PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. TcdB
2.2. EGC Culture and Intoxication with TcdB
2.3. Flow Cytometry Analysis of Apoptosis and Cell-Cycle Phases
2.4. Sample Preparation for Lipidomic Analysis
2.5. LC/MS Analysis
2.6. Statistical Analysis
3. Results
3.1. TcdB Induces Apoptosis, Necrosis and Cell-Cycle Arrest in EGCs
3.2. Effect of TcdB Exposure on Lipid Composition of EGCs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawson, P.A.; Citron, D.M.; Tyrrell, K.L.; Finegold, S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 2016, 40, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Rupnik, M. Clostridium difficile and Clostridioides difficile: Two Validly Published and Correct Names. Anaerobe 2018, 52, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Balsells, E.; Shi, T.; Leese, C.; Lyell, I.; Burrows, J.; Wiuff, C.; Campbell, H.; Kyaw, M.H.; Nair, H. Global Burden of Clostridium difficile Infections: A Systematic Review and Meta-Analysis. J. Glob. Health 2019, 9, 010407. [Google Scholar] [CrossRef]
- Magill, S.S.; O’Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S.; et al. Changes in Prevalence of Health Care–Associated Infections in U.S. Hospitals. N. Engl. J. Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.R.; Perencevich, E.N.; Nelson, R.E.; Samore, M.; Khader, K.; Chiang, H.Y.; Chorazy, M.L.; Herwaldt, L.A.; Diekema, D.J.; Kuxhausen, M.F.; et al. Incidence and Outcomes Associated with Clostridium difficile Infections: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2020, 3, e1917597. [Google Scholar] [CrossRef] [PubMed]
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile Infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1211–1221. [Google Scholar] [CrossRef]
- Guh, A.Y.; Kutty, P.K. Clostridioides difficile Infection. Ann. Intern. Med. 2018, 169, ITC49–ITC64. [Google Scholar] [CrossRef]
- Badilla-Lobo, A.; Rodríguez, C. Microbiological Features, Epidemiology, and Clinical Presentation of Clostridioides difficile Strains from MLST Clade 2: A Narrative Review. Anaerobe 2021, 69, 102355. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.J.; Ballard, J.D. Variations in Virulence and Molecular Biology among Emerging Strains of Clostridium difficile. Microbiol. Mol. Biol. Rev. 2013, 77, 567–581. [Google Scholar] [CrossRef]
- Fettucciari, K.; Marconi, P.; Marchegiani, A.; Fruganti, A.; Spaterna, A.; Bassotti, G. Invisible Steps for a Global Endemy: Molecular Strategies Adopted by Clostridioides difficile. Ther. Adv. Gastroenterol. 2021, 14, 175628482110327. [Google Scholar] [CrossRef]
- Kachrimanidou, M.; Tzika, E.; Filioussis, G. Clostridioides (Clostridium) difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms 2019, 7, 667. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.C.; Knight, D.R.; Riley, T.V. Clostridium difficile and One Health. Clin. Microbiol. Infect. 2020, 26, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Luo, Y.; Grinspan, A.M. Epidemiology of Community-Acquired and Recurrent Clostridioides difficile Infection. Ther. Adv. Gastroenterol. 2021, 14, 175628482110162. [Google Scholar] [CrossRef] [PubMed]
- Finn, E.; Andersson, F.L.; Madin-Warburton, M. Burden of Clostridioides difficile Infection (CDI)—A Systematic Review of the Epidemiology of Primary and Recurrent CDI. BMC Infect. Dis. 2021, 21, 456. [Google Scholar] [CrossRef] [PubMed]
