Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate
Abstract
:1. Introduction
2. Endocannabinoid–Glutamate Interplay
3. Effects of Cannabis on Presynaptic Glutamatergic Neurotransmission
4. Effects of Cannabis on Postsynaptic Glutamatergic Neurotransmission
4.1. Effects of Cannabis on Glutamate Receptors
4.2. Effect of Cannabis on Downstream Signaling of Glutamate Receptors
5. Consequences of Cannabinoid-Mediated Alterations in Glutamatergic Signaling
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davis, E., Jr.; Hansen, C.; Alas, H. Where Is Marijuana Legal? A Guide to Marijuana Legalization. 2023. Available online: https://www.usnews.com/news/best-states/articles/where-is-marijuana-legal-a-guide-to-marijuana-legalization (accessed on 15 April 2024).
- Substance Abuse and Mental Health Services Administration. 2020. Available online: https://www.samhsa.gov/data/ (accessed on 13 June 2022).
- World Drug Report 2021. Available online: https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html (accessed on 13 June 2022).
- Richardson, K.A.; Hester, A.K.; McLemore, G.L. Prenatal cannabis exposure—The “first hit” to the endocannabinoid system. Neurotoxicol. Teratol. 2016, 58, 5–14. [Google Scholar] [CrossRef]
- Volkow, N.D.; Han, B.; Compton, W.M.; McCance-Katz, E.F. Self-reported Medical and Nonmedical Cannabis Use Among Pregnant Women in the United States. JAMA 2019, 322, 167. [Google Scholar] [CrossRef]
- Joseph, T.; Jones, A.B.; Shu, I. A comparison of meconium screening outcomes as an indicator of the impact of state-level relaxation of marijuana policy. Drug Alcohol Depend. 2015, 156, e104–e105. [Google Scholar]
- Freeman, T.P.; Hindocha, C.; Green, S.F.; Bloomfield, M.A.P. Medicinal use of cannabis based products and cannabinoids. BMJ 2019, 365, l1141. [Google Scholar] [CrossRef]
- Howlett, A.C. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef]
- Tsou, K.; Brown, S.; Sanudo-Pena, M.C.; Mackie, K.; Walker, J.M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998, 83, 393–411. [Google Scholar] [CrossRef]
- Mailleux, P.; Vanderhaeghen, J.J. Distribution of neuronal cannabinoid receptor in the adult rat brain: A comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 1992, 48, 655–668. [Google Scholar] [CrossRef]
- Westlake, T.M.; Howlett, A.C.; Bonner, T.I.; Matsuda, L.A.; Herkenham, M. Cannasbinoid receptor binding and messenger RNA expression in human brain: An in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 1994, 63, 637–652. [Google Scholar] [CrossRef]
- Glass, M.; Dragunow, M.; Faull, R.L. Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 1997, 77, 299–318. [Google Scholar] [CrossRef]
- Mackie, K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb. Exp. Pharmacol. 2005, 168, 299–325. [Google Scholar]
- Ameri, A. The effects of cannabinoids on the brain. Prog. Neurobiol. 1999, 58, 315–348. [Google Scholar] [CrossRef]
- Schatz, A.R.; Lee, M.; Condie, R.B.; Pulaski, J.T.; Kaminski, N.E. Cannabinoid receptors CB1 and CB2: A characterization of expression and adenylate cyclase modulation within the immune system. Toxicol. Appl. Pharmacol. 1997, 142, 278–287. [Google Scholar] [CrossRef]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef]
- Turcotte, C.; Blanchet, M.-R.; Laviolette, M.; Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci. 2016, 73, 4449–4470. [Google Scholar] [CrossRef]
- Walter, L.; Franklin, A.; Witting, A.; Wade, C.; Xie, Y.; Kunos, G.; Mackie, K.; Stella, N. Nonpsychotropic Cannabinoid Receptors Regulate Microglial Cell Migration. J. Neurosci. 2003, 23, 1398–1405. [Google Scholar] [CrossRef]
- Ramirez, S.H.; Hasko, J.; Skuba, A.; Fan, S.; Dykstra, H.; McCormick, R.; Reichenbach, N.; Krizbai, I.; Mahadevan, A.; Zhang, M.; et al. Activation of Cannabinoid Receptor 2 Attenuates Leukocyte-Endothelial Cell Interactions and Blood-Brain Barrier Dysfunction under Inflammatory Conditions. J. Neurosci. 2012, 32, 4004–4016. [Google Scholar] [CrossRef]
- Lu, H.-C.; Mackie, K. An Introduction to the Endogenous Cannabinoid System. Biol. Psychiatry 2016, 79, 516–525. [Google Scholar] [CrossRef]
- McEntee, W.J.; Crook, T.H. Glutamate: Its role in learning, memory, and the aging brain. Psychopharmacology 1993, 111, 391–401. [Google Scholar] [CrossRef]
- Fonnum, F. Glutamate: A Neurotransmitter in Mammalian Brain. J. Neurochem. 1984, 42, 1–11. [Google Scholar] [CrossRef]
- Shigeri, Y.; Seal, R.P.; Shimamoto, K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res. Brain Res. Rev. 2004, 45, 250–265. [Google Scholar] [CrossRef]
- Molnar, E. Glutamate receptor. In Encyclopedia of Signaling Molecules, 2nd ed.; Choi, S., Ed.; Springer: Cham, Switzerland, 2018; pp. 2138–2146. [Google Scholar] [CrossRef]
- Sheinin, A.; Talani, G.; Davis, M.I.; Lovinger, D.M. Endocannabinoid- and mGluR5-dependent short-term synaptic depression in an isolated neuron/bouton preparation from the hippocampal CA1 region. J. Neurophysiol. 2008, 100, 1041–1052. [Google Scholar] [CrossRef]
