Expanding the Neurological Phenotype of Anderson–Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism
Abstract
1. Introduction
2. Anderson–Fabry Disease: Clinical and Epidemiological Issues
2.1. Main Features from the Neurological Side
2.2. Biological Mechanisms
2.3. Neurological Involvement
2.3.1. Peripheral Nervous System
2.3.2. Central Nervous System
3. Neurodegeneration in Anderson–Fabry Disease
3.1. A Clinical Point of View
3.2. Neurodegeneration in Anderson Fabry Disease: A Neuroradiological Point of View
3.2.1. Conventional MRI Markers
3.2.2. Advanced MRI Techniques
4. Monogenic Vascular Parkinsonism: The Example of CADASIL
4.1. Clinical Issues
4.2. Cognitive Issues
4.3. Neuroimaging Issues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calhoun, D.H.; Bishop, D.F.; Bernstein, H.S.; Quinn, M.; Hantzopoulos, P.; Desnick, R.J. Fabry disease: Isolation of a cDNA clone encoding human α-galactosidase A. Proc. Natl. Acad. Sci. USA 1985, 82, 7364–7368. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Hopwood, J.J.; Clague, A.E.; Carey, W.F. Prevalence of lysosomal storage disorders. JAMA 1999, 281, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Amodio, F.; Caiazza, M.; Monda, E.; Rubino, M.; Capodicasa, L.; Chiosi, F.; Simonelli, V.; Dongiglio, F.; Fimiani, F.; Pepe, N.; et al. An Overview of Molecular Mechanisms in Fabry Disease. Biomolecules 2022, 12, 1460. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Ricci, R.; Widmer, U.; Dehout, F.; De Lorenzo, A.G.; Kampmann, C.; Linhart, A.; Sunder-Plassmann, G.; Ries, M.; Beck, M. Fabry disease defined: Baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur. J. Clin. Investig. 2004, 34, 236–242. [Google Scholar] [CrossRef]
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Buechner, S.; Moretti, M.; Burlina, A.P.; Cei, G.; Manara, R.; Ricci, R.; Mignani, R.; Parini, R.; Di Vito, R.; Giordano, G.P.; et al. Central nervous system involvement in Anderson-Fabry disease: A clinical and MRI retrospective study. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1249–1254. [Google Scholar] [CrossRef]
- Zedde, M.; Pascarella, R.; Cavallieri, F.; Pezzella, F.R.; Grisanti, S.; Di Fonzo, A.; Valzania, F. Anderson–Fabry Disease: A New Piece of the Lysosomal Puzzle in Parkinson Disease? Biomedicines 2022, 10, 3132. [Google Scholar] [CrossRef]
- Löhle, M.; Hughes, D.; Milligan, A.; Richfield, L.; Reichmann, H.; Mehta, A.; Schapira, A.H. Clinical prodromes of neurodegeneration in Anderson-Fabry disease. Neurology 2015, 84, 1454–1464. [Google Scholar] [CrossRef]
- Kolter, T.; Sandhoff, K. Sphingolipid metabolism diseases. Biochim. Biophys. Acta 2006, 1758, 2057–2079. [Google Scholar] [CrossRef]
- Aslam, M.; Kandasamy, N.; Ullah, A.; Paramasivam, N.; Öztürk, M.A.; Naureen, S.; Arshad, A.; Badshah, M.; Khan, K.; Wajid, M.; et al. Putative second hit rare genetic variants in families with seemingly GBA-associated Parkinson’s disease. npj Genom. Med. 2021, 6, 2. [Google Scholar] [CrossRef]
- Cavallieri, F.; Cury, R.G.; Guimarães, T.; Fioravanti, V.; Grisanti, S.; Rossi, J.; Monfrini, E.; Zedde, M.; Di Fonzo, A.; Valzania, F.; et al. Recent Advances in the Treatment of Genetic Forms of Parkinson’s Disease: Hype or Hope? Cells 2023, 12, 764. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ncbi.nlm.nih.gov/gene/2717 (accessed on 22 April 2024).
- Favalli, V.; Disabella, E.; Molinaro, M.; Tagliani, M.; Scarabotto, A.; Serio, A.; Grasso, M.; Narula, N.; Giorgianni, C.; Caspani, C.; et al. Genetic Screening of Anderson-Fabry Disease in Probands Referred from Multispecialty Clinics. J. Am. Coll. Cardiol. 2016, 68, 1037–1105. [Google Scholar] [CrossRef]
- Onishi, A.; Dyck, P.J. Loss of small peripheral sensory neurons in Fabry disease. Histologic and morphometric evaluation of cutaneous nerves, spinal ganglia, and posterior columns. Arch. Neurol. 1974, 31, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Tabira, T.; Goto, I.; Kuroiwa, Y.; Kikuchi, M. Neuropathological and biochemical studies in Fabry’s disease. Acta Neuropathol. 1974, 30, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Gadoth, N.; Sandbank, U. Involvement of dorsal root ganglia in Fabry’s disease. J. Med. Genet. 1983, 20, 309–312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hozumi, I.; Nishizawa, M.; Ariga, T.; Inoue, Y.; Ohnishi, Y.; Yokoyama, A.; Shibata, A.; Miyatake, T. Accumulation of glycosphingolipids in spinal and sympathetic ganglia of a symptomatic heterozygote of Fabry’s disease. J. Neurol. Sci. 1989, 90, 273–280. [Google Scholar] [CrossRef] [PubMed]
- De Veber, G.A.; Schwarting, G.A.; Kolodny, E.H.; Kowall, N.W. Fabry disease: Immunocytochemical characterization of neuronal involvement. Ann. Neurol. 1992, 31, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Takao, M.; Mori, T.; Orikasa, H.; Oh, H.; Suzuki, K.; Koto, A.; Yamazaki, K. Postmortem diagnosis of Fabry disease with acromegaly and a unique vasculopathy. Virchows Arch. 2007, 451, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Sima, A.A.; Robertson, D.M. Involvement of peripheral nerve and muscle in Fabry’s disease. Histologic, ultrastructural, and morphometric studies. Arch. Neurol. 1978, 35, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Pellissier, J.F.; Van Hoof, F.; Bourdet-Bonerandi, D.; Monier-Faugere, M.C.; Toga, M. Morphological and biochemical changes in muscle and peripheral nerve in Fabry’s disease. Muscle Nerve 1981, 4, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Gemignani, F.; Marbini, A.; Bragaglia, M.M.; Govoni, E. Pathological study of the sural nerve in Fabry’s disease. Eur. Neurol. 1984, 23, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Toyooka, K.; Said, G. Nerve biopsy findings in hemizygous and heterozygous patients with Fabry’s disease. J. Neurol. 1997, 244, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Cable, W.J.; Dvorak, A.M.; Osage, J.E.; Kolodny, E.H. Fabry disease: Significance of ultrastructural localization of lipid inclusions in dermal nerves. Neurology 1982, 32, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, S.M.; Röyttä, M.; Jääskeläinen, S.K.; Kantola, I.; Penttinen, M.; Falck, B. Neuropathic symptoms and findings in women with Fabry disease. Clin. Neurophysiol. 2008, 119, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Liguori, R.; Di Stasi, V.; Bugiardini, E.; Mignani, R.; Burlina, A.; Borsini, W.; Baruzzi, A.; Montagna, P.; Donadio, V. Small fiber neuropathy in female patients with fabry disease. Muscle Nerve 2010, 41, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Liguori, R.; Incensi, A.; de Pasqua, S.; Mignani, R.; Fileccia, E.; Santostefano, M.; Biagini, E.; Rapezzi, C.; Palmieri, S.; Romani, I.; et al. Skin globotriaosylceramide 3 deposits are specific to Fabry disease with classical mutations and associated with small fibre neuropathy. PLoS ONE 2017, 12, e0180581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haberberger, R.V.; Barry, C.; Dominguez, N.; Matusica, D. Human Dorsal Root Ganglia. Front. Cell Neurosci. 2019, 13, 271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reed, C.B.; Feltri, M.L.; Wilson, E.R. Peripheral glia diversity. J. Anat. 2022, 241, 1219–1234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kucenas, S. Perineurial glia. Cold Spring Harb. Perspect. Biol. 2015, 7, a020511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Godel, T.; Bäumer, P.; Pham, M.; Köhn, A.; Muschol, N.; Kronlage, M.; Kollmer, J.; Heiland, S.; Bendszus, M.; Mautner, V.F. Human dorsal root ganglion in vivo morphometry and perfusion in Fabry painful neuropathy. Neurology 2017, 89, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Godel, T.; Köhn, A.; Muschol, N.; Kronlage, M.; Schwarz, D.; Kollmer, J.; Heiland, S.; Bendszus, M.; Mautner, V.F.; Bäumer, P. Dorsal root ganglia in vivo morphometry and perfusion in female patients with Fabry disease. J. Neurol. 2018, 265, 2723–2729. [Google Scholar] [CrossRef] [PubMed]