- Aktories, K.; Schwan, C.; Jank, T. Clostridium difficile Toxin Biology. Annu. Rev. Microbiol. 2017, 71, 281–307. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Lacy, D.B. The Role of Toxins in Clostridium difficile Infection. FEMS Microbiol. Rev. 2017, 41, 723–750. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, S.; Ascenzi, P.; Siarakas, S.; Petrosillo, N.; di Masi, A. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects. Toxins 2016, 8, 134. [Google Scholar] [CrossRef] [PubMed]
- Chaves-Olarte, E.; Weidmann, M.; Eichel-Streiber, C.; Thelestam, M. Toxins A and B from Clostridium difficile Differ with Respect to Enzymatic Potencies, Cellular Substrate Specificities, and Surface Binding to Cultured Cells. J. Clin. Investig. 1997, 100, 1734–1741. [Google Scholar] [CrossRef]
- Donta, S.T.; Sullivan, N.; Wilkins, T.D. Differential Effects of Clostridium difficile Toxins on Tissue-Cultured Cells. J. Clin. Microbiol. 1982, 15, 1157–1158. [Google Scholar] [CrossRef] [PubMed]
- Farrow, M.A.; Chumbler, N.M.; Lapierre, L.A.; Franklin, J.L.; Rutherford, S.A.; Goldenring, J.R.; Lacy, D.B. Clostridium difficile Toxin B-Induced Necrosis Is Mediated by the Host Epithelial Cell NADPH Oxidase Complex. Proc. Natl. Acad. Sci. USA 2013, 110, 18674–18679. [Google Scholar] [CrossRef]
- Fettucciari, K.; Ponsini, P.; Gioè, D.; Macchioni, L.; Palumbo, C.; Antonelli, E.; Coaccioli, S.; Villanacci, V.; Corazzi, L.; Marconi, P.; et al. Enteric Glial Cells Are Susceptible to Clostridium difficile Toxin B. Cell. Mol. Life Sci. 2017, 74, 1527–1551. [Google Scholar] [CrossRef]
- D’Auria, K.M.; Bloom, M.J.; Reyes, Y.; Gray, M.C.; Van Opstal, E.J.; Papin, J.A.; Hewlett, E.L. High Temporal Resolution of Glucosyltransferase Dependent and Independent Effects of Clostridium difficile Toxins across Multiple Cell Types. BMC Microbiol. 2015, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Chumbler, N.M.; Farrow, M.A.; Lapierre, L.A.; Franklin, J.L.; Lacy, D.B. Clostridium difficile Toxins TcdA and TcdB Cause Colonic Tissue Damage by Distinct Mechanisms. Infect. Immun. 2016, 84, 2871–2877. [Google Scholar] [CrossRef] [PubMed]
- Christopher Peritore-Galve, F.; Shupe, J.A.; Cave, R.J.; Childress, K.O.; Kay Washington, M.; Kuehne, S.A.; Borden Lacy, D. Glucosyltransferase-Dependent and Independent Effects of Clostridioides difficile Toxins during Infection. PLoS Pathog. 2022, 18, e1010323. [Google Scholar] [CrossRef]
- Wohlan, K.; Goy, S.; Olling, A.; Srivaratharajan, S.; Tatge, H.; Genth, H.; Gerhard, R. Pyknotic Cell Death Induced by Clostridium difficile TcdB: Chromatin Condensation and Nuclear Blister Are Induced Independently of the Glucosyltransferase Activity. Cell. Microbiol. 2014, 16, 1678–1692. [Google Scholar] [CrossRef] [PubMed]
- Raeisi, H.; Azimirad, M.; Nabavi-Rad, A.; Asadzadeh Aghdaei, H.; Yadegar, A.; Zali, M.R. Application of Recombinant Antibodies for Treatment of Clostridioides difficile Infection: Current Status and Future Perspective. Front. Immunol. 2022, 13, 972930. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, D.P.; Wilcox, M.H. Antibodies for Treatment of Clostridium difficile Infection. Clin. Vaccine Immunol. 2014, 21, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Razim, A.; Górska, S.; Gamian, A. Non-Toxin-Based Clostridioides difficile Vaccination Approaches. Pathogens 2023, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Leuzzi, R.; Adamo, R.; Scarselli, M. Vaccines against Clostridium difficile Comprising Recombinant Toxins. Hum. Vaccines Immunother. 2014, 10, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K. Toxin-Binding Treatment for Clostridium difficile: A Review Including Reports of Studies with Tolevamer. Int. J. Antimicrob. Agents 2009, 33, 4–7. [Google Scholar] [CrossRef]