- Varma, N.; Carlson, G.C.; Ledent, C.; Alger, B.E. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J. Neurosci. 2001, 21, RC188. [Google Scholar] [CrossRef]
- Barria, A.; Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 2005, 48, 289–301. [Google Scholar] [CrossRef]
- Teyler, T.J.; Di Scenna, P. Long-term potentiation. Annu. Rev. Neurosci. 1987, 10, 131–161. [Google Scholar] [CrossRef]
- Frey, U.; Huang, Y.Y.; Kandel, E.R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 1993, 260, 1661–1664. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Kandel, E.R. Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn. Mem. 1994, 1, 74–82. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Abel, T.; Kandel, E.R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 1994, 265, 1104–1107. [Google Scholar] [CrossRef]
- Alberini, C.M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 2009, 89, 121–145. [Google Scholar] [CrossRef]
- Kandel, E.R. The molecular biology of memory storage: A dialogue between genes and synapses. Science 2001, 294, 1030–1038. [Google Scholar] [CrossRef]
- Rosenblum, K.; Futter, M.; Voss, K.; Erent, M.; Skehel, P.A.; French, P.; Obosi, L.; Jones, M.W.; Bliss, T.V. The role of extracellular regulated kinases I/II in late-phase long-term potentiation. J. Neurosci. 2002, 22, 5432–5441. [Google Scholar] [CrossRef]
- Opazo, P.; Watabe, A.M.; Grant, S.G.; O’Dell, T.J. Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J. Neurosci. 2003, 23, 3679–3688. [Google Scholar] [CrossRef]
- Alger, B.E. Retrograde signaling in the regulation of synaptic transmission: Focus on endocannabinoids. Prog. Neurobiol. 2002, 68, 247–286. [Google Scholar] [CrossRef]
- Gerdeman, G.L.; Ronesi, J.; Lovinger, D.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 2002, 5, 446–451. [Google Scholar] [CrossRef]
- Robbe, D.; Kopf, M.; Remaury, A.; Bockaert, J.; Manzoni, O.J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 2002, 99, 8384–8388. [Google Scholar] [CrossRef]
- Chevaleyre, V.; Castillo, P.E. Heterosynaptic LTD of hippocampal GABAergic synapses: A novel role of endocannabinoids in regulating excitability. Neuron 2003, 38, 461–472. [Google Scholar] [CrossRef]
- Marsicano, G.; Wotjak, C.T.; Azad, S.C.; Bisogno, T.; Rammes, G.; Cascio, M.G.; Hermann, H.; Tang, J.; Hofmann, C.; Zieglgansberger, W.; et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002, 418, 530–534. [Google Scholar] [CrossRef]
- Berliocchi, L.; Bano, D.; Nicotera, P. Ca2+ signals and death programmes in neurons. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 2255–2258. [Google Scholar] [CrossRef]
- Shen, M.; Thayer, S.A. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol. Pharmacol. 1998, 54, 459–462. [Google Scholar] [CrossRef]
- Liu, Q.; Bhat, M.; Bowen, W.D.; Cheng, J. Signaling pathways from cannabinoid receptor-1 activation to inhibition of N-methyl-D-aspartic acid mediated calcium influx and neurotoxicity in dorsal root ganglion neurons. J. Pharmacol. Exp. Ther. 2009, 331, 1062–1070. [Google Scholar] [CrossRef]
- Castillo, P.E.; Younts, T.J.; Chavez, A.E.; Hashimotodani, Y. Endocannabinoid signaling and synaptic function. Neuron 2012, 76, 70–81. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, J.; Fan, N.; Teng, Z.Q.; Wu, Y.; Yang, H.; Tang, Y.P.; Sun, H.; Song, Y.; Chen, C. Delta9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell 2013, 155, 1154–1165. [Google Scholar] [CrossRef]
- Pinky, P.D.; Bloemer, J.; Smith, W.D.; Du, Y.; Heslin, R.T.; Setti, S.E.; Pfitzer, J.C.; Chowdhury, K.; Hong, H.; Bhattacharya, S.; et al. Prenatal Cannabinoid Exposure Elicits Memory Deficits Associated with Reduced PSA-NCAM Expression, Altered Glutamatergic Signaling, and Adaptations in Hippocampal Synaptic Plasticity. Cells 2023, 12, 2525. [Google Scholar] [CrossRef]
- Mereu, G.; Fa, M.; Ferraro, L.; Cagiano, R.; Antonelli, T.; Tattoli, M.; Ghiglieri, V.; Tanganelli, S.; Gessa, G.L.; Cuomo, V. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proc. Natl. Acad. Sci. USA 2003, 100, 4915–4920. [Google Scholar] [CrossRef]
- Abush, H.; Akirav, I. Cannabinoids modulate hippocampal memory and plasticity. Hippocampus 2010, 20, 1126–1138. [Google Scholar] [CrossRef]
- Hill, M.N.; Froc, D.J.; Fox, C.J.; Gorzalka, B.B.; Christie, B.R. Prolonged cannabinoid treatment results in spatial working memory deficits and impaired long-term potentiation in the CA1 region of the hippocampus in vivo. Eur. J. Neurosci. 2004, 20, 859–863. [Google Scholar] [CrossRef]
- Rodriguez de Fonseca, F.; Del Arco, I.; Bermudez-Silva, F.J.; Bilbao, A.; Cippitelli, A.; Navarro, M. The endocannabinoid system: Physiology and pharmacology. Alcohol Alcohol. 2005, 40, 2–14. [Google Scholar] [CrossRef]
- Turu, G.; Hunyady, L. Signal transduction of the CB1 cannabinoid receptor. J. Mol. Endocrinol. 2010, 44, 75–85. [Google Scholar] [CrossRef]
