consecutive visits | NPI or NPI-Q MBI defined as NPI > 0 in both visits NPS-not-MBI: defined as NPI > 0 in 1 visit No-NPS: NPI = 0 in both visits | Amyloid and tau: CSF (Aβ42, Aβ40, p-tau, t-tau, and Aβ42/Aβ40, p-tau/ Aβ42, t-tau/Aβ42 ratios) | In ADNI, cross-sectionally: Compared to no-NPS, MBI was related to reduced Aβ42, reduced Aβ42/40, increased p-tau, t-tau, p-tau/Aβ42, and t-tau/Aβ42. Compared to no-NPS, NPS-not-MBI was related only to reduced Aβ42/40. In ADNI, longitudinally: MBI was related to reduced Aβ42 and Aβ42/40, increased p-tau, t-tau, p-tau/Aβ42 and t-tau/Aβ42. NPS-not-MBI was related to increased t-tau. In MEMENTO, cross-sectionally: Compared to no-NPS, MBI was related to reduced Aβ42, increased p-tau, p-tau/Aβ42, and t-tau/Aβ42. No differences were detected between NPS-not-MBI and no-NPS. In MEMENTO, longitudinally: MBI was related to increased p-tau, p-tau/Aβ42, t-tau/Aβ42 |
[29] (data from ADNI) | Cross-sectional | To investigate the relationship between MBI and plasma Ab42/Ab40 | 139 non-demented individuals (86 with normal cognition, 53 with MCI) | NPI | Amyloid: Plasma Ab42/Ab40 | Higher MBI score was related to lower Ab42/Ab40 Affective dysregulation, but neither impulse dyscontrol nor impaired drive/motivation were related to Ab42/Ab40 |
[65] (data from ADNI) | Longitudinal | To investigate the relationship between MBI and cortical tau pathology in early-stage AD | 442 non-demented individuals (283 with normal cognition, 157 with MCI) | NPI MBI defined as NPI > 0 in both visits NPS-not-MBI: defined as NPI > 0 in 1 visit No-NPS: NPI = 0 in both visits | Amyloid and Tau: amyloid and tau PET | In the group with amyloid pathology, MBI (but not NPS-not-MBI) was related to tau uptake in Braak I (right and left entorhinal cortex) and Braak III(left and right parahippocampus, amygdala, posterior cingulate gyrus, fusiform, and lingual gyrus) regions. In the group without amyloid pathology, MBI was not related to tau in the Braak I, but was negatively associated with tau in Braak III region. Braak II was not included in the study for technical reasons |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelopoulou, E.; Bougea, A.; Hatzimanolis, A.; Scarmeas, N.; Papageorgiou, S.G. Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology. Cells 2024, 13, 1164. https://doi.org/10.3390/cells13131164
Angelopoulou E, Bougea A, Hatzimanolis A, Scarmeas N, Papageorgiou SG. Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology. Cells. 2024; 13(13):1164. https://doi.org/10.3390/cells13131164
Chicago/Turabian StyleAngelopoulou, Efthalia, Anastasia Bougea, Alexandros Hatzimanolis, Nikolaos Scarmeas, and Sokratis G. Papageorgiou. 2024. "Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology" Cells 13, no. 13: 1164. https://doi.org/10.3390/cells13131164
APA StyleAngelopoulou, E., Bougea, A., Hatzimanolis, A., Scarmeas, N., & Papageorgiou, S. G. (2024). Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology. Cells, 13(13), 1164. https://doi.org/10.3390/cells13131164