Enhancing Dental Pulp Stem Cell Proliferation and Odontogenic Differentiation with Protein Phosphatase 1-Disrupting Peptide: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Metabolic Activity and Cell Proliferation
2.3. Immunostaining of F-Actin Cytoskeleton and Nucleus
2.4. Real-Time Quantitative Polymerase Chain Reaction
2.5. Alkaline Phosphatase (ALP) Activity and Cytochemical Staining
2.6. Statistical Analysis
3. Results
3.1. Metabolic Activity and Cell Proliferation of DPSCs Exposed to MSS1
3.2. Gene Expression and ALP Activity of DPSCs Exposed to MSS1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, L.; Kim, S.G.; Gong, Q.; Zhong, J.; Wang, S.; Zhou, X.; Ye, L.; Ling, J.; Mao, J.J. Regenerative Endodontics for Adult Patients. J. Endod. 2017, 43, S57–S64. [Google Scholar] [CrossRef]
- Kim, S.G.; Malek, M.; Kahler, B. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018, 51, 1367–1388. [Google Scholar] [CrossRef]
- Elnawam, H.; Abdelmougod, M.; Mobarak, A.; Hussein, M. Regenerative Endodontics and Minimally Invasive Dentistry: Intertwining Paths Crossing Over Into Clinical Translation. Front. Bioeng. Biotecnol. 2022, 10, 837639. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13615–13630. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem Cell Properties of Human Dental Pulp Stem Cells. J. Dent. Res. 2002, 81, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Sui, B.; Fu, Y.; Kou, X. Dental Pulp Stem Cells: From Discovery to Clinical Application. J. Endod. 2020, 46, S46–S55. [Google Scholar] [CrossRef]
- Liang, C.; Liao, L.; Tian, W. Stem Cell-based Dental Pulp Regeneration: Insights From Signaling Pathways. Stem Cell Rev. Rep. 2021, 17, 1251–1263. [Google Scholar] [CrossRef]
- Chen, S.; Xie, H.; Zhao, S.; Wang, S.; Wei, X. The Genes Involved in Dentinogenesis. Organogenesis 2022, 18, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, D.S.; Auh, Q.S.; Yi, J.K.; Moon, S.U.; Kim, E.C. Role of Protein Phosphatase 1 in Angiogenesis and Odontoblastic Differentiation of Human Dental Pulp Cells. J. Endod. 2017, 43, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Ceulemans, H.; Bollen, M. Functional Diversity of Protein Phosphatase-1, a Cellular Economizer and Reset Button. Physiol. Rev. 2004, 84, 1–39. [Google Scholar] [CrossRef]
- Chen, M.J.; Dixon, J.E.; Manning, G. Genomics and evolution of protein phosphatases. Sci. Signal. 2017, 10, eaag1796. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Beullens, M.; Bollen, M.; Van Eynde, A. Functions and therapeutic potential of protein phosphatase 1: Insights from mouse genetics. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2019, 1866, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sinha, N.; Vijayaraghavan, S.; Chen, Y. Expression of Protein Phosphatase PP1 Isoforms in Developing Mouse Embryos. Biol. Reprod. 2011, 85, 255. [Google Scholar] [CrossRef]
- Rajgopal, A.; Young, D.W.; Mujeeb, K.A.; Stein, J.L.; Lian, J.B.; Van Wijnen, A.J.; Stein, G.S. Mitotic Control of RUNX2 Phosphorylation by Both CDK1/Cyclin B Kinase and PP1 / PP2A Phosphatase in Osteoblastic Cells. J. Cell Biochem. 2007, 100, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Gong, L.-L.; Yuan, D.; Deng, M.; Zeng, X.-M.; Chen, L.-L.; Zhang, L.; Yan, Q.; Liu, J.-P.; Hu, X.-H.; et al. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ. 2010, 17, 1448–1462. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chalifour, L.E.; Paudel, H.K. Phosphorylation of protein phosphatase 1 by cyclin-dependent protein kinase 5 during nerve growth factor-induced PC12 cell differentiation. J. Biol. Chem. 2007, 282, 6619–6628. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, J.; Beullens, M.; Sukackaite, R.; Qian, J.; Lesage, B.; Hart, D.J.; Bollen, M.; Köhn, M. Development of a peptide that selectively activates protein phosphatase-1 in living cells. Angew. Chem. Int. Ed. 2012, 51, 10054–10059. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hoermann, B.; Pavic, K.; Trebacz, M. Interrogating PP1 Activity in the MAPK Pathway with Optimized PP1-Disrupting Peptides. Chembiochem 2019, 20, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.V.; Freitas, M.J.; Santiago, J.; Jones, S.; Guimarães, S.; Vijayaraghavan, S.; Publicover, S.; Colombo, G.; Howl, J.; Fardilha, M. Disruption of protein phosphatase 1 complexes with the use of bioportides as a novel approach to target sperm motility. Fertil. Steril. 2021, 115, 348–362. [Google Scholar] [CrossRef]
- Langenbach, F.; Handchel, J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res. Ther. 2013, 4, 117. [Google Scholar] [CrossRef]
- El Karim, I.A.; Cooper, P.R.; About, I.; Tomson, P.L.; Lundy, F.T.; Duncan, H.F. Deciphering Reparative Processes in the Inflamed Dental Pulp. Front. Dent. Med. 2021, 2, 651219. [Google Scholar] [CrossRef]
- Hendrickx, A.; Beullens, M.; Ceulemans, H.; Abt, T.D.; Van Eynde, A.; Nicolaescu, E.; Lesage, B.; Bollen, M. Docking Motif-Guided Mapping of the Interactome of Protein Phosphatase-1. Chem. Biol. 2009, 16, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Pirkmajer, S.; Chibalin, A.V. Serum starvation: Caveat emptor. Am. J. Physiol. Physiol. 2011, 301, 272–279. [Google Scholar] [CrossRef]