- Biegstraaten, M.; Hollak, C.E.; Bakkers, M.; Faber, C.G.; Aerts, J.M.; van Schaik, I.N. Small fiber neuropathy in Fabry disease. Mol. Genet. Metab. 2012, 106, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Grüner, J.; Breyer, M.; Schlegel, J.; Schottmann, N.M.; Hofmann, L.; Gauss, K.; Mease, R.; Erbacher, C.; Finke, L.; et al. Small fibre neuropathy in Fabry disease: A human-derived neuronal in vitro disease model and pilot data. Brain Commun. 2024, 6, fcae095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Talagas, M.; Lebonvallet, N.; Berthod, F.; Misery, L. Cutaneous nociception: Role of keratinocytes. Exp. Dermatol. 2019, 28, 1466–1469. [Google Scholar] [CrossRef] [PubMed]
- Estacion, M. Characterization of ion channels seen in subconfluent human dermal fibroblasts. J. Physiol. 1991, 436, 579–601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kreß, L.; Hofmann, L.; Klein, T.; Klug, K.; Saffer, N.; Spitzel, M.; Bär, F.; Sommer, C.; Karl, F.; Üçeyler, N. Differential impact of keratinocytes and fibroblasts on nociceptor degeneration and sensitization in small fiber neuropathy. Pain 2021, 162, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Rickert, V.; Kramer, D.; Schubert, A.L.; Sommer, C.; Wischmeyer, E.; Üçeyler, N. Globotriaosylceramide-induced reduction of KCa1.1 channel activity and activation of the Notch1 signaling pathway in skin fibroblasts of male Fabry patients with pain. Exp. Neurol. 2020, 324, 113134. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, L.; Grüner, J.; Klug, K.; Breyer, M.; Klein, T.; Hochheimer, V.; Wagenhäuser, L.; Wischmeyer, E.; Üçeyler, N. Elevated interleukin-8 expression by skin fibroblasts as a potential contributor to pain in women with Fabry disease. PLoS ONE 2024, 19, e0300687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Üçeyler, N.; Urlaub, D.; Mayer, C.; Uehlein, S.; Held, M.; Sommer, C. Tumor necrosis factor-α links heat and inflammation with Fabry pain. Mol. Genet. Metab. 2019, 127, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Schibanoff, J.M.; Kamoshita, S.; O’Brien, J.S. Tissue distribution of glycosphingolipids in a case of Fabry’s disease. J. Lipid Res. 1969, 10, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Askari, H.; Kaneski, C.R.; Semino-Mora, C.; Desai, P.; Ang, A.; Kleiner, D.E.; Perlee, L.T.; Quezado, M.; Spollen, L.E.; Wustman, B.A.; et al. Cellular and tissue localization of globotriaosylceramide in Fabry disease. Virchows Arch. 2007, 451, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Kahn, P. Anderson-Fabry disease: A histopathological study of three cases with observations on the mechanism of production of pain. J. Neurol. Neurosurg. Psychiatry 1973, 36, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Wallom, K.-L.; Fernández-Suárez, M.E.; Priestman, D.A.; Vruchte, D.T.; Huebecker, M.; Hallett, P.J.; Isacson, O.; Platt, F.M. Glycosphingolipid metabolism and its role in ageing and Parkinson’s disease. Glycoconj. J. 2021, 39, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kaur, G.; Fratila, O.; Buhas, C.; Judea-Pusta, C.T.; Negrut, N.; Bustea, C.; Bungau, S. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: A comprehensive review. Transl. Neurodegener. 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Pchelina, S.; Emelyanov, A.; Baydakova, G.; Andoskin, P.; Senkevich, K.; Nikolaev, M.; Miliukhina, I.; Yakimovskii, A.; Timofeeva, A.; Fedotova, E.; et al. Oligomeric alpha-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson’s disease. Neurosci. Lett. 2017, 636, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.P.; Tse, T.E.; O’Quinn, D.B.; Percival, S.M.; Jaimes, E.A.; Warnock, D.G.; Shacka, J.J. Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase A-deficient mice. Acta Neuropathol. Commun. 2014, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Huebecker, M.; Moloney, E.B.; van der Spoel, A.C.; Priestman, D.A.; Isacson, O.; Hallett, P.J.; Platt, F.M. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol. Neurodegener. 2019, 14, 40. [Google Scholar] [CrossRef]
- Balducci, C.; Pierguidi, L.; Persichetti, E.; Parnetti, L.; Sbaragli, M.; Tassi, C.; Orlacchio, A.; Calabresi, P.; Beccari, T.; Rossi, A. Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson’s disease. Mov. Disord. 2007, 22, 1481–1484. [Google Scholar] [CrossRef]
- Parnetti, L.; Chiasserini, D.; Persichetti, E.; Eusebi, P.; Varghese, S.; Qureshi, M.M.; Dardis, A.; Deganuto, M.; De Carlo, C.; Castrioto, A.; et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. Mov. Disord. 2014, 29, 1019–1027. [Google Scholar] [CrossRef]
- Parnetti, L.; Paciotti, S.; Eusebi, P.; Dardis, A.; Zampieri, S.; Chiasserini, D.; Tasegian, A.; Tambasco, N.; Bembi, B.; Calabresi, P.; et al. Cerebrospinal fluid β-glucocerebrosidase activity is reduced in parkinson’s disease patients. Mov. Disord. 2017, 32, 1423–1431. [Google Scholar] [CrossRef]
- van Dijk, K.D.; Persichetti, E.; Chiasserini, D.; Eusebi, P.; Beccari, T.; Calabresi, P.; Berendse, H.W.; Parnetti, L.; van de Berg, W.D. Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson’s disease. Mov. Disord. 2013, 28, 747–754. [Google Scholar] [CrossRef]
- Hirsch, L.; Jette, N.; Frolkis, A.; Steeves, T.; Pringsheim, T. The incidence of Parkinson’s disease: A systematic review and meta-analysis. Neuroepidemiology 2016, 46, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.P.; Sims, K.B.; Politei, J.M.; Bennett, G.J.; Baron, R.; Sommer, C.; Møller, A.T.; Hilz, M.J. Early diagnosis of peripheral nervous system involvement in Fabry disease and treatment of neuropathic pain: The report of an expert panel. BMC Neurology 2011, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Burand, A.J., Jr.; Stucky, C.L. Fabry disease pain: Patient and preclinical parallels. Pain. 2021, 162, 1305–1321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Üçeyler, N.; Ganendiran, S.; Kramer, D.; Sommer, C. Characterization of pain in Fabry disease. Clin. J. Pain. 2014, 30, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Scott, L.J. Pathophysiology and assessment of neuropathic pain in Fabry disease. Acta Paediatr. Suppl. 2002, 91, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Lacomis, D.; Roeske-Anderson, L.; Mathie, L. Neuropathy and Fabry’s disease. Muscle Nerve 2005, 31, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Luciano, C.A.; Russell, J.W.; Banerjee, T.K.; Quirk, J.M.; Scott, L.J.; Dambrosia, J.M.; Barton, N.W.; Schiffmann, R. Physiological characterization of neuropathy in Fabry’s disease. Muscle Nerve 2002, 26, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Hopkin, R.J.; Bissler, J.; Banikazemi, M.; Clarke, L.; Eng, C.M.; Germain, D.P.; Lemay, R.; Tylki-Szymanska, A.; Wilcox, W.R. Characterization of Fabry disease in 352 pediatric patients in the Fabry Registry. Pediatr. Res. 2008, 64, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, U.; Whybra, C.; Parini, R.; Pintos-Morell, G.; Mehta, A.; Sunder-Plassmann, G.; Widmer, U.; Beck, M.; FOS European Investigators. Clinical manifestations of Fabry disease in children: Data from the Fabry Outcome Survey. Acta Paediatr. 