- Howlett, A.C.; Blume, L.C.; Dalton, G.D. CB(1) cannabinoid receptors and their associated proteins. Curr. Med. Chem. 2010, 17, 1382–1393. [Google Scholar] [CrossRef]
- Hanlon, K.E.; Vanderah, T.W. Constitutive activity at the cannabinoid CB(1) receptor and behavioral responses. Methods Enzym. 2010, 484, 3–30. [Google Scholar]
- Renard, J.; Vitalis, T.; Rame, M.; Krebs, M.O.; Lenkei, Z.; Le Pen, G.; Jay, T.M. Chronic cannabinoid exposure during adolescence leads to long-term structural and functional changes in the prefrontal cortex. Eur. Neuropsychopharmacol. 2016, 26, 55–64. [Google Scholar] [CrossRef]
- Fremeau, R.T., Jr.; Burman, J.; Qureshi, T.; Tran, C.H.; Proctor, J.; Johnson, J.; Zhang, H.; Sulzer, D.; Copenhagen, D.R.; Storm-Mathisen, J.; et al. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc. Natl. Acad. Sci. USA 2002, 99, 14488–14493. [Google Scholar] [CrossRef]
- Garcia-Mompo, C.; Curto, Y.; Carceller, H.; Gilabert-Juan, J.; Rodriguez-Flores, E.; Guirado, R.; Nacher, J. Delta-9-Tetrahydrocannabinol treatment during adolescence and alterations in the inhibitory networks of the adult prefrontal cortex in mice subjected to perinatal NMDA receptor antagonist injection and to postweaning social isolation. Transl. Psychiatry 2020, 10, 177. [Google Scholar] [CrossRef]
- Vaucher, J.; Keating, B.J.; Lasserre, A.M.; Gan, W.; Lyall, D.M.; Ward, J.; Smith, D.J.; Pell, J.P.; Sattar, N.; Pare, G.; et al. Cannabis use and risk of schizophrenia: A Mendelian randomization study. Mol. Psychiatry 2018, 23, 1287–1292. [Google Scholar] [CrossRef]
- Hjorthoj, C.; Compton, W.; Starzer, M.; Nordholm, D.; Einstein, E.; Erlangsen, A.; Nordentoft, M.; Volkow, N.D.; Han, B. Association between cannabis use disorder and schizophrenia stronger in young males than in females. Psychol. Med. 2023, 53, 7322–7328. [Google Scholar] [CrossRef]
- Twitchell, W.; Brown, S.; Mackie, K. Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J. Neurophysiol. 1997, 78, 43–50. [Google Scholar] [CrossRef]
- Ramirez-Franco, J.; Bartolome-Martin, D.; Alonso, B.; Torres, M.; Sanchez-Prieto, J. Cannabinoid type 1 receptors transiently silence glutamatergic nerve terminals of cultured cerebellar granule cells. PLoS ONE 2014, 9, e88594. [Google Scholar] [CrossRef]
- Alonso, B.; Bartolomé-Martín, D.; Ferrero, J.J.; Ramírez-Franco, J.; Torres, M.; Sánchez-Prieto, J. CB1 receptors down-regulate a cAMP/Epac2/PLC pathway to silence the nerve terminals of cerebellar granule cells. J. Neurochem. 2017, 142, 350–364. [Google Scholar] [CrossRef]
- Patzke, C.; Dai, J.; Brockmann, M.M.; Sun, Z.; Fenske, P.; Rosenmund, C.; Südhof, T.C. Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Mol. Psychiatry 2021, 26, 6253–6268. [Google Scholar] [CrossRef]
- Savchenko, V.L. Modulation of Excitatory Synaptic Transmission During Cannabinoid Receptor Activation. Cell. Mol. Neurobiol. 2022, 42, 1933–1947. [Google Scholar] [CrossRef]
- Rubino, T.; Realini, N.; Braida, D.; Alberio, T.; Capurro, V.; Vigano, D.; Guidali, C.; Sala, M.; Fasano, M.; Parolaro, D. The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox. Res. 2009, 15, 291–302. [Google Scholar] [CrossRef]
- Sales, A.J.; Fogaca, M.V.; Sartim, A.G.; Pereira, V.S.; Wegener, G.; Guimaraes, F.S.; Joca, S.R.L. Cannabidiol Induces Rapid and Sustained Antidepressant-Like Effects through Increased BDNF Signaling and Synaptogenesis in the Prefrontal Cortex. Mol. Neurobiol. 2019, 56, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- Saez, T.M.; Aronne, M.P.; Caltana, L.; Brusco, A.H. Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex. J. Neurochem. 2014, 129, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Suarez, I.; Bodega, G.; Fernandez-Ruiz, J.; Ramos, J.A.; Rubio, M.; Fernandez, B. Down-regulation of the AMPA glutamate receptor subunits GluR1 and GluR2/3 in the rat cerebellum following pre- and perinatal delta9-tetrahydrocannabinol exposure. Cerebellum 2004, 3, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Rubino, T.; Prini, P.; Piscitelli, F.; Zamberletti, E.; Trusel, M.; Melis, M.; Sagheddu, C.; Ligresti, A.; Tonini, R.; Di Marzo, V.; et al. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol. Dis. 2015, 73, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Zamberletti, E.; Gabaglio, M.; Grilli, M.; Prini, P.; Catanese, A.; Pittaluga, A.; Marchi, M.; Rubino, T.; Parolaro, D. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharmacol. Res. 2016, 111, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Yang, H.; Zhang, J.; Chen, C. Reduced expression of glutamate receptors and phosphorylation of CREB are responsible for in vivo Delta9-THC exposure-impaired hippocampal synaptic plasticity. J. Neurochem. 2010, 112, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Raymundi, A.M.; Batista Sohn, J.M.; Salemme, B.W.; Cardoso, N.C.; Silveira Guimaraes, F.; Stern, C.A. Effects of delta-9 tetrahydrocannabinol on fear memory labilization and reconsolidation: A putative role of GluN2B-NMDA receptor within the dorsal hippocampus. Neuropharmacology 2023, 225, 109386. [Google Scholar] [CrossRef] [PubMed]