- Yurube, T.; Buchser, W.J.; Moon, H.J.; Hartman, R.A.; Takayama, K.; Kawakami, Y.; Nishida, K.; Kurosaka, M.; Vo, N.V.; Kang, J.D.; et al. Serum and nutrient deprivation increase autophagic flux in intervertebral disc annulus fibrosus cells: An in vitro experimental study. Eur. Spine J. 2019, 28, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Pawar, M.; Pawar, V.; Renugalakshmi, A.; Albrakati, A.; Uthman, U.S.; Dewan, H.; Mugri, M.; Sayed, M.; Bhandi, S.; Patil, V.R.; et al. Glucose and Serum Deprivation Led to Altered Proliferation, Differentiation Potential and AMPK Activation in Stem Cells from Human Deciduous Tooth. J. Pers. Med. 2021, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; De Munter, S.; Van Dessel, N.; Lesage, B.; Heroes, E.; Boens, S.; Beullens, M.; Van Eynde, A.; Bollen, M. The selective inhibition of protein phosphatase-1 results in mitotic catastrophe and impaired tumor growth. J. Cell Sci. 2015, 128, 4526–4537. [Google Scholar] [CrossRef]
- Ramos, F.; Villoria, M.T.; Alonso-rodríguez, E.; Clemente-blanco, A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019, 3, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Stover, D.A.; Verrelli, B.C. Comparative Vertebrate Evolutionary Analyses of Type I Collagen: Potential of COL1a1 Gene Structure and Intron Variation for Common Bone-Related Diseases. Mol. Biol. Evol. 2011, 28, 533–542. [Google Scholar] [CrossRef]
- Ching, H.S.; Ponnuraj, K.T.; Luddin, N.; Ab Rahman, I.; Ghani, N.R.N.A. Early odontogenic differentiation of dental pulp stem cells treated with nanohydroxyapatite-silica-glass ionomer cement. Polymers 2020, 12, 2125. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Shi, S.; Habelitz, S.; Gao, C.; DenBesten, P. MEPE is downregulated as dental pulp stem cells differentiate. Arch. Oral Biol. 2005, 50, 923–928. [Google Scholar] [CrossRef]
- Wei, X.; Liu, L.; Ms, X.Z.; Ms, F.Z.; Ling, J. The Effect of Matrix Extracellular Phosphoglycoprotein and Its Downstream Osteogenesis-related Gene Expression on the Proliferation and Differentiation of Human Dental Pulp Cells. J. Endod. 2012, 38, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pethö, A.; Ganapathy, A.; George, A. DPP promotes odontogenic differentiation of DPSCs through NF-κB signaling. Sci. Rep. 2021, 11, 22076. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, N.; Okiji, T. Odontoblasts: Specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit. Anom. 2016, 56, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Meller, C.; Schäfer, E. Human Primary Odontoblast-like Cell Cultures—A Focused Review Regarding Cell Characterization. J. Clin. Med. 2022, 11, 5296. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.L.; Wu, B.L.; He, W.X.; Zhang, Y.Q.; Zhao, H.P.; Xie, Z.H. Effect of antisense oligonucleotide against mouse dentine matrix protein 1 on mineralization ability and calcium ions metabolism in odontoblast-like cell line MDPC-23. Int. Endod. J. 2006, 39, 527–537. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, C.; Zhao, L.; Zhang, X.; Su, Y. The Emerging Role of Protein Phosphatase in Regeneration. Life 2023, 13, 1216. [Google Scholar] [CrossRef]
Gene | Assay ID |
---|---|
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) | qHsaCED0038674 |
Alkaline phosphatase (ALPL) | qHsaCED0045991 |
Bone morphogenic protein-2 (BMP-2) | qHsaCID0015400 |
Collagen type I alpha I chain (Col1α1) | qHsaCED0043248 |
Dentin sialo phosphoprotein (DSPP) | qHsaCED0002962 |
Integrin binding sialoprotein (IBSP) | qHsaCED0002933 |
Matrix extracellular phosphoglycoprotein (MEPE) | qHsaCED0045573 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobrock, A.; Matos, B.; Patrício, D.; Grenho, L.; Howl, J.; Fardilha, M.; Gomes, P.S. Enhancing Dental Pulp Stem Cell Proliferation and Odontogenic Differentiation with Protein Phosphatase 1-Disrupting Peptide: An In Vitro Study. Cells 2024, 13, 1143. https://doi.org/10.3390/cells13131143
Kobrock A, Matos B, Patrício D, Grenho L, Howl J, Fardilha M, Gomes PS. Enhancing Dental Pulp Stem Cell Proliferation and Odontogenic Differentiation with Protein Phosphatase 1-Disrupting Peptide: An In Vitro Study. Cells. 2024; 13(13):1143. https://doi.org/10.3390/cells13131143
Chicago/Turabian StyleKobrock, Anna, Bárbara Matos, Daniela Patrício, Liliana Grenho, John Howl, Margarida Fardilha, and Pedro S. Gomes. 2024. "Enhancing Dental Pulp Stem Cell Proliferation and Odontogenic Differentiation with Protein Phosphatase 1-Disrupting Peptide: An In Vitro Study" Cells 13, no. 13: 1143. https://doi.org/10.3390/cells13131143
APA StyleKobrock, A., Matos, B., Patrício, D., Grenho, L., Howl, J., Fardilha, M., & Gomes, P. S. (2024). Enhancing Dental Pulp Stem Cell Proliferation and Odontogenic Differentiation with Protein Phosphatase 1-Disrupting Peptide: An In Vitro Study. Cells, 13(13), 1143. https://doi.org/10.3390/cells13131143