2006, 95, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.M.; Fletcher, J.; Wilcox, W.R.; Waldek, S.; Scott, C.R.; Sillence, D.O.; Breunig, F.; Charrow, J.; Germain, D.P.; Nicholls, K.; et al. Fabry disease: Baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J. Inherit. Metab. Dis. 2007, 30, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Beck, M.; Sunder-Plassmann, G.; Borsini, W.; Ricci, R.; Mehta, A.; FOS European Investigators. Nature and prevalence of pain in Fabry disease and its response to enzyme replacement therapy--a retrospective analysis from the Fabry Outcome Survey. Clin. J. Pain. 2007, 23, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Laney, D.A.; Peck, D.S.; Atherton, A.M.; Manwaring, L.P.; Christensen, K.M.; Shankar, S.P.; Grange, D.K.; Wilcox, W.R.; Hopkin, R.J. Fabry disease in infancy and early childhood: A systematic literature review. Genet. Med. 2015, 17, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Zar-Kessler, C.; Karaa, A.; Sims, K.B.; Clarke, V.; Kuo, B. Understanding the gastrointestinal manifestations of Fabry disease: Promoting prompt diagnosis. Therap Adv. Gastroenterol. 2016, 9, 626–634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hopkin, R.J.; Feldt-Rasmussen, U.; Germain, D.P.; Jovanovic, A.; Martins, A.M.; Nicholls, K.; Ortiz, A.; Politei, J.; Ponce, E.; Varas, C.; et al. Improvement of gastrointestinal symptoms in a significant proportion of male patients with classic Fabry disease treated with agalsidase beta: A Fabry Registry analysis stratified by phenotype. Mol. Genet. Metab. Rep. 2020, 25, 100670. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lenders, M.; Brand, E. Fabry disease—A multisystemic disease with gastrointestinal manifestations. Gut Microbes 2022, 14, 2027852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bar, N.; Karaa, A.; Kiser, K.; Kuo, B.; Zar-Kessler, C. Gastrointestinal Sensory Neuropathy and Dysmotility in Fabry Disease: Presentations and Effect on Patient’s Quality of Life. Clin. Transl. Gastroenterol. 2023, 14, e00633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Politei, J.M.; Bouhassira, D.; Germain, D.P.; Goizet, C.; Guerrero-Sola, A.; Hilz, M.J.; Hutton, E.J.; Karaa, A.; Liguori, R.; Üçeyler, N.; et al. Pain in Fabry Disease: Practical Recommendations for Diagnosis and Treatment. CNS Neurosci. Ther. 2016, 22, 568–576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Üçeyler, N.; Kahn, A.K.; Kramer, D.; Zeller, D.; Casanova-Molla, J.; Wanner, C.; Weidemann, F.; Katsarava, Z.; Sommer, C. Impaired small fiber conduction in patients with Fabry disease: A neurophysiological case-control study. BMC Neurol. 2013, 13, 47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torvin Møller, A.; Winther Bach, F.; Feldt-Rasmussen, U.; Rasmussen, A.; Hasholt, L.; Lan, H.; Sommer, C.; Kølvraa, S.; Ballegaard, M.; Staehelin Jensen, T. Functional and structural nerve fiber findings in heterozygote patients with Fabry disease. Pain 2009, 145, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Biegstraaten, M.; Binder, A.; Maag, R.; Hollak, C.E.; Baron, R.; van Schaik, I.N. The relation between small nerve fibre function, age, disease severity and pain in Fabry disease. Eur. J. Pain 2011, 15, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Verrecchia, E.; Zampetti, A.; Antuzzi, D.; Ricci, R.; Ferri, L.; Morrone, A.; Feliciani, C.; Dagna, L.; Manna, R. The impact of fever/hyperthermia in the diagnosis of Fabry: A retrospective analysis. Eur. J. Intern. Med. 2016, 32, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Franques, J.; Sahuc, P.; Dussol, B.; Penaranda, G.; Swiader, L.; Froissart, R.; Attarian, S.; Stavris, C.; Chiche, L.; Pouget, J. Peripheral nerve involvement in Fabry’s disease: Which investigations? A case series and review of the literature. Rev. Neurol. 2017, 173, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Dutra-Clarke, M.; Tapia, D.; Curtin, E.; Rünger, D.; Lee, G.K.; Lakatos, A.; Alandy-Dy, Z.; Freedkin, L.; Hall, K.; Ercelen, N.; et al. Variable clinical features of patients with Fabry disease and outcome of enzyme replacement therapy. Mol. Genet. Metab. Rep. 2020, 26, 100700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lenders, M.; Canaan-Kühl, S.; Krämer, J.; Duning, T.; Reiermann, S.; Sommer, C.; Stypmann, J.; Blaschke, D.; Üçeyler, N.; Hense, H.W.; et al. Patients with Fabry Disease after Enzyme Replacement Therapy Dose Reduction and Switch-2-Year Follow-Up. J. Am. Soc. Nephrol. 2016, 27, 952–962. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radulescu, D.; Crisan, D.; Militaru, V.; Buzdugan, E.; Stoicescu, L.; Grosu, A.; Vlad, C.; Grapa, C.; Radulescu, M.L. Gastrointestinal Manifestations and Treatment Options in Fabry Disease Patients. A Systematic Review. J. Gastrointestin Liver Dis. 2022, 31, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Schwarz, M.; Mehta, A.; Keshav, S.; Fabry Outcome Survey European Investigators. Gastrointestinal symptoms in 342 patients with Fabry disease: Prevalence and response to enzyme replacement therapy. Clin. Gastroenterol. Hepatol. 2007, 5, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Cable, W.J.; Kolodny, E.H.; Adams, R.D. Fabry disease: Impaired autonomic function. Neurology 1982, 32, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Ries, M.; Clarke, J.T.; Whybra, C.; Timmons, M.; Robinson, C.; Schlaggar, B.L.; Pastores, G.; Lien, Y.H.; Kampmann, C.; Brady, R.O.; et al. Enzyme-replacement therapy with agalsidase alfa in children with Fabry disease. Pediatrics 2006, 118, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Biegstraaten, M.; van Schaik, I.N.; Wieling, W.; Wijburg, F.A.; Hollak, C.E. Autonomic neuropathy in Fabry disease: A prospective study using the Autonomic Symptom Profile and cardiovascular autonomic function tests. BMC Neurol. 2010, 10, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hilz, M.J.; Marthol, H.; Schwab, S.; Kolodny, E.H.; Brys, M.; Stemper, B. Enzyme replacement therapy improves cardiovascular responses to orthostatic challenge in Fabry patients. J. Hypertens. 2010, 28, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Sims, K.; Politei, J.; Banikazemi, M.; Lee, P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: Natural history data from the Fabry Registry. Stroke 2009, 40, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, L. Nervous system manifestations of Fabry disease: Data from FOS—The Fabry Outcome Survey. In Fabry Disease: Perspectives from 5 Years of FOS; Mehta, A., Beck, M., Sunder-Plassmann, G., Eds.; Oxford PharmaGenesis: Oxford, UK, 2006; Chapter 23. [Google Scholar] [PubMed]
- Ghali, J.; Murugasu, A.; Day, T.; Nicholls, K. Carpal tunnel syndrome in fabry disease. JIMD Rep. 2012, 2, 17–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mehta, A.; Clarke, J.T.; Giugliani, R.; Elliott, P.; Linhart, A.; Beck, M.; Sunder-Plassmann, G.; FOS Investigators. Natural course of Fabry disease: Changing pattern of causes of death in FOS—Fabry Outcome Survey. J. Med. Genet. 2009, 46, 548–552. [Google Scholar] [CrossRef] [PubMed]
- MacDermot, K.D.; Holmes, A.; Miners, A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J. Med. Genet. 2001, 38, 750–760. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MacDermot, K.D.; Holmes, A.; Miners, A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J. Med. Genet. 2001, 38, 769–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baptista, M.V.; Ferreira, S.; Pinho-E-Melo, T.; Carvalho, M.; Cruz, V.T.; Carmona, C.; Silva, F.A.; Tuna, A.; Rodrigues, M.; Ferreira, C.; et al. PORT uguese Young STROKE Investigators. Mutations of the GLA gene in young patients with stroke: The PORTY STROKE study—Screening genetic conditions in Portuguese young stroke patients. Stroke 2010, 41, 431–436. [Google Scholar] [CrossRef]
- Brouns, R.; Sheorajpanday, R.; Braxel, E.; Eyskens, F.; Baker, R.; Hughes, D.; Mehta, A.; Timmerman, T.; Vincent, M.F.; De Deyn, P.P. Middelheim Fabry Study (MiFaS): A retrospective Belgian study on the prevalence of Fabry disease in young patients with cryptogenic stroke. Clin. Neurol. Neurosurg. 2007, 109, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.A.; Kittner, S.J.; Tuhrim, S.; Cole, J.W.; Stern, B.; Dobbins, M.; Grace, M.E.; Nazarenko, I.; Dobrovolny, R.; McDade, E.; et al. Frequency of unrecognized Fabry disease among young European-American and African-American men with first ischemic stroke. Stroke 2010, 41, 78–81. [Google Scholar] [CrossRef]