- Le Lay, C.; Dridi, L.; Bergeron, M.G.; Ouellette, M.; Fliss, I. Nisin Is an Effective Inhibitor of Clostridium difficile Vegetative Cells and Spore Germination. J. Med. Microbiol. 2016, 65, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Sorg, J.A.; Sonenshein, A.L. Inhibiting the Initiation of Clostridium difficile Spore Germination Using Analogs of Chenodeoxycholic Acid, a Bile Acid. J. Bacteriol. 2010, 192, 4983–4990. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N.; Sambol, S.P.; Johnson, S. Non-Toxigenic Clostridioides (Formerly Clostridium) difficile for Prevention of C. Difficile Infection: From Bench to Bedside Back to Bench and Back to Bedside. Front. Microbiol. 2018, 9, 1700. [Google Scholar] [CrossRef] [PubMed]
- Liubakka, A.; Vaughn, B.P. Clostridium difficile Infection and Fecal Microbiota Transplant. AACN Adv. Crit. Care 2016, 27, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Baunwall, S.M.D.; Lee, M.M.; Eriksen, M.K.; Mullish, B.H.; Marchesi, J.R.; Dahlerup, J.F.; Hvas, C.L. Faecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection: An Updated Systematic Review and Meta-Analysis. EClinicalMedicine 2020, 29–30, 100642. [Google Scholar] [CrossRef] [PubMed]
- Nale, J.Y.; Thanki, A.M.; Rashid, S.J.; Shan, J.; Vinner, G.K.; Dowah, A.S.A.; Cheng, J.K.J.; Sicheritz-Pontén, T.; Clokie, M.R.J. Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages. Viruses 2022, 14, 2772. [Google Scholar] [CrossRef] [PubMed]
- Heuler, J.; Fortier, L.C.; Sun, X. Clostridioides difficile Phage Biology and Application. FEMS Microbiol. Rev. 2021, 45, fuab012. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, M.E.; Durantie, E.; Huberli, C.; Huwiler, S.; Hegde, C.; Friedman, J.; Altamura, F.; Lu, J.; Verdu, E.F.; Bercik, P.; et al. Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-Proteolysis as a Therapeutic Strategy. Cell Chem. Biol. 2019, 26, 17–26.e13. [Google Scholar] [CrossRef] [PubMed]
- Jarmo, O.; Veli-Jukka, A.; Eero, M. Treatment of Clostridioides (Clostridium) difficile Infection. Ann. Med. 2020, 52, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, H. Non-Antibiotic Therapy for Clostridioides difficile Infection: A Review. Crit. Rev. Clin. Lab. Sci. 2019, 56, 493–509. [Google Scholar] [CrossRef]
- Bainum, T.B.; Reveles, K.R.; Hall, R.G.; Cornell, K.; Alvarez, C.A. Controversies in the Prevention and Treatment of Clostridioides difficile Infection in Adults: A Narrative Review. Microorganisms 2023, 11, 387. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Bedi, P.; Bumrah, K.; Singh, J.; Rai, M.; Seelam, S. Updates in Treatment of Recurrent Clostridium difficile Infection. J. Clin. Med. Res. 2019, 11, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Fettucciari, K.; Marguerie, F.; Fruganti, A.; Marchegiani, A.; Spaterna, A.; Brancorsini, S.; Marconi, P.; Bassotti, G. Clostridioides difficile Toxin B Alone and with Pro-Inflammatory Cytokines Induces Apoptosis in Enteric Glial Cells by Activating Three Different Signalling Pathways Mediated by Caspases, Calpains and Cathepsin B. Cell. Mol. Life Sci. 2022, 79, 442. [Google Scholar] [CrossRef] [PubMed]