- Dumas, T.C. Developmental regulation of cognitive abilities: Modified composition of a molecular switch turns on associative learning. Prog. Neurobiol. 2005, 76, 189–211. [Google Scholar] [CrossRef]
- Obiorah, I.V.; Muhammad, H.; Stafford, K.; Flaherty, E.K.; Brennand, K.J. THC Treatment Alters Glutamate Receptor Gene Expression in Human Stem Cell-Derived Neurons. Mol. Neuropsychiatry 2017, 3, 73–84. [Google Scholar] [CrossRef]
- Szutorisz, H.; Hurd, Y.L. Epigenetic Effects of Cannabis Exposure. Biol. Psychiatry 2016, 79, 586–594. [Google Scholar] [CrossRef]
- Szutorisz, H.; Hurd, Y.L. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 2018, 85, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, G.S.; Joca, S.; Starnawska, A. The Cannabis-Induced Epigenetic Regulation of Genes Associated with Major Depressive Disorder. Genes 2022, 13, 1435. [Google Scholar] [CrossRef] [PubMed]
- Hampson, R.E.; Miller, F.; Palchik, G.; Deadwyler, S.A. Cannabinoid receptor activation modifies NMDA receptor mediated release of intracellular calcium: Implications for endocannabinoid control of hippocampal neural plasticity. Neuropharmacology 2011, 60, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Netzeband, J.G.; Conroy, S.M.; Parsons, K.L.; Gruol, D.L. Cannabinoids enhance NMDA-elicited Ca2+ signals in cerebellar granule neurons in culture. J. Neurosci. 1999, 19, 8765–8777. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.F.; Kotecha, S.A.; Lu, W.Y.; Jackson, M.F. Convergence of PKC-dependent kinase signal cascades on NMDA receptors. Curr. Drug Targets 2001, 2, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Chichili, V.P.; Zhong, L.; Tang, X.; Velazquez-Campoy, A.; Sheu, F.S.; Seetharaman, J.; Gerges, N.Z.; Sivaraman, J. Structural basis for the interaction of unstructured neuron specific substrates neuromodulin and neurogranin with Calmodulin. Sci. Rep. 2013, 3, 1392. [Google Scholar] [CrossRef] [PubMed]
- Diez-Guerra, F.J. Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 2010, 62, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Prichard, L.; Deloulme, J.C.; Storm, D.R. Interactions between neurogranin and calmodulin in vivo. J. Biol. Chem. 1999, 274, 7689–7694. [Google Scholar] [CrossRef]
- Busquets-Garcia, A.; Gomis-Gonzalez, M.; Salgado-Mendialdua, V.; Galera-Lopez, L.; Puighermanal, E.; Martin-Garcia, E.; Maldonado, R.; Ozaita, A. Hippocampal Protein Kinase C Signaling Mediates the Short-Term Memory Impairment Induced by Delta9-Tetrahydrocannabinol. Neuropsychopharmacology 2018, 43, 1021–1031. [Google Scholar] [CrossRef]
- Davis, M.I.; Ronesi, J.; Lovinger, D.M. A predominant role for inhibition of the adenylate cyclase/protein kinase A pathway in ERK activation by cannabinoid receptor 1 in N1E-115 neuroblastoma cells. J. Biol. Chem. 2003, 278, 48973–48980. [Google Scholar] [CrossRef]
- Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol. 2012, 4, a011254. [Google Scholar] [CrossRef]
- Avruch, J. MAP kinase pathways: The first twenty years. Biochim. Biophys. Acta 2007, 1773, 1150–1160. [Google Scholar] [CrossRef]
- Wartmann, M.; Campbell, D.; Subramanian, A.; Burstein, S.H.; Davis, R.J. The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett. 1995, 359, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Bouaboula, M.; Poinot-Chazel, C.; Bourrie, B.; Canat, X.; Calandra, B.; Rinaldi-Carmona, M.; Le Fur, G.; Casellas, P. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem. J. 1995, 312, 637–641. [Google Scholar] [CrossRef]
- Valjent, E.; Pages, C.; Rogard, M.; Besson, M.J.; Maldonado, R.; Caboche, J. Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission. Eur. J. Neurosci. 2001, 14, 342–352. [Google Scholar] [CrossRef]
- Galve-Roperh, I.; Rueda, D.; Gomez del Pulgar, T.; Velasco, G.; Guzman, M. Mechanism of extracellular signal-regulated kinase activation by the CB(1) cannabinoid receptor. Mol. Pharmacol. 2002, 62, 1385–1392. [Google Scholar] [CrossRef]
- Sanchez, M.G.; Ruiz-Llorente, L.; Sanchez, A.M.; Diaz-Laviada, I. Activation of phosphoinositide 3-kinase/PKB pathway by CB(1) and CB(2) cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cell. Signal. 2003, 15, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Dalton, G.D.; Howlett, A.C. Cannabinoid CB1 receptors transactivate multiple receptor tyrosine kinases and regulate serine/threonine kinases to activate ERK in neuronal cells. Br. J. Pharmacol. 2012, 165, 2497–2511. [Google Scholar] [CrossRef] [PubMed]
- Blando, S.; Raffaele, I.; Chiricosta, L.; Valeri, A.; Gugliandolo, A.; Silvestro, S.; Pollastro, F.; Mazzon, E. Cannabidiol Promotes Neuronal Differentiation Using Akt and Erk Pathways Triggered by Cb1 Signaling. Molecules 2022, 27, 5644. [Google Scholar] [CrossRef]