- Brouns, R.; Thijs, V.; Eyskens, F.; Van den Broeck, M.; Belachew, S.; Van Broeckhoven, C.; Redondo, P.; Hemelsoet, D.; Fumal, A.; Jeangette, S.; et al. Belgian Fabry study: Prevalence of Fabry disease in a cohort of 1000 young patients with cerebrovascular disease. Stroke 2010, 41, 863–868. [Google Scholar] [CrossRef]
- Sarikaya, H.; Yilmaz, M.; Michael, N.; Miserez, A.R.; Steinmann, B.; Baumgartner, R.W. Zurich Fabry study—prevalence of Fabry disease in young patients with first cryptogenic ischaemic stroke or TIA. Eur. J. Neurol. 2012, 19, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Dubuc, V.; Moore, D.F.; Gioia, L.C.; Saposnik, G.; Selchen, D.; Lanthier, S. Prevalence of Fabry disease in young patients with cryptogenic ischemic stroke. J. Stroke Cerebrovasc. Dis. 2013, 22, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, L.; Baker, R.; Segal, H.; Burgess, A.I.; Poole, D.; Hughes, D.A.; Rothwell, P.M. Fabry disease in unselected patients with TIA or stroke: Population-based study. Eur. J. Neurol. 2012, 19, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Sekijima, Y.; Nakamura, K.; Hattori, K.; Nagamatsu, K.; Shimizu, Y.; Yazaki, M.; Sakurai, A.; Endo, F.; Fukushima, Y.; et al. p.E66Q mutation in the GLA gene is associated with a high risk of cerebral small-vessel occlusion in elderly Japanese males. Eur. J. Neurol. 2014, 21, 49–56. [Google Scholar] [CrossRef]
- Romani, I.; Borsini, W.; Nencini, P.; Morrone, A.; Ferri, L.; Frusconi, S.; Donadio, V.A.; Liguori, R.; Donati, M.A.; Falconi, S.; et al. De novo Diagnosis of Fabry Disease among Italian Adults with Acute Ischemic Stroke or Transient Ischemic Attack. J. Stroke Cerebrovasc. Dis. 2015, 24, 2588–2595. [Google Scholar] [CrossRef]
- Fancellu, L.; Borsini, W.; Romani, I.; Pirisi, A.; Deiana, G.A.; Sechi, E.; Doneddu, P.E.; Rassu, A.L.; Demurtas, R.; Scarabotto, A.; et al. Exploratory screening for Fabry’s disease in young adults with cerebrovascular disorders in northern Sardinia. BMC Neurol. 2015, 15, 256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bersano, A.; Markus, H.S.; Quaglini, S.; Arbustini, E.; Lanfranconi, S.; Micieli, G.; Boncoraglio, G.B.; Taroni, F.; Gellera, C.; Baratta, S.; et al. Lombardia GENS Group*. Clinical pregenetic screening for stroke monogenic diseases: Results from lombardia gens registry. Stroke 2016, 47, 1702–1709. [Google Scholar] [CrossRef]
- Song, X.; Xue, S.; Zhao, J.; Wu, J. Screening for Fabry’s disease in young patients with ischemic stroke in a Chinese population. Int. J. Neurosci. 2017, 127, 350–355. [Google Scholar]
- Lanthier, S.; Saposnik, G.; Lebovic, G.; Pope, K.; Selchen, D. Moore DF and Canadian Fabry Stroke Screening Initiative Study, G. Prevalence of Fabry Disease and Outcomes in Young Canadian Patients with Cryptogenic Ischemic Cerebrovascular Events. Stroke 2017, 48, 1766–1772. [Google Scholar] [CrossRef]
- Lambe, J.; Noone, I.; Lonergan, R.; Tubridy, N. Auditing the frequency and the clinical and economic impact of testing for Fabry disease in patients under the age of 70 with a stroke admitted to Saint Vincent’s University Hospital over a 6-month period. Ir. J. Med. Sci. 2017. [CrossRef]
- Gündoğdu, A.A.; Kotan, D.; Alemdar, M. The frequency of fabry disease among young cryptogenic stroke patients in the city of Sakarya. J. Stroke Cerebrovasc. Dis. 2017, 26, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Nagamatsu, K.; Sekijima, Y.; Nakamura, K.; Nakamura, K.; Hattori, K.; Ota, M.; Shimizu, Y.; Endo, F.; Ikeda, S.I. Prevalence of Fabry disease and GLA c.196G>C variant in Japanese stroke patients. J. Hum. Genet. 2017, 62, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Malavera, A.; Cadilhac, D.A.; Thijs, V.; Lim, J.Y.; Grabsch, B.; Breen, S.; Jan, S.; Anderson, C.S. Screening for Fabry Disease in Young Strokes in the Australian Stroke Clinical Registry (AuSCR). Front. Neurol. 2020, 11, 596420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poli, L.; Zedde, M.; Zini, A.; Del Sette, M.; Lodigiani, C.; Spalloni, A.; Di Lisi, F.; Toriello, A.; Piras, V.; Stilo, C.; et al. Screening for Fabry disease in patients with ischaemic stroke at young age: The Italian Project on Stroke in Young Adults. Eur. J. Neurol. 2017, 24, e12–e14. [Google Scholar] [CrossRef] [PubMed]
- Reisin, R.C.; Mazziotti, J.; Cejas, L.L.; Zinnerman, A.; Bonardo, P.; Pardal, M.F.; Martínez, A.; Riccio, P.; Ameriso, S.; Bendersky, E.; et al. Prevalence of Fabry Disease in Young Patients with Stroke in Argentina. J. Stroke Cerebrovasc. Dis. 2018, 27, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Tomek, A.; Petra, R.; Paulasová Schwabová, J.; Olšerová, A.; Škorňa, M.; Nevšímalová, M.; Šimůnek, L.; Herzig, R.; Fafejtová, Š.; Mikulenka, P.; et al. National Stroke Research Network, part of Czech Clinical Research Infrastructure Network (CZECRIN) and Czech Neurological Society, Cerebrovascular Section. Nationwide screening for Fabry disease in unselected stroke patients. PLoS ONE 2021, 16, e0260601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romani, I.; Sarti, C.; Nencini, P.; Pracucci, G.; Zedde, M.; Cianci, V.; Nucera, A.; Moller, J.; Orsucci, D.; Toni, D.; et al. Prevalence of Fabry disease and GLA variants in young patients with acute stroke: The challenge to widen the screening. The Fabry-Stroke Italian Registry. J. Neurol. Sci. 2024, 457, 122905. [Google Scholar] [CrossRef] [PubMed]
- Doheny, D.; Srinivasan, R.; Pagant, S.; Chen, B.; Yasuda, M.; Desnick, R.J. Fabry Disease: Prevalence of affected males and heterozygotes with pathogenic GLA mutations identified by screening renal, cardiac and stroke clinics, 1995-2017. J Med Genet 2018, 55, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Mitsias, P.; Levine, S.R. Cerebrovascular complications of Fabry’s disease. Ann. Neurol. 1996, 40, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Körver, S.; Longo, M.G.F.; Lima, M.R.; Hollak, C.E.M.; El Sayed, M.; van Schaik, I.N.; Vedolin, L.; Dijkgraaf, M.G.W.; Langeveld, M. Determinants of cerebral radiological progression in Fabry disease. J. Neurol. Neurosurg. Psychiatry 2020, 91, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Fellgiebel, A.; Keller, I.; Marin, D.; Müller, M.J.; Schermuly, I.; Yakushev, I.; Albrecht, J.; Bellhäuser, H.; Kinateder, M.; Beck, M.; et al. Diagnostic utility of different MRI and MR angiography measures in Fabry disease. Neurology 2009, 72, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Uçeyler, N.; Homola, G.A.; Guerrero González, H.; Kramer, D.; Wanner, C.; Weidemann, F.; Solymosi, L.; Sommer, C. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. PLoS ONE 2014, 9, e87054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yagita, Y.; Sakai, N.; Miwa, K.; Ohara, N.; Tanaka, M.; Sakaguchi, M.; Kitagawa, K.; Mochizuki, H. Magnetic Resonance Imaging Findings Related to Stroke Risk in Japanese Patients with Fabry Disease. Stroke 2019, 50, 2571–2573. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.L.T.; Sheng, B.; Kwok, H.M.; Yu, E.L.M.; Ma, K.F.J. Basilar artery diameter as neuroimaging biomarker in Chinese Fabry disease patients. Orphanet J. Rare Dis. 2023, 18, 186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tapia, D.; Floriolli, D.; Han, E.; Lee, G.; Paganini-Hill, A.; Wang, S.; Zandihaghighi, S.; Kimonis, V.; Fisher, M. Prevalence of cerebral small vessel disease in a Fabry disease cohort. Mol. Genet. Metab. Rep. 2021, 29, 100815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roy, A.; Cumberland, M.J.; O’Shea, C.; Holmes, A.; Kalla, M.; Gehmlich, K.; Geberhiwot, T.; Steeds, R.P. Arrhythmogenesis in Fabry Disease. Curr. Cardiol. Rep. 2024. [CrossRef] [PubMed]