- Fettucciari, K.; Spaterna, A.; Marconi, P.; Bassotti, G. Pro-Inflammatory Cytokines Enhanced In Vitro Cytotoxic Activity of Clostridioides difficile Toxin B in Enteric Glial Cells: The Achilles Heel of Clostridioides difficile Infection? Int. J. Mol. Sci. 2024, 25, 958. [Google Scholar] [CrossRef]
- Zeiser, J.; Gerhard, R.; Just, I.; Pich, A. Substrate Specificity of Clostridial Glucosylating Toxins and Their Function on Colonocytes Analyzed by Proteomics Techniques. J. Proteome Res. 2013, 12, 1604–1618. [Google Scholar] [CrossRef] [PubMed]
- Jochim, N.; Gerhard, R.; Just, I.; Pich, A. Time-Resolved Cellular Effects Induced by TcdA from Clostridium difficile. Rapid Commun. Mass Spectrom. 2014, 28, 1089–1110. [Google Scholar] [CrossRef] [PubMed]
- Junemann, J.; Birgin, G.; Erdmann, J.; Schröder, A.; Just, I.; Gerhard, R.; Pich, A. Toxin A of the Nosocomial Pathogen Clostridium difficile Induces Primary Effects in the Proteome of HEp-2 Cells. Proteom.—Clin. Appl. 2017, 11, 1600031. [Google Scholar] [CrossRef] [PubMed]
- Junemann, J.; Lämmerhirt, C.M.; Polten, F.; Just, I.; Gerhard, R.; Genth, H.; Pich, A. Quantification of Small GTPase Glucosylation by Clostridial Glucosylating Toxins Using Multiplexed MRM Analysis. Proteomics 2017, 17, 1700016. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, J.; Junemann, J.; Schröder, A.; Just, I.; Gerhard, R.; Pich, A. Glucosyltransferase-Dependent and -Independent Effects of TcdB on the Proteome of HEp-2 Cells. Proteomics 2017, 17, 1600435. [Google Scholar] [CrossRef] [PubMed]
- Stieglitz, F.; Gerhard, R.; Hönig, R.; Giehl, K.; Pich, A. TcdB of Clostridioides difficile Mediates RAS-Dependent Necrosis in Epithelial Cells. Int. J. Mol. Sci. 2022, 23, 4258. [Google Scholar] [CrossRef]
- Helms, B. Host-Pathogen Interactions: Lipids Grease the Way. Eur. J. Lipid Sci. Technol. 2006, 108, 895–897. [Google Scholar] [CrossRef]
- van der Meer-Janssen, Y.P.M.; van Galen, J.; Batenburg, J.J.; Helms, J.B. Lipids in Host-Pathogen Interactions: Pathogens Exploit the Complexity of the Host Cell Lipidome. Prog. Lipid Res. 2010, 49, 1–26. [Google Scholar] [CrossRef]
- Walpole, G.F.W.; Grinstein, S.; Westman, J. The Role of Lipids in Host–Pathogen Interactions. IUBMB Life 2018, 70, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.; Saiz, J.-C.; Nickels, J.T. Editorial: Lipids in Host Microbe Interaction. Front. Cell. Infect. Microbiol. 2022, 12, 1002856. [Google Scholar] [CrossRef] [PubMed]
- Geny, B.; Popoff, M.R. Bacterial Protein Toxins and Lipids: Role in Toxin Targeting and Activity. Biol. Cell 2006, 98, 633–651. [Google Scholar] [CrossRef]
- Grubišić, V.; Gulbransen, B.D. Enteric Glia: The Most Alimentary of All Glia. J. Physiol. 2017, 595, 557–570. [Google Scholar] [CrossRef]
- Neunlist, M.; Rolli-Derkinderen, M.; Latorre, R.; Van Landeghem, L.; Coron, E.; Derkinderen, P.; De Giorgio, R. Enteric Glial Cells: Recent Developments and Future Directions. Gastroenterology 2014, 147, 1230–1237. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Alabed, H.B.R.; Mancini, D.F.; Buratta, S.; Calzoni, E.; Di Giacomo, D.; Emiliani, C.; Martino, S.; Urbanelli, L.; Pellegrino, R.M. LipidOne 2.0: Unveiling Hidden Biological Insights in Lipidomic Data with a New Web Bioinformatics Tool. Authorea 2024, 1–8. [Google Scholar] [CrossRef]