- Derkinderen, P.; Valjent, E.; Toutant, M.; Corvol, J.C.; Enslen, H.; Ledent, C.; Trzaskos, J.; Caboche, J.; Girault, J.A. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J. Neurosci. 2003, 23, 2371–2382. [Google Scholar] [CrossRef]
- Rubino, T.; Forlani, G.; Vigano, D.; Zippel, R.; Parolaro, D. Modulation of extracellular signal-regulated kinases cascade by chronic delta 9-tetrahydrocannabinol treatment. Mol. Cell. Neurosci. 2004, 25, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Moranta, D.; Esteban, S.; Garcia-Sevilla, J.A. Acute, chronic and withdrawal effects of the cannabinoid receptor agonist WIN55212-2 on the sequential activation of MAPK/Raf-MEK-ERK signaling in the rat cerebral frontal cortex: Short-term regulation by intrinsic and extrinsic pathways. J. Neurosci. Res. 2007, 85, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Compagnucci, C.; Di Siena, S.; Bustamante, M.B.; Di Giacomo, D.; Di Tommaso, M.; Maccarrone, M.; Grimaldi, P.; Sette, C. Type-1 (CB1) cannabinoid receptor promotes neuronal differentiation and maturation of neural stem cells. PLoS ONE 2013, 8, e54271. [Google Scholar] [CrossRef] [PubMed]
- Bolshakov, V.Y.; Carboni, L.; Cobb, M.H.; Siegelbaum, S.A.; Belardetti, F. Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses. Nat. Neurosci. 2000, 3, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Cervantes, M.C.; Castaneda-Arellano, R.; Castro-Torres, R.D.; Gudino-Cabrera, G.; Feria y Velasco, A.I.; Camins, A.; Beas-Zarate, C. P38 MAPK inhibition protects against glutamate neurotoxicity and modifies NMDA and AMPA receptor subunit expression. J. Mol. Neurosci. 2015, 55, 596–608. [Google Scholar] [CrossRef]
- Derkinderen, P.; Ledent, C.; Parmentier, M.; Girault, J.A. Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J. Neurochem. 2001, 77, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Rueda, D.; Galve-Roperh, I.; Haro, A.; Guzman, M. The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol. Pharmacol. 2000, 58, 814–820. [Google Scholar] [CrossRef]
- Chen, J.; Errico, S.L.; Freed, W.J. Reactive oxygen species and p38 phosphorylation regulate the protective effect of Delta9-tetrahydrocannabinol in the apoptotic response to NMDA. Neurosci. Lett. 2005, 389, 99–103. [Google Scholar] [CrossRef]
- Esposito, G.; De Filippis, D.; Maiuri, M.C.; De Stefano, D.; Carnuccio, R.; Iuvone, T. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci. Lett. 2006, 399, 91–95. [Google Scholar] [CrossRef]
- Dar, N.J.; Satti, N.K.; Dutt, P.; Hamid, A.; Ahmad, M. Attenuation of Glutamate-Induced Excitotoxicity by Withanolide-A in Neuron-Like Cells: Role for PI3K/Akt/MAPK Signaling Pathway. Mol. Neurobiol. 2018, 55, 2725–2739. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Rong, X.; Li, Y.; Zhou, J.; Lu, L. Neuroprotective Role of the PI3 Kinase/Akt Signaling Pathway in Zebrafish. Front. Endocrinol. 2017, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Ozaita, A.; Puighermanal, E.; Maldonado, R. Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. J. Neurochem. 2007, 102, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Gomez del Pulgar, T.; Velasco, G.; Guzman, M. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem. J. 2000, 347, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, A.; Hudson, C.C.; Homme, J.L.; Yin, P.; Otterness, D.M.; Karnitz, L.M.; Abraham, R.T. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60, 3504–3513. [Google Scholar] [PubMed]
- Jaworski, J.; Sheng, M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol. 2006, 34, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Puighermanal, E.; Marsicano, G.; Busquets-Garcia, A.; Lutz, B.; Maldonado, R.; Ozaita, A. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat. Neurosci. 2009, 12, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Puighermanal, E.; Busquets-Garcia, A.; Gomis-Gonzalez, M.; Marsicano, G.; Maldonado, R.; Ozaita, A. Dissociation of the pharmacological effects of THC by mTOR blockade. Neuropsychopharmacology 2013, 38, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Barco, A.; Alarcon, J.M.; Kandel, E.R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 2002, 108, 689–703. [Google Scholar] [CrossRef] [PubMed]
- Casu, M.A.; Pisu, C.; Sanna, A.; Tambaro, S.; Spada, G.P.; Mongeau, R.; Pani, L. Effect of delta9-tetrahydrocannabinol on phosphorylated CREB in rat cerebellum: An immunohistochemical study. Brain Res. 2005, 1048, 41–47. [Google Scholar] [CrossRef]
- Pereyra, M.; Medina, J.H. AMPA Receptors: A Key Piece in the Puzzle of Memory Retrieval. Front. Hum. Neurosci. 2021, 15, 729051. [Google Scholar] [CrossRef]
- Keifer, J.; Zheng, Z. AMPA receptor trafficking and learning. Eur. J. Neurosci. 2010, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Diering, G.H.; Huganir, R.L. The AMPA Receptor Code of Synaptic Plasticity. Neuron 2018, 100, 314–329. [Google Scholar] [CrossRef] [PubMed]