- Vijapurapu, R.; Roy, A.; Demetriades, P.; Warfield, A.; Hughes, D.A.; Moon, J.; Woolfson, P.; de Bono, J.; Geberhiwot, T.; Kotecha, D.; et al. Systematic review of the incidence and clinical risk predictors of atrial fibrillation and permanent pacemaker implantation for bradycardia in Fabry disease. Open Heart 2023, 10, e002316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rombach, S.M.; Twickler, T.B.; Aerts, J.M.; Linthorst, G.E.; Wijburg, F.A.; Hollak, C.E. Vasculopathy in patients with Fabry disease: Current controversies and research directions. Mol. Genet. Metab. 2010, 99, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, E.; Mendes, A.; Seixas, D.; Santos, R.; Castro, P.; Ayres-Basto, M.; Rosengarten, B.; Oliveira, J.P. Functional transcranial Doppler: Presymptomatic changes in Fabry disease. Eur. Neurol. 2012, 67, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Rombach, S.M.; van den Bogaard, B.; de Groot, E.; Groener, J.E.; Poorthuis, B.J.; Linthorst, G.E.; van den Born, B.J.; Hollak, C.E.; Aerts, J.M. Vascular aspects of Fabry disease in relation to clinical manifestations and elevations in plasma globotriaosylsphingosine. Hypertension 2012, 60, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Vujkovac, A.C.; Vujkovac, B.; Novaković, S.; Števanec, M.; Šabovič, M. Characteristics of Vascular Phenotype in Fabry Patients. Angiology 2021, 72, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.F.; Altarescu, G.; Barker, W.C.; Patronas, N.J.; Herscovitch, P.; Schiffmann, R. White matter lesions in Fabry disease occur in ‘prior’ selectively hypometabolic and hyperperfused brain regions. Brain Res. Bull. 2003, 62, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.; Gutierres, M.; Pereira, G.; Ferreira, S.; Oliveira, J.P.; Azevedo, E. Evaluation of Cerebral Microvascular Regulatory Mechanisms with Transcranial Doppler in Fabry Disease. Brain Sci. 2020, 10, 528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palaiodimou, L.; Papagiannopoulou, G.; Bakola, E.; Papadopoulou, M.; Kokotis, P.; Moschovos, C.; Vrettou, A.R.; Kapsia, E.; Petras, D.; Anastasakis, A.; et al. Impaired cerebral autoregulation in Fabry disease: A case-control study. J. Neuroimaging 2023, 33, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Hilz, M.J.; Kolodny, E.H.; Brys, M.; Stemper, B.; Haendl, T.; Marthol, H. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease. J. Neurol. 2004, 251, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.F.; Altarescu, G.; Ling, G.S.; Jeffries, N.; Frei, K.P.; Weibel, T.; Charria-Ortiz, G.; Ferri, R.; Arai, A.E.; Brady, R.O.; et al. Elevated cerebral blood flow velocities in Fabry disease with reversal after enzyme replacement. Stroke 2002, 33, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Vagli, C.; Fisicaro, F.; Vinciguerra, L.; Puglisi, V.; Rodolico, M.S.; Giordano, A.; Ferri, R.; Lanza, G.; Bella, R. Cerebral Hemodynamic Changes to Transcranial Doppler in Asymptomatic Patients with Fabry’s Disease. Brain Sci. 2020, 10, 546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakamura, K.; Sekijima, Y.; Nakamura, K.; Hattori, K.; Nagamatsu, K.; Shimizu, Y.; Yasude, T.; Ushiyama, M.; Endo, F.; Fukushima, Y.; et al. Cerebral hemorrhage in Fabry’s disease. J. Hum. Genet. 2010, 55, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Reisin, R.C.; Romero, C.; Marchesoni, C.; Nápoli, G.; Kisinovsky, I.; Cáceres, G.; Sevlever, G. Brain MRI findings in patients with Fabry disease. J. Neurol. Sci. 2011, 305, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Kono, Y.; Wakabayashi, T.; Kobayashi, M.; Ohashi, T.; Eto, Y.; Ida, H.; Iguchi, Y. Characteristics of Cerebral Microbleeds in Patients with Fabry Disease. J. Stroke Cerebrovasc. Dis. 2016, 25, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Montardi, C.; Gaudemer, A.; Zuber, M.; Vuillemet, F.; Alexandra, J.F.; Lidove, O.; Mauhin, W. Aseptic meningitis and Fabry disease. Ann. Clin. Transl. Neurol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Garzuly, F.; Maródi, L.; Erdös, M.; Grubits, J.; Varga, Z.; Gelpi, E.; Rohonyi, B.; Mázló, M.; Molnár, A.; Budka, H. Megadolichobasilar anomaly with thrombosis in a family with Fabry’s disease and a novel mutation in the α-galactosidase A gene. Brain 2005, 128, 2078–2083. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Rapkiewicz, A.; Abu-Asab, M.; Ries, M.; Askari, H.; Tsokos, M.; Quezado, M. Pathological findings in a patient with Fabry disease who died after 2.5 years of enzyme replacement. Virchows Arch. 2005, 448, 337–343. [Google Scholar] [CrossRef]
- Orimo, S.; Iwasaki, T.; Yoshino, H.; Arai, M.; Hiyamuta, E. An autopsied case of Fabry’s disease presenting with parkinsonism and cardiomegaly as a cardinal clinical manifestation. Rinsho Shinkeigaku 1994, 34, 1003–1007. [Google Scholar]
- Buechner, S.; De Cristofaro, M.T.R.; Ramat, S.; Borsini, W. Parkinsonism and Anderson Fabry’s disease: A case report. Mov. Disord. 2006, 21, 103–107. [Google Scholar] [CrossRef] [PubMed]
- McNeill, A.; Duran, R.; Proukakis, C.; Bras, J.; Hughes, D.; Mehta, A.; Hardy, J.; Wood, N.W.; Schapira, A.H. Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Mov. Disord. 2012, 27, 526–532. [Google Scholar] [CrossRef]
- Wise, A.H.; Yang, A.; Naik, H.; Stauffer, C.; Zeid, N.; Liong, C.; Balwani, M.; Desnick, R.J.; Alcalay, R.N. Parkinson’s disease prevalence in Fabry disease: A survey study. Mol. Genet. Metab. Rep. 2017, 14, 27–30. [Google Scholar] [CrossRef]
- Marder, K.; Levy, G.; Louis, E.D.; Mejia-Santana, H.; Cote, L.; Andrews, H.; Harris, J.; Waters, C.; Ford, B.; Frucht, S.; et al. Accuracy of family history data on Parkinson’s disease. Neurology 2003, 61, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Wang, Y.; Alcalay, R.N.; Mejia-Santana, H.; Saunders-Pullman, R.; Bressman, S.; Corvol, J.-C.; Brice, A.; Lesage, S.; Mangone, G.; et al. Penetrance estimate of LRRK2 p.G2019S mutation in individuals of non-Ashkenazi Jewish ancestry. Mov. Disord. 2017, 32, 1432–1438. [Google Scholar] [CrossRef]
- Alcalay, R.N.; Dinur, T.; Quinn, T.; Sakanaka, K.; Levy, O.; Waters, C.; Fahn, S.; Dorovski, T.; Chung, W.K.; Pauciulo, M.; et al. Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. JAMA Neurol. 2014, 71, 752–757. [Google Scholar] [CrossRef]
- Glass, R.B.; Astrin, K.H.; Norton, K.I.; Parsons, R.; Eng, C.M.; Banikazemi, M.; Desnick, R.J. Fabry disease: Renal sonographic and magnetic resonance imaging findings in affected males and carrier females with the classic and cardiac variant phenotypes. J. Comput. Assist. Tomogr. 2004, 28, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.M.; Niehaus, D.J.; Enriquez, A.L.; Burgert, T.S.; Ludman, M.D.; Desnick, R.J. Fabry disease: Twenty-three mutations including sense and antisense CpG alterations and identification of a deletional hot-spot in the alpha-galactosidase a gene. Hum. Mol. Genet. 1994, 3, 1795–1799. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, I.M.; Böttcher, A.; Hennermann, J.B.; Beck, M.; Fellgiebel, A. Eight-Year Follow-Up of Neuropsychiatric Symptoms and Brain Structural Changes in Fabry Disease. PLoS ONE 2015, 10, e0137603. [Google Scholar] [CrossRef] [PubMed]
- Kaye, E.M.; Kolodny, E.H.; Logigian, E.L.; Ullman, M.D. Nervous system involvement in Fabry’s disease: Clinicopathological and biochemical correlation. Ann. Neurol. 1988, 23, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Okeda, R.; Nisihara, M. An autopsy case of Fabry disease with neuropathological investigation of the pathogenesis of associated dementia. Neuropathology 2008, 28, 532–540. [Google Scholar] [CrossRef]