- Rühl, A.; Trotter, J.; Stremmel, W. Isolation of Enteric Glia and Establishment of Transformed Enteroglial Cell Lines from the Myenteric Plexus of Adult Rat. Neurogastroenterol. Motil. 2001, 13, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, I.; Migliorati, G.; Pagliacci, M.C.; Grignani, F.; Riccardi, C. A Rapid and Simple Method for Measuring Thymocyte Apoptosis by Propidium Iodide Staining and Flow Cytometry. J. Immunol. Methods 1991, 139, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.M.; Di Veroli, A.; Valeri, A.; Goracci, L.; Cruciani, G. LC/MS Lipid Profiling from Human Serum: A New Method for Global Lipid Extraction. Anal. Bioanal. Chem. 2014, 406, 7937–7948. [Google Scholar] [CrossRef] [PubMed]
- Alabed, H.B.R.; Del Grosso, A.; Bellani, V.; Urbanelli, L.; Carpi, S.; De Sarlo, M.; Bertocci, L.; Colagiorgio, L.; Buratta, S.; Scaccini, L.; et al. Untargeted Lipidomic Approach for Studying Different Nervous System Tissues of the Murine Model of Krabbe Disease. Biomolecules 2023, 13, 1562. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.R.; Erwin, S.; Lanzas, C.; Theriot, C.M. Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model. mSphere 2018, 3, e00089-18. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.K.; Williams, S.A.; Bindra, G.K.; Lay, F.T.; Poon, I.K.H.; Hulett, M.D. Phosphoinositides: Multipurpose Cellular Lipids with Emerging Roles in Cell Death. Cell Death Differ. 2019, 26, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Oude Weernink, P.A.; Guo, Y.; Zhang, C.; Schmidt, M.; Von Eichel-Streiber, C.; Jakobs, K.H. Control of Cellular Phosphatidylinositol 4,5-Bisphosphate Levels by Adhesion Signals and Rho GTpases in NIH 3t3 Fibroblasts: Involvement of Both Phosphatidylinositol-4-Phosphate 5-Kinase and Phospholipase C. Eur. J. Biochem. 2000, 267, 5237–5246. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Bienek, C.; Rümenapp, U.; Zhang, C.; Lümmen, G.; Jakobs, K.H.; Just, I.; Aktories, K.; Moos, M.; Von Eichel-Streiber, C. A Role for Rho in Receptor- and G Protein-Stimulated Phospholipase C. Reduction in Phosphatidylinositol 4,5-Bisphosphate by Clostridiumd difficile Toxin B. Naunyn Schmiedebergs Arch. Pharmacol. 1996, 354, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Rümenapp, U.; Schmidt, M.; Olesch, S.; Ott, S.; Von Eichel-Streiber, C.; Jakobs, K.H. Tyrosine-Phosphorylation-Dependent and Rho-Protein-Mediated Control of Cellular Phosphatidylinositol 4,5-Bisphosphate Levels. Biochem. J. 1998, 334, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Schmidt, M.; Von Eichel-Streiber, C.; Jakobs, K.H. Inhibition by Toxin B of Inositol Phosphate Formation Induced by G Protein-Coupled and Tyrosine Kinase Receptors in N1E-115 Neuroblastoma Cells: Involvement of Rho Proteins. Mol. Pharmacol. 1996, 50, 864–869. [Google Scholar] [PubMed]
- Bozelli, J.C.; Azher, S.; Epand, R.M. Plasmalogens and Chronic Inflammatory Diseases. Front. Physiol. 2021, 12, 730829. [Google Scholar] [CrossRef]
- Reiss, D.; Beyer, K.; Engelmann, B. Delayed Oxidative Degradation of Polyunsaturated Diacyl Phospholipids in the Presence of Plasmalogen Phospholipids in Vitro. Biochem. J. 1997, 323, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Hahnel, D.; Huber, T.; Kurze, V.; Beyer, K.; Engelmann, B. Contribution of Copper Binding to the Inhibition of Lipid Oxidation by Plasmalogen Phospholipids. Biochem. J. 1999, 340, 377. [Google Scholar] [CrossRef]