- Stecher, J.; Muller, W.E.; Hoyer, S. Learning abilities depend on NMDA-receptor density in hippocampus in adult rats. J. Neural Transm. 1997, 104, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Tsien, J.Z. Memory and the NMDA receptors. N. Engl. J. Med. 2009, 361, 302–303. [Google Scholar] [CrossRef] [PubMed]
- Collingridge, G. Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature 1987, 330, 604–605. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.X.; Wang, Y.; Qin, Z.H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 2009, 30, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Danbolt, N.C. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. 2014, 121, 799–817. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, S.; Kolishetti, N.; Arias, A.Y.; Vashist, A.; Nair, M. Cannabidiol for neurodegenerative disorders: A comprehensive review. Front. Pharmacol. 2022, 13, 989717. [Google Scholar] [CrossRef]
- Azad, S.C.; Eder, M.; Marsicano, G.; Lutz, B.; Zieglgansberger, W.; Rammes, G. Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse. Learn. Mem. 2003, 10, 116–128. [Google Scholar] [CrossRef]
- Brown, S.P.; Safo, P.K.; Regehr, W.G. Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J. Neurosci. 2004, 24, 5623–5631. [Google Scholar] [CrossRef]
- Domenici, M.R.; Azad, S.C.; Marsicano, G.; Schierloh, A.; Wotjak, C.T.; Dodt, H.U.; Zieglgansberger, W.; Lutz, B.; Rammes, G. Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J. Neurosci. 2006, 26, 5794–5799. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Lo, S.W.; Hsu, K.S. Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons. J. Physiol. 2001, 532, 731–748. [Google Scholar] [CrossRef] [PubMed]
- Eraso-Pichot, A.; Pouvreau, S.; Olivera-Pinto, A.; Gomez-Sotres, P.; Skupio, U.; Marsicano, G. Endocannabinoid signaling in astrocytes. Glia 2023, 71, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Hablitz, L.M.; Gunesch, A.N.; Cravetchi, O.; Moldavan, M.; Allen, C.N. Cannabinoid Signaling Recruits Astrocytes to Modulate Presynaptic Function in the Suprachiasmatic Nucleus. eNeuro 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, Z.; Olah, T.; Koszeghy, A.; Piscitelli, F.; Hollo, K.; Pal, B.; Csernoch, L.; Di Marzo, V.; Antal, M. CB(1) receptor activation induces intracellular Ca(2+) mobilization and 2-arachidonoylglycerol release in rodent spinal cord astrocytes. Sci. Rep. 2018, 8, 10562. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.-Y.; Li, S.-H.; Ma, W.; Wu, D.-T.; Li, H.-B.; Xiao, A.-P.; Liu, L.-L.; Zhu, F.; Gan, R.-Y. Cannabis Sativa Bioactive Compounds and Their Extraction, Separation, Purification, and Identification Technologies: An Updated Review; Trends in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; p. 149. [Google Scholar]
- Costa, A.M.; Senn, L.; Anceschi, L.; Brighenti, V.; Pellati, F.; Biagini, G. Antiseizure Effects of Fully Characterized Non-Psychoactive Cannabis sativa L. Extracts in the Repeated 6-Hz Corneal Stimulation Test. Pharmaceuticals 2021, 14, 1259. [Google Scholar] [CrossRef]
- Russo, E.B.; Cuttler, C.; Cooper, Z.D.; Stueber, A.; Whiteley, V.L.; Sexton, M. Survey of Patients Employing Cannabigerol-Predominant Cannabis Preparations: Perceived Medical Effects, Adverse Events, and Withdrawal Symptoms. Cannabis Cannabinoid Res. 2022, 7, 706–716. [Google Scholar] [CrossRef]
- Russo, E.B.; Spooner, C.; May, L.; Leslie, R.; Whiteley, V.L. Cannabinoid Hyperemesis Syndrome Survey and Genomic Investigation. Cannabis Cannabinoid Res. 2022, 7, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Senn, L.; Cannazza, G.; Biagini, G. Receptors and Channels Possibly Mediating the Effects of Phytocannabinoids on Seizures and Epilepsy. Pharmaceuticals 2020, 13, 174. [Google Scholar] [CrossRef]
- Chang, C.Y.; Lin, T.Y.; Lu, C.W.; Wang, C.C.; Wang, Y.C.; Chou, S.S.; Wang, S.J. Apigenin, a natural flavonoid, inhibits glutamate release in the rat hippocampus. Eur. J. Pharmacol. 2015, 762, 72–81. [Google Scholar] [CrossRef]
- Riche, K.; Lenard, N.R. Quercetin’s Effects on Glutamate Cytotoxicity. Molecules 2022, 27, 7620. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Bai, L.; Chen, L.; Tong, R.; Feng, Y.; Shi, J. Terpenoid natural products exert neuroprotection via the PI3K/Akt pathway. Front. Pharmacol. 2022, 13, 1036506. [Google Scholar] [CrossRef] [PubMed]
- Simao, F.; Matte, A.; Pagnussat, A.S.; Netto, C.A.; Salbego, C.G. Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3beta and CREB through PI3-K/Akt pathways. Eur. J. Neurosci. 2012, 36, 2899–2905. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sattler, R.; Yang, E.J.; Nunes, A.; Ayukawa, Y.; Akhtar, S.; Ji, G.; Zhang, P.W.; Rothstein, J.D. Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. Neuropharmacology 2011, 60, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