- Fellgiebel, A.; Wolf, D.O.; Kolodny, E.; Müller, M.J. Hippocampal atrophy as a surrogate of neuronal involvement in Fabry disease. J. Inherit. Metab. Dis. 2012, 35, 363–367. [Google Scholar] [CrossRef]
- Cocozza, S.; Russo, C.; Pontillo, G.; Pisani, A.; Brunetti, A. Neuroimaging in Fabry disease: Current knowledge and future directions. Insights Imaging 2018, 9, 1077–1088. [Google Scholar] [CrossRef]
- Paavilainen, T.; Lepomäki, V.; Saunavaara, J.; Borra, R.; Nuutila, P.; Kantola, I.; Parkkola, R. Diffusion tensor imaging and brain volumetry in Fabry disease patients. Neuroradiology 2013, 55, 551–558. [Google Scholar] [CrossRef]
- Marino, S.; Borsini, W.; Buchner, S.; Mortilla, M.; Stromillo, M.L.; Battaglini, M.; Giorgio, A.; Bramanti, P.; Federico, A.; De Stefano, N. Diffuse structural and metabolic brain changes in Fabry disease. J. Neurol. 2006, 253, 434–440. [Google Scholar] [CrossRef]
- Cocozza, S.; Pontillo, G.; Quarantelli, M.; Saccà, F.; Riccio, E.; Costabile, T.; Olivo, G.; Brescia Morra, V.; Pisani, A.; Brunetti, A.; et al. AFFINITY study group. Default mode network modifications in Fabry disease: A resting-state fMRI study with structural correlations. Hum. Brain Mapp. 2018, 39, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Cocozza, S.; Pisani, A.; Olivo, G.; Saccà, F.; Ugga, L.; Riccio, E.; Migliaccio, S.; Brescia Morra, V.; Brunetti, A.; Quarantelli, M.; et al. Alterations of functional connectivity of the motor cortex in Fabry disease: An RS-fMRI study. Neurology 2017, 88, 1822–1829. [Google Scholar] [CrossRef] [PubMed]
- Duning, T.; Deppe, M.; Brand, E.; Stypmann, J.; Becht, C.; Heidbreder, A.; Young, P. Brainstem involvement as a cause of central sleep apnea: Pattern of microstructural cerebral damage in patients with cerebral microangiopathy. PLoS ONE 2013, 8, e60304. [Google Scholar] [CrossRef] [PubMed]
- Pontillo, G.; Cocozza, S.; Brunetti, A.; Brescia Morra, V.; Riccio, E.; Russo, C.; Saccà, F.; Tedeschi, E.; Pisani, A.; Quarantelli, M. Reduced Intracranial Volume in Fabry Disease: Evidence of Abnormal Neurodevelopment? Front. Neurol. 2018, 9, 672. [Google Scholar] [CrossRef] [PubMed]
- Nucifora, P.G.; Verma, R.; Lee, S.K.; Melhem, E.R. Diffusion-tensor MR imaging and tractography: Exploring brain microstructure and connectivity. Radiology 2007, 245, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Fellgiebel, A.; Mazanek, M.; Whybra, C.; Beck, M.; Hartung, R.; Müller, K.M.; Scheurich, A.; Dellani, P.R.; Stoeter, P.; Müller, M.J. Pattern of microstructural brain tissue alterations in Fabry disease: A diffusion-tensor imaging study. J. Neurol. 2006, 253, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Dellani, P.R.; Müller, M.J.; Schermuly, I.; Beck, M.; Stoeter, P.; Gerhard, A.; Fellgiebel, A. Voxel based analyses of diffusion tensor imaging in Fabry disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Gabusi, I.; Pontillo, G.; Petracca, M.; Battocchio, M.; Bosticardo, S.; Costabile, T.; Daducci, A.; Pane, C.; Riccio, E.; Pisani, A.; et al. Structural disconnection and functional reorganization in Fabry disease: A multimodal MRI study. Brain Commun. 2022, 4, fcac187. [Google Scholar] [CrossRef] [PubMed]
- Ulivi, L.; Kanber, B.; Prados, F.; Davagnanam, I.; Merwick, A.; Chan, E.; Williams, F.; Hughes, D.; Murphy, E.; Lachmann, R.H.; et al. White matter integrity correlates with cognition and disease severity in Fabry disease. Brain 2020, 143, 3331–3342. [Google Scholar] [CrossRef]
- Moore, D.F.; Schiffmann, R.; Ulug, A.M. Elevated CNS average diffusion constant in Fabry disease. Acta Paediatr. Suppl. 2002, 91, 67–68. [Google Scholar] [CrossRef]
- Cocozza, S.; Schiavi, S.; Pontillo, G.; Battocchio, M.; Riccio, E.; Caccavallo, S.; Russo, C.; Di Risi, T.; Pisani, A.; Daducci, A.; et al. Microstructural damage of the cortico-striatal and thalamo-cortical fibers in Fabry disease: A diffusion MRI tractometry study. Neuroradiology 2020, 62, 1459–1466. [Google Scholar] [CrossRef]
- Phyu, P.; Merwick, A.; Davagnanam, I.; Bolsover, F.; Jichi, F.; Wheeler-Kingshott, C.; Golay, X.; Hughes, D.; Cipolotti, L.; Murphy, E.; et al. Increased resting cerebral blood flow in adult Fabry disease: MRI arterial spin labeling study. Neurology 2018, 90, e1379–e1385. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, C.; Borsini, W.; Guerrini, L.; Della Nave, R.; Rocca, M.A.; Tessa, C.; Buchner, S.; Belli, G.; Filippi, M.; Villari, N.; et al. Subcortical damage and cortical functional changes in men and women with Fabry disease: A multifaceted MR study. Radiology 2006, 241, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Underhill, H.R.; Golden-Grant, K.; Garrett, L.T.; Uhrich, S.; Zielinski, B.A.; Scott, C.R. Detecting the effects of Fabry disease in the adult human brain with diffusion tensor imaging and fast bound-pool fraction imaging. J. Magn. Reson. Imaging 2015, 42, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Pontillo, G.; Pisani, A.; Saccà, F.; Riccio, E.; Macera, A.; Rusconi, G.; Stanzione, A.; Borrelli, P.; Brescia Morra, V.; et al. Striatonigral involvement in Fabry Disease: A quantitative and volumetric Magnetic Resonance Imaging study. Parkinsonism Relat. Disord. 2018, 57, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Cocozza, S.; Russo, C.; Pisani, A.; Olivo, G.; Riccio, E.; Cervo, A.; Pontillo, G.; Feriozzi, S.; Veroux, M.; Battaglia, Y.; et al. Redefining the Pulvinar Sign in Fabry Disease. AJNR Am. J. Neuroradiol. 2017, 38, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Montella, A.; Tranfa, M.; Scaravilli, A.; Barkhof, F.; Brunetti, A.; Cole, J.; Gravina, M.; Marrone, S.; Riccio, D.; Riccio, E.; et al. Assessing brain involvement in Fabry disease with deep learning and the brain-age paradigm. Hum. Brain Mapp. 2024, 45, e26599. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, R.N.; Wolf, P.; Levy, O.A.; Kang, U.J.; Waters, C.; Fahn, S.; Ford, B.; Kuo, S.H.; Vanegas, N.; Shah, H.; et al. Alpha galactosidase A activity in Parkinson’s disease. Neurobiol. Dis. 2018, 112, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Pontillo, G.; Saccà, F.; Riccio, E.; Cocozza, S.; Pane, C.; Tedeschi, E.; Pisani, A.; Pappatà, S. Nonvascular Parkinsonism in Fabry Disease: Results from Magnetic Resonance and Dopamine Transporter Imaging. J. Neuropathol. Exp. Neurol. 2021, 80, 476–479. [Google Scholar] [CrossRef]
- Murakami, Y.; Kakeda, S.; Watanabe, K.; Ueda, I.; Ogasawara, A.; Moriya, J.; Ide, S.; Futatsuya, K.; Sato, T.; Okada, K.; et al. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease. AJNR Am. J. Neuroradiol. 2015, 36, 1102–1108. [Google Scholar] [CrossRef]
- Ragno, M.; Berbellini, A.; Cacchiò, G.; Manca, A.; Di Marzio, F.; Pianese, L.; De Rosa, A.; Silvestri, S.; Scarcella, M.; De Michele, G. Parkinsonism is a late, not rare, feature of CADASIL: A study on Italian patients carrying the R1006C mutation. Stroke 2013, 44, 1147–1149. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, H.; Granberg, T.; Westman, E.; Svenningsson, P. Quantitative susceptibility mapping differentiates between parkinsonian disorders. Parkinsonism Relat. Disord. 2017, 44, 51–57. [Google Scholar] [CrossRef]