- Zoeller, R.L.A.; Grazia, T.J.; Lacamera, P.; Park, J.; Gaposchkin, D.L.P.; Farber, H.W. Increasing Plasmalogen Levels Protects Human Endothelial Cells during Hypoxia. Am. J. Physiol.—Heart Circ. Physiol. 2002, 283, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Nguma, E.; Yamashita, S.; Kumagai, K.; Otoki, Y.; Yamamoto, A.; Eitsuka, T.; Nakagawa, K.; Miyazawa, T.; Kinoshita, M. Ethanolamine Plasmalogen Suppresses Apoptosis in Human Intestinal Tract Cells in Vitro by Attenuating Induced Inflammatory Stress. ACS Omega 2021, 6, 3140–3148. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging Roles of Lysophospholipids in Health and Disease. Prog. Lipid Res. 2020, 80, 101068. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.B. New Appreciation for an Old Pathway: The Lands Cycle Moves into New Arenas in Health and Disease. Biochem. Soc. Trans. 2022, 50, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fettucciari, K.; Dini, F.; Marconi, P.; Bassotti, G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. Biology 2023, 12, 1117. [Google Scholar] [CrossRef] [PubMed]
- Shoshan, M.C.; Florin, I.; Thelestam, M. Activation of Cellular Phospholipase A2 by Clostridium difficile Toxin B. J. Cell Biochem. 1993, 52, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Shoshan, M.C.; Fiorentini, C.; Thelestam, M. Signal Transduction Pathways and Cellular Intoxication with Clostridium difficile Toxins. J. Cell Biochem. 1993, 52, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Ohguchi, K.; Banno, Y.; Nakashima, S.; Kato, N.; Watanabe, K.; Lyerly, D.M.; Nozawa, Y. Effects of Clostridium difficile Toxin A and Toxin B on Phospholipase D Activation in Human Promyelocytic Leukemic HL60 Cells. Infect. Immun. 1996, 64, 4433–4437. [Google Scholar] [CrossRef]
- Schmidt, M.; Rümenapp, U.; Nehls, C.; Ott, S.; Keller, J.; Von Eichel-Streiber, C.; Jakobs, K.H. Restoration of Clostridium difficile Toxin-B-Inhibited Phospholipase D by Phosphatidylinositol 4,5-Bisphosphate. Eur. J. Biochem. 1996, 240, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Voß, M.; Thiel, M.; Bauer, B.; Grannaß, A.; Tapp, E.; Cool, R.H.; De Gunzburg, J.; Von Eichel-Streiber, C.; Jakobs, K.H. Specific Inhibition of Phorbol Ester-Stimulated Phospholipase D by Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B-1470 in HEK-293 Cells. Restoration by Ral GTpases. J. Biol. Chem. 1998, 273, 7413–7422. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buratta, S.; Urbanelli, L.; Pellegrino, R.M.; Alabed, H.B.R.; Latella, R.; Cerrotti, G.; Emiliani, C.; Bassotti, G.; Spaterna, A.; Marconi, P.; et al. PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells. Cells 2024, 13, 1103. https://doi.org/10.3390/cells13131103
Buratta S, Urbanelli L, Pellegrino RM, Alabed HBR, Latella R, Cerrotti G, Emiliani C, Bassotti G, Spaterna A, Marconi P, et al. PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells. Cells. 2024; 13(13):1103. https://doi.org/10.3390/cells13131103
Chicago/Turabian StyleBuratta, Sandra, Lorena Urbanelli, Roberto Maria Pellegrino, Husam B. R. Alabed, Raffaella Latella, Giada Cerrotti, Carla Emiliani, Gabrio Bassotti, Andrea Spaterna, Pierfrancesco Marconi, and et al. 2024. "PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells" Cells 13, no. 13: 1103. https://doi.org/10.3390/cells13131103
APA StyleBuratta, S., Urbanelli, L., Pellegrino, R. M., Alabed, H. B. R., Latella, R., Cerrotti, G., Emiliani, C., Bassotti, G., Spaterna, A., Marconi, P., & Fettucciari, K. (2024). PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells. Cells, 13(13), 1103. https://doi.org/10.3390/cells13131103