Name of the Proteins | Type of Model | Acute or Chronic | Exposure Type | Drug and Dosage | Dose Regimen | Effect of the Treatment | Brain Area of Interest | Reference |
---|---|---|---|---|---|---|---|---|
VGLUT1 | Male mice | Chronic | Intraperitoneal | ∆9-THC; 10 mg/kg | PND 28 to PND 48 | Increased | mPFC | [56] |
VGLUT1 | Male Sprague Dawley rats | Chronic | Subcutaneous | WIN 55,212-2; 2 mg/kg | GD 3 to PND 2 | Increased | Hippocampus | [46] |
VGLUT3 | Male Wistar Han rats | Chronic | Intraperitoneal | CP 55,940; 0.15 mg/kg-7 days, 0.2 mg/kg-7 days, 0.3 mg/kg-7 days | PND 29 to PND 50 | No changes | mPFC | [54] |
Calcium channels (N- and P/Q-types) | Hippocampal cell culture; cells collected on PND 1-PND 4 | Acute | In the culture media | WIN 55,212-2 and WIN 55,212-3; 100 nm WIN | Recording was performed between 2 to 10 days of the experiment, | Inhibition of all three types of channels | Hippocampus | [59] |
Calcium channels | Male human pluripotent stem cells | Acute | In the culture media | WIN 55,212-2; 10 μm | Into the recording media, just 5 min before the experiment | Inhibition | Human pluripotent cells | [62] |
Synaptic vesicle | Cerebellar cell cultures. Cells collected on PND 7; female Wistar albino rat pups | Acute | In the culture media | HU-210; 5 μm | Recording was performed between 7 and 10 DIV | Decrease the number of synaptic vesicles | Cerebellar cell cultures | [60] |
cAMP | Cell culture, cells collected from PND 7; from cerebellar granule cells | Acute | In the cell culture media | HU-210; 5 μm | Experiments were carried out 7–8 DIV | Inhibition | Cerebellar cell cultures | [61] |
cAMP | Male human pluripotent stem cell | Acute | In the culture media | WIN 55,212-2; 10 μm | Into the recording media, just 5 min before the experiment | Inhibition | Human pluripotent cells | [62] |
RIM1α | Cell culture, cells collected from PND 7; from cerebellar granule cells | Acute | In the cell culture media | HU-210; 5 μm | Experiments were carried out 7–8 DIV | Inhibition | Cerebellar cell cultures | [61] |
Munc-13 | Cell culture, cells collected from PND 7; from cerebellar granule cells | Acute | In the cell culture media | HU-210; 5 μm | Experiments were carried out 7–8 DIV | Inhibition | Cerebellar cell cultures | [61] |
Adenylyl cyclase | Cerebellar cell cultures; Cells collected on PND 7; female Wistar albino rat pups | Acute | In the culture media | HU-210; 5 μm | Recording was performed between 7 and 10 DIV | Decrease the number of synaptic vesicles | Cerebellar cell cultures | [60] |
Adenylyl cyclase | Male human pluripotent stem cell | Acute | In the culture media | WIN 55,212-2; 10 μm | Into the recording media, just 5 min before the experiment | Inhibition | Human pluripotent cells | [62] |
Synaptophysin | Cortical neuronal cell culture: collected in embryonic day 17 from the ventral part of the diencephalon. | Acute | In the culture media | THC (low concentration-10 nm; High concentration-1 μm) | Experiments were carried out on 6 DIV | Low concentration increased synaptophysin expression; high expression induced neurotoxicity | Cortical neuronal cell culture | [63] |
Synaptophysin | Male Wistar Han rats | Chronic | Intraperitoneal | CP 55,940; 0.15 mg/kg-7 days, 0.2 mg/kg-7 days, 0.3 mg/kg-7 days | PND 29 to PND 50 | No changes | mPFC | [54] |
Synaptophysin | Female Sprague Dawley rats | Chronic | Intraperitoneal | THC; PND 35–37, 2.5 mg/kg; PND 38–41, 5 mg/kg; PND 42–45, 10 mg/Kg | PND 35–PND 45 | No changes in the hippocampus, but decreased in the PFC | PFC | [64] |
Synaptophysin | Male Sprague Dawley Rats | Chronic | Subcutaneous | WIN 55,212-2; 2 mg/kg | GD3 to PND 2 | No change | Hippocampus | [46] |
Name of the Proteins | Type of Model | Acute or Chronic | Exposure Type | Drug and Dosage | Dose Regimen | Effect of the Treatment | Brain Area of Interest | Reference |
---|---|---|---|---|---|---|---|---|
PSD 95 | Male Swiss mice, 25–30 g, eight weeks of age, and male Wistar rats | Acute | Intracerebral | Cannabidiol; 7, 10, and 30 mg/kg | One dose only | Acute treatment increased PSD 95 | All the changes only in the PFC; no changes in the hippocampus | [65] |
PSD 95 | Female Sprague Dawley rats | Chronic | Intraperitoneal | THC; PND 35–37, 2.5 mg/kg; PND 38–41. 5 mg/kg; PND 42–45, 10 mg/Kg | PND 35–PND 45 | No changes in the hippocampus, but decreased expression in the PFC | PFC | [64] |
GluA1 GluA2/3 | Male and female rats | Chronic | Oral | THC; 5 mg/kg | GD5 to PND 20 | Decreased | Cerebellum | [67] |
GluA1, GluA2 | Female Sprague Dawley rats | Chronic | Intraperitoneal | THC; twice a day; PND 35–37 at 2.5 mg/kg; PND 38–41 at 5 mg/kg; PND 42–45 at 10 mg/kg | PND 35 to PND 45 | GluA1- increased, GluA2- no change | PFC | [68] |
GluA1 | Male Sprague Dawley rats | Chronic | Subcutaneous | WIN 55,212-2; 2 mg/kg | GD3 to PND 2 | Decreased | Hippocampus | [46] |