- Del Tredici, K.; Ludolph, A.C.; Feldengut, S.; Jacob, C.; Reichmann, H.; Bohl, J.R.; Braak, H. Fabry Disease with Concomitant Lewy Body Disease. J. Neuropathol. Exp. Neurol. 2020, 79, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Chabriat, H.; Joutel, A.; Dichgans, M.; Tournier-Lasserve, E.; Bousser, M.G. CADASIL. Lancet Neurol. 2009, 8, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Hack, R.J.; Gravesteijn, G.; Cerfontaine, M.N.; Santcroos, M.A.; Gatti, L.; Kopczak, A.; Bersano, A.; Duering, M.; Rutten, J.W.; Lesnik Oberstein, S.A.J. Three-tiered EGFr domain risk stratification for individualized NOTCH3-small vessel disease prediction. Brain 2023, 146, 2913–2927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacobs, B.; Dussor, G. Neurovascular contributions to migraine: Moving beyond vasodilation. Neuroscience 2016, 338, 130–144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreton, F.C.; Cullen, B.; Delles, C.; Santosh, C.; Gonzalez, R.L.; Dani, K.; Muir, K.W. Vasoreactivity in CADASIL: Comparison to structural MRI and neuropsychology. J. Cereb. Blood Flow. Metab. 2018, 38, 1085–1095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, Y.C.; Hu, Y.C.; Chung, C.P.; Wang, Y.F.; Guo, Y.C.; Tsai, Y.S.; Lee, Y.C. Intracerebral Hemorrhage in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy: Prevalence, Clinical and Neuroimaging Features and Risk Factors. Stroke 2021, 52, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Rinnoci, V.; Nannucci, S.; Valenti, R.; Donnini, I.; Bianchi, S.; Pescini, F.; Dotti, M.T.; Federico, A.; Inzitari, D.; Pantoni, L. Cerebral hemorrhages in CADASIL: Report of four cases and a brief review. J. Neurol. Sci. 2013, 330, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.C.; Chen, Y.R.; Chi, N.F.; Chen, C.H.; Cheng, Y.W.; Hsieh, F.I.; Hsieh, Y.C.; Yeh, H.L.; Sung, P.S.; Hu, C.J.; et al. Prevalence and clinical characteristics of stroke patients with p.R544C NOTCH3 mutation in Taiwan. Ann. Clin. Transl. Neurol. 2018, 6, 121–128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miao, Q.; Paloneva, T.; Tuisku, S.; Roine, S.; Poyhonen, M.; Viitanen, M.; Kalimo, H. Arterioles of the lenticular nucleus in CADASIL. Stroke 2006, 37, 2242–2247. [Google Scholar] [CrossRef] [PubMed]
- Brookes, R.L.; Hollocks, M.J.; Tan, R.Y.; Morris, R.G.; Markus, H.S. Brief screening of vascular cognitive impairment in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy without dementia. Stroke 2016, 47, 2482–2487. [Google Scholar] [CrossRef]
- Zeng, Q.; Pan, H.; Zhao, Y.; Wang, Y.; Xu, Q.; Tan, J.; Yan, X.; Li, J.; Tang, B.; Guo, J. Association between NOTCH3 gene and Parkinson’s disease based on whole-exome sequencing. Front. Aging Neurosci. 2022, 14, 995330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trojano, L.; Ragno, M.; Manca, A.; Caruso, G. A kindred affected by cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). A 2-year neuropsychological follow-up. J. Neurol. 1998, 245, 217–222. [Google Scholar] [CrossRef]
- Ragno, M.; Pianese, L.; Cacchiò, G.; Manca, A.; Scarcella, M.; Silvestri, S.; Di Marzio, F.; Caiazzo, A.R.; Silvaggio, F.; Tasca, G.; et al. Multi-organ investigation in 16 CADASIL families from central Italy sharing the same R1006C mutation. Neurosci. Lett. 2012, 506, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Amberla, K.; Waljas, M.; Tuominen, S.; Tuominen Almkvist, O.; Pöyhönen, M.; Tuisku, S.; Kalimo, H.; Viitanen, M. Insidious cognitive decline in CADASIL. Stroke 2004, 35, 1598–1602. [Google Scholar] [CrossRef]
- Peters, N.; Opherk, C.; Danek, A.; Ballard, C.; Herzog, J.; Dichgans, M. The pattern of cognitive performance in CADASIL: A monogenic condition leading to subcortical ischaemic dementia. Am. J. Psychiatry 2005, 162, 2078–2085. [Google Scholar] [CrossRef]
- Buffon, F.; Porcher, R.; Hernandez, K.; Kurtz, A.; Pointeau, S.; Vahedi, K.; Bousser, M.-G.; Chabriat, H. Cognitive profile in CADASIL. J. Neurol. Neurosurg. Psychiatry 2006, 77, 175–180. [Google Scholar] [CrossRef]
- Dichgans, M. Cognition in CADASIL. Stroke 2009, 40, S45–S47. [Google Scholar] [CrossRef]
- Jouvent, E.; Reyes, S.; de Guio, F.; Chabriat, H. Reaction time is a marker of early cognitive and behavioral alterations in pure cerebral small vessel disease. J. Alzheimer’s Dis. 2015, 47, 413–419. [Google Scholar] [CrossRef]
- Chabriat, H.; Lesnik Oberstein, S. Cognition, mood and behavior in CADASIL. Cereb. Circ. Cogn. Behav. 2022, 3, 100043. [Google Scholar] [CrossRef] [PubMed]
- Jolly, A.A.; Nannoni, S.; Edwards, H.; Morris, R.G.; Hugh, S.; Markus, H.S. Prevalence and predictors of vascular cognitive impairment in patients with CADASIL. Neurology 2022, 99, e453–e461. [Google Scholar] [CrossRef] [PubMed]
- Adib-Samii, P.; Brice, G.; Martin, R.J.; Markus, H.S. Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: Study in 200 consecutively recruited individuals. Stroke 2010, 41, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Rutten, J.W.; Van Eijsden, B.J.; Duering, M.; Jouvent, E.; Opherk, C.; Pantoni, L.; Federico, A.; Dichgans, M.; Markus, H.S.; Chabriat, H.; et al. The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1-6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7-34 pathogenic variant. Genet. Med. 2019, 21, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Liem, M.K.; Lesnik Oberstein, S.A.J.; Haan, J.; van der Neut, I.L.; Ferrari, M.D.; van Buchem, M.A.; Middelkoop, H.A.M.; van der Grond, J. MRI correlates of cognitive decline in CADASIL: A 7-year follow-up study. Neurology 2009, 72, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.; Gschwendtner, A.; Guichard, J.P.; Buffon, F.; Cumurciuc, R.; O’Sullivan, M.; Holtmannspötter, M.; Pachai, C.; Bousser, M.G.; Dichgans, M.; et al. Lacunar lesions are independently associated with disability and cognitive impairment in CADASIL. Neurology 2007, 69, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Chabriat, H.; Molko, N.; Pappala, S.; Mangin, J.F.; Poupon, C.; Jobert, A.; Bihan, D.L.; Bousser, M.G. Thalamic microstructural alterations secondary to white-matter damage in CADASIL: Evidence from diffusion tensor imaging study. Stroke 2001, 32, 342. [Google Scholar] [CrossRef]
- Herve, D.; Mangin, J.F.; Molko, N.; Bousser, M.G.; Chabriat, H. Shape and volume of lacunar infarcts: A 3D MRI study in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2005, 36, 2384–2388. [Google Scholar] [CrossRef]
- Kwan, J.; Hafdi, M.; Chiang, L.L.W.; Myint, P.K.; Wong, L.S.; Quinn, T.J. Antithrombotic therapy to prevent cognitive decline in people with small vessel disease on neuroimaging but without dementia. Database Syst. Rev. 2022, 7, CD012269. [Google Scholar] [CrossRef]
- Brookes, R.L.; Hannesdottir, K.; Lawrence, R.; Morris, R.G.; Markus, H.S. Brief Memory and Executive Test: Evaluation of a new screening test for cognitive impairment due to small vessel disease. Age Ageing 2012, 41, 212–218. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- De Lucia, N.; Ragno, M.; Paci, C.; Cacchiò, G.; Caiazzo, A.R.; Tiberi, S.; De Rosa, A.; Navarra, R.; Caulo, M.; De Michele, G.; et al. Constructional impairments and their neural correlates in nondemented adults with Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Cogn. BehavNeurol 2022, 35, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Kant, I.M.J.; Mutsaerts, H.J.M.M.; Simone, J.T.; van Montfort, S.J.T.; Jaarsma-Coes, M.G.; Witkamp, T.D.; Winterer, G.; Spies, C.D.; Hendrikse, J.; Slooter, A.J.C.; et al. The association between frailty and MRI features of cerebral small vessel disease. Sci. Rep. 2019, 9, 11343. [Google Scholar] [CrossRef]
- Panza, F.; Lozupone, M.; Solfrizzi, V.; Sardone, R.; Dibello, V.; Di Lena, L.; D’Urso, F.; Stallone, R.; Petruzzi, M.; Giannelli, G.; et al. Different cognitive frailty models and health- and cognitive-related outcomes in older age: From epidemiology to prevention. J. Alzheimers Dis. 2018, 62, 993–1012. [Google Scholar] [CrossRef] [PubMed]
- Romay, M.C.; Knutsen, R.H.; Ma, F.; Mompeón, A.; Hernandez, G.E.; Salvador, J.; Mirkov, S.; Batra, A.; Sullivan, D.P.; Procissi, D.; et al. Age-related loss of Notch3 underlies brain vascular contractility deficiencies, glymphatic dysfunction, and neurodegeneration in mice. J. Clin. Investig. 2024, 134, e166134. [Google Scholar] [CrossRef] [PubMed]
- Keverne, J.S.; Low, W.C.R.; Ziabreva, I.; Court, J.A.; Oakley, A.E.; Kalaria, R.N. Cholinergic neuronal deficits in CADASIL. Stroke 2007, 38, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Manganelli, F.; Ragno, M.; Cacchiò, G.; Iodice, V.; Trojano, L.; Silvaggio, F.; Scarcella, M.; Grazioli, M.; Santoro, S.; Perretti, A. Motor cortex cholinergic dysfunction in CADASIL: A transcranial magnetic demonstration. Clin. Neurophysiol. 2008, 119, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Dichgans, M.; Markus, H.S.; Salloway, S.; Verkkoniemi, A.; Moline, M.; Wang, Q.; Posner, H.; Chabriat, H.S. Donepezil in patients with subcortical vascular cognitive impairment: A randomised double-blind trial in CADASIL. Lancet Neurol. 2008, 7, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Ihara, M.; Tham, C.; Low, R.W.; Slade, J.Y.; Moss, T.; Oakley, A.E.; Polvikoski, T.; Kalaria, R.N. Neuropathological correlates of temporal white matter hyperintensities in CADASIL. Stroke 2009, 40, 2004–2011. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Craggs, L.J.; Watanabe, A.; Booth, T.; Attems, J.; Low, R.W. Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL. J. Neuropathol. Exp. Neurol. 2013, 72, 416–431. [Google Scholar] [CrossRef]
- Uchino, M. The pathomechanism and treatment of CADASIL. Rinsho Shinkeiqaku 2011, 51, 945–948. [Google Scholar] [CrossRef]
- Lee, Y.C.; Liu, C.S.; Chang, M.S.; Lin, K.P.; Fuh, J.L.; Lu, Y.C.; Liu, Y.F.; Soong, B.W. Population-specific spectrum of NOTCH3 mutations, MRI features and founder effect of CADASIL in Chinese. J. Neurol. 2009, 256, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Duering, M.; Biessels, G.J.; Brodtmann, A.; Chen, C.; Cordonnier, C.; de Leeuw, F.E.; Debette, S.; Frayne, R.; Jouvent, E.; Rost, N.S.; et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. 2023, 22, 602–618. [Google Scholar] [CrossRef] [PubMed]
- vanden Boom, R.; Lesnik Oberstein, S.A.; Ferrari, M.D.; Haan, J.; van Buchem, M.A. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leucoencephalopathy: MRI imaging findings at different ages—3rd-6th decades. Radiology 2003, 229, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Bersano, A.; Bedini, G.; Markus, H.S.; Vitali, P.; Colli-Tibaldi, E.; Taroni, F.; Gellera, C.; Baratta, S.; Mosca, L.; Carrera, P.; et al. The role of clinical and neuroimaging features in the diagnosis of CADASIL. J. Neurol. 2018, 265, 2934–2943. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, I.; Bianchi, S.; De Stefano, N.; Dichgans, M.; Dotti, M.T.; Duering, M.; Jouvent, E.; Korczyn, A.D.; Lesnik-Oberstein, S.A.; Malandrini, A.; et al. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: Update on clinical, diagnostic, and management aspects. BMC Med. 2017, 15, 41. [Google Scholar] [CrossRef]
- Meschia, J.F.; Worrall, B.B.; Elahi, F.M.; Ross, O.A.; Wang, M.M.; Goldstein, E.D.; Rost, N.S.; Majersik, J.J.; Gutierrez, J.; American Heart Association Stroke Council; et al. Management of Inherited CNS Small Vessel Diseases: The CADASIL Example: A Scientific Statement from the American Heart Association. Stroke 2023, 54, e452–e464. [Google Scholar] [CrossRef] [PubMed]
- Chabriat, H.; Levy, C.; Taillia, H.; Iba-Zizen, M.T.; Vahedi, K.; Joutel, A.; Tournier-Lasserve, E.; Bousser, M.G. Patterns of MRI lesions in CADASIL. Neurology 1998, 51, 452–457. [Google Scholar] [CrossRef]
- Nannucci, S.; Rinnoci, V.; Pracucci, G.; MacKinnon, A.D.; Pescini, F.; Adib-Samii, P.; Bianchi, S.; Dotti, M.T.; Federico, A.; Inzitari, D.; et al. Location, number and factors associated with cerebral microbleeds in an Italian-British cohort of CADASIL patients. PLoS ONE 2018, 13, e0190878. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Guio, F.; Reyes, S.; Vignaud, A.; Duering, M.; Ropele, S.; Duchesnay, E.; Chabriat, H.; Jouvent, E. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL. PLoS ONE 2014, 9, e106311. [Google Scholar] [CrossRef]
- Pantoni, L.; Pescini, F.; Nannucci, S.; Sarti, C.; Bianchi, S.; Dotti, M.T.; Federico, A.; Inzitari, D. Comparison of clinical, familial, and MRI features of CADASIL and NOTCH3-negative patients. Neurology 2010, 74, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Pantoni, L.; Giannelli, M.; Valenti, R.; Bianchi, A.; Pracucci, G.; Orsolini, S.; Ciulli, S.; Tessa, C.; Poggesi, A.; et al. Diffusion Tensor Imaging to Map Brain Microstructural Changes in CADASIL. J. Neuroimaging 2017, 27, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Schoemaker, D.; Quiroz, Y.T.; Torrico-Teave, H.; Arboleda-Velasquez, J.F. Clinical and research applications of magnetic resonance imaging in the study of CADASIL. Neurosci. Lett. 2019, 698, 173–179. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.; Jarosz, J.M.; Martin, R.J.; Deasy, N.; Powell, J.F.; Markus, H.S. MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 2001, 56, 628–634. [Google Scholar] [CrossRef]
- Opherk, C.; Gonik, M.; Duering, M.; Malik, R.; Jouvent, E.; Hervé, D.; Adib-Samii, P.; Bevan, S.; Pianese, L.; Silvestri, S.; et al. Genome-wide genotyping demonstrates a polygenic risk score associated with white matter hyperintensity volume in CADASIL. Stroke 2014, 45, 968–972. [Google Scholar] [CrossRef]
- Dichgans, M.; Holtmannspötter, M.; Herzog, J.; Peters, N.; Bergmann, M.; Yousry, T.A. Cerebral microbleeds in CADASIL: A gradient-echo magnetic resonance imaging and autopsy study. Stroke 2002, 33, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.; Gray, F.; Bousser, M.G.; Baudrimont, M.; Chabriat, H. Cortical neuronal apoptosis in CADASIL. Stroke 2006, 37, 2690–2695. [Google Scholar] [CrossRef]
- Jouvent, E.; Poupon, C.; Gray, F.; Paquet, C.; Mangin, J.F.; Le Bihan, D.; Chabriat, H. Intracortical infarcts in small vessel disease: A combined 7-T postmortem MRI and neuropathological case study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2011, 42, e27–e30. [Google Scholar] [CrossRef] [PubMed]
- Liem, M.K.; Lesnik Oberstein, S.A.; Versluis, M.J.; Maat-Schieman, M.L.; Haan, J.; Webb, A.G.; Ferrari, M.D.; van Buchem, M.A.; van der Grond, J. 7 T MRI reveals diffuse iron deposition in putamen and caudate nucleus in CADASIL. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1180–1185. [Google Scholar] [CrossRef]
- De Guio, F.; Vignaud, A.; Ropele, S.; Duering, M.; Duchesnay, E.; Chabriat, H.; Jouvent, E. Loss of venous integrity in cerebral small vessel disease: A 7-T MRI study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Stroke 2014, 45, 2124–2126. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zedde, M.; Romani, I.; Scaravilli, A.; Cocozza, S.; Trojano, L.; Ragno, M.; Rifino, N.; Bersano, A.; Gerevini, S.; Pantoni, L.; et al. Expanding the Neurological Phenotype of Anderson–Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism. Cells 2024, 13, 1131. https://doi.org/10.3390/cells13131131
Zedde M, Romani I, Scaravilli A, Cocozza S, Trojano L, Ragno M, Rifino N, Bersano A, Gerevini S, Pantoni L, et al. Expanding the Neurological Phenotype of Anderson–Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism. Cells. 2024; 13(13):1131. https://doi.org/10.3390/cells13131131
Chicago/Turabian StyleZedde, Marialuisa, Ilaria Romani, Alessandra Scaravilli, Sirio Cocozza, Luigi Trojano, Michele Ragno, Nicola Rifino, Anna Bersano, Simonetta Gerevini, Leonardo Pantoni, and et al. 2024. "Expanding the Neurological Phenotype of Anderson–Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism" Cells 13, no. 13: 1131. https://doi.org/10.3390/cells13131131
APA StyleZedde, M., Romani, I., Scaravilli, A., Cocozza, S., Trojano, L., Ragno, M., Rifino, N., Bersano, A., Gerevini, S., Pantoni, L., Valzania, F., & Pascarella, R. (2024). Expanding the Neurological Phenotype of Anderson–Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism. Cells, 13(13), 1131. https://doi.org/10.3390/cells13131131