GluA1, GluA2 | Male Sprague Dawley rats | Chronic | Injection | THC; twice a day; PND 35–37 at 2.5 mg/kg; PND 38–41 at 5 mg/kg; PND 42–45 at 10 mg/kg | PND 35 to PND 45 | GluA1- 80% increased GluA2- 300% increased | Hippocampus | [69] |
GluA1, GluA2 | C57BL/6 mice | Chronic | Intraperitoneal | THC; 10 mg/kg | Seven consecutive days | GluA1- decreased GluA2- no change | Hippocampus | [70] |
GluA1, GluN2A, GluN2B | C57BL/6 mice | Chronic | Injection | THC; 10 mg/kg | 7 Consecutive days | GluA1, GluN2A, GluN2B- decreased | Hippocampus | [45] |
GluA1, GluN2A, GluN2B | C57BL/6 mice | Chronic | Intraperitoneal | THC; 10 mg/kg | 7 Consecutive days | GluA1, GluN2A, GluN2B- decreased | Hippocampus | [70] |
GluN2A, GluN2B | Male Sprague Dawley rats | Chronic | Subcutaneous | WIN 55,212-2; 2 mg/kg | GD3 to PND 2 | GluN2A- decreased, GluN2B- no change | Hippocampus | [46] |
GluN2A, GluN2B | Male Wistar rats | Acute | intraperitoneal | THC; 0.3 mg/kg | One dose | GluN2A- decreased, GluN1A/GluN2B- Altered | Dorsal hippocampus | [71] |
GluN2A, GluN2B | Female Sprague Dawley rats | Chronic | Intraperitoneal | THC; twice a day; PND 35–37 at 2.5 mg/kg; PND 38–41 at 5 mg/kg; PND 42–45 at 10 mg/kg | PND 35 to PND 45 | GluN2B- increased during adulthood, GluN2A- decreased in adulthood. Altered ratio of GluN2A and GluN2B | PFC | [68] |
GluN2A, GluN2B | Male Sprague Dawley rats | Chronic | Injection | THC; twice a day; PND 35–37 at 2.5 mg/kg; PND 38–41 at 5 mg/kg; PND 42–45 at 10 mg/kg | PND 35 to PND 45 | GluN2B- increased GluN2A- unchanged | Hippocampus | [69] |
Name of the Proteins | Type of Model | Acute or Chronic | Exposure Type | Drug and Dosage | Dose Regimen | Effect of the Treatment | Brain Area of Interest | Reference |
---|---|---|---|---|---|---|---|---|
PKC | Male, CD1 mice | Acute | Intraperitoneal | THC; 10 mL/kg | Enhanced phosphorylated PKC | Hippocampus | [83] | |
p42 and p44 MAPK | CHO cells transfected with CB1 | Acute | In the culture | CP 55,940 > THC > WIN 55,212-2 | Activated MAPK | [88] | ||
ERK | U373 MG human astrocytoma cells | Acute (cells were treated 12 h before the experiment) | In the culture | Delta (8)- tetrahydrocannabinol dimethyl heptyl (HU-210) | Activated ERK, mediated by PI3KIB | Hippocampus | [90] | |
ERK, c-Fos, BDNF | Male CD-1 mice | Acute | Intraperitoneal | THC | Activated ERK | Hippocampus | [94] | |
Erk, pCREB, c-Fos, FosB | Male Sprague Dawley rats | Acute, Chronic | Intraperitoneal | THC; Acute- 15 mg/kg; Chronic- 15 mg/kg, twice a day, 6.5 days | Acute- increased ERK, pCREB, c-fos in the caudate putamen and cerebellum. Chronic- increased ERK, pCREB, Fos B in the PFC and hippocampus | Caudate putamen, cerebellum, PFC, hippocampus | [95] | |
Raf-MEK-ERK | Rats | Acute and Chronic | Intraperitoneal | WIN 55,212-2; Acute treatment- 8 mg/kg; Chronic treatment- 2–8 mg/kg | Acute- one dose Chronic treatment- 5 consecutive days | Acute dose- Increased c-Raf, pERK, MEK Chronic treatment- no change | Cerebral frontal cortex | [96] |
P38 MAPK | Sprague Dawley rats | Acute | In the bathing solution | WIN 55,212-2; 100 μm | One dose in the bath solution | Activated p38 MAPK | Hippocampus | [100] |
P38 MAPK and JNK | Chinese hamster ovary Cells transfected with CB1 receptors | Acute | In the culture media | THC; CP 55,940; HU-210 | One dose | Activated p38 MAPK and JNK | [101] | |
Phospho p38 MAPK | PC12 cells | Acute | In the cellular extract | Cannabidiol; 10−6 to 10−4 M; | Once | Inhibited the phospho p38 MAPK | [103] | |
Phopho p38 MAPK | AF5 cells | Acute | In the cell culture media | THC; 3 μm | once | Inhibited the phospho p38 MAPK | [102] | |
PKB, ERK, p38 MAPK | C57BL/6 mice | Chronic | THC; 10 mg/kg | Seven consecutive days | Phosphorylation of PKB, ERK, and p38 MAPK was detected | Hippocampus | [45] | |
pCREB | Adult male Sprague Dawley albino rats | Acute and Chronic | Intraperitoneal | THC; acute- 2.5, 5 mg/kg or 10 mg/kg; chronic- 10 mg/kg | For acute- one dose only; for chronic- 4 weeks | Acute treatment- increases pCREB Chronic treatment- Markedly attenuate pCREB | Cerebellum | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, K.U.; Holden, M.E.; Wiley, M.T.; Suppiramaniam, V.; Reed, M.N. Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate. Cells 2024, 13, 1130. https://doi.org/10.3390/cells13131130
Chowdhury KU, Holden ME, Wiley MT, Suppiramaniam V, Reed MN. Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate. Cells. 2024; 13(13):1130. https://doi.org/10.3390/cells13131130
Chicago/Turabian StyleChowdhury, Kawsar U., Madison Elizabeth Holden, Miles T. Wiley, Vishnu Suppiramaniam, and Miranda N. Reed. 2024. "Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate" Cells 13, no. 13: 1130. https://doi.org/10.3390/cells13131130
APA StyleChowdhury, K. U., Holden, M. E., Wiley, M. T., Suppiramaniam, V., & Reed, M. N. (2024). Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate. Cells, 13(13), 1130. https://doi.org/10.3390/cells13131130