Correlation of Electrophysiological and Fluorescence-Based Measurements of Modulator Efficacy in Nasal Epithelial Cultures Derived from People with Cystic Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nasal Cell Culture
Drug Treatment Conditions
2.2. Fluorescence-Based Apical Chloride Conductance (Fl-ACC) Assay
2.3. Ussing Chamber Studies
2.4. Statistical Analyses
3. Results
3.1. Fluorescence-Based Measurement of F508del-CFTR Channel Activity in Apical Membranes of Patient-Derived Nasal Cultures Reports Differential Modulator Efficacies
3.2. FMP Measurements of Nasal Cultures Generated from People with Rare Mutations Enable Testing of Emerging Therapeutic Strategies
3.3. Correlation of Electrophysiological and Fluorescence-Based Measurements of Non-CF and CF Nasal Epithelial Cultures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clancy, J.P.; Cotton, C.U.; Donaldson, S.H.; Solomon, G.M.; VanDevanter, D.R.; Boyle, M.P.; Gentzsch, M.; Nick, J.A.; Illek, B.; Wallenburg, J.C.; et al. CFTR modulator theratyping: Current status, gaps and future directions. J. Cyst. Fibros. 2019, 18, 22–34. [Google Scholar] [CrossRef]
- Ramalho, A.S.; Furstova, E.; Vonk, A.M.; Ferrante, M.; Verfaillie, C.; Dupont, L.; Boon, M.; Proesmans, M.; Beekman, J.M.; Sarouk, I.; et al. Correction of CFTR function in intestinal organoids to guide treatment of cystic fibrosis. Eur. Respir. J. 2021, 57, 1902426. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, J.F.; Wiegerinck, C.L.; de Jonge, H.R.; Bronsveld, I.; Janssens, H.M.; de Winter-de Groot, K.M.; Brandsma, A.M.; de Jong, N.W.; Bijvelds, M.J.; Scholte, B.J.; et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 2013, 19, 939–945. [Google Scholar] [CrossRef]
- Geurts, M.H.; de Poel, E.; Pleguezuelos-Manzano, C.; Oka, R.; Carrillo, L.; Andersson-Rolf, A.; Boretto, M.; Brunsveld, J.E.; van Boxtel, R.; Beekman, J.M.; et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci. Alliance 2021, 4, e202000940. [Google Scholar] [CrossRef]
- Pranke, I.; Hatton, A.; Masson, A.; Flament, T.; Le Bourgeois, M.; Chedevergne, F.; Bailly, C.; Urbach, V.; Hinzpeter, A.; Edelman, A.; et al. Might Brushed Nasal Cells Be a Surrogate for CFTR Modulator Clinical Response? Am. J. Respir. Crit. Care Med. 2019, 199, 123–126. [Google Scholar] [CrossRef]
- Sermet-Gaudelus, I.; Nguyen-Khoa, T.; Hatton, A.; Hayes, K.; Pranke, I. Sweat Chloride Testing and Nasal Potential Difference (NPD) Are Primary Outcome Parameters in Treatment with Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J. Pers. Med. 2021, 11, 729. [Google Scholar] [CrossRef]
- Eckford, P.D.W.; McCormack, J.; Munsie, L.; He, G.; Stanojevic, S.; Pereira, S.L.; Ho, K.; Avolio, J.; Bartlett, C.; Yang, J.Y.; et al. The CF Canada-Sick Kids Program in individual CF therapy: A resource for the advancement of personalized medicine in CF. J. Cyst. Fibros. 2019, 18, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.E.; Miller, S.M.; Mascenik, T.M.; Lewis, C.A.; Dang, H.; Boggs, Z.H.; Tarran, R.; Randell, S.H. Assessing Human Airway Epithelial Progenitor Cells for Cystic Fibrosis Cell Therapy. Am. J. Respir. Cell Mol. Biol. 2020, 63, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Amatngalim, G.D.; Rodenburg, L.W.; Aalbers, B.L.; Raeven, H.H.; Aarts, E.M.; Sarhane, D.; Spelier, S.; Lefferts, J.W.; Silva, I.A.; Nijenhuis, W.; et al. Measuring cystic fibrosis drug responses in organoids derived from 2D differentiated nasal epithelia. Life Sci. Alliance 2022, 5, e202101320. [Google Scholar] [CrossRef] [PubMed]
- Maitra, R.; Sivashanmugam, P.; Warner, K. A rapid membrane potential assay to monitor CFTR function and inhibition. J. Biomol. Screen. 2013, 18, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ouyang, H.; Grasemann, H.; Bartlett, C.; Du, K.; Duan, R.; Shi, F.; Estrada, M.; Seigel, K.E.; Coates, A.L.; et al. Transducing Airway Basal Cells with a Helper-Dependent Adenoviral Vector for Lung Gene Therapy. Hum. Gene Ther. 2018, 29, 643–652. [Google Scholar] [CrossRef]
- Ahmadi, S.; Bozoky, Z.; Di Paola, M.; Xia, S.; Li, C.; Wong, A.P.; Wellhauser, L.; Molinski, S.V.; Ip, W.; Ouyang, H.; et al. Phenotypic profiling of CFTR modulators in patient-derived respiratory epithelia. NPJ Genom. Med. 2017, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Keenan, M.M.; Huang, L.; Jordan, N.J.; Wong, E.; Cheng, Y.; Valley, H.C.; Mahiou, J.; Liang, F.; Bihler, H.; Mense, M.; et al. Nonsense-mediated RNA Decay Pathway Inhibition Restores Expression and Function of W1282X CFTR. Am. J. Respir. Cell Mol. Biol. 2019, 61, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Laselva, O.; Eckford, P.D.; Bartlett, C.; Ouyang, H.; Gunawardena, T.N.; Gonska, T.; Moraes, T.J.; Bear, C.E. Functional rescue of c.3846G>A (W1282X) in patient-derived nasal cultures achieved by inhibition of nonsense mediated decay and protein modulators with complementary mechanisms of action. J. Cyst. Fibros. 2020, 19, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Matthes, E.; Goepp, J.; Martini, C.; Shan, J.; Liao, J.; Thomas, D.Y.; Hanrahan, J.W. Variable Responses to CFTR Correctors in vitro: Estimating the Design Effect in Precision Medicine. Front. Pharmacol. 2018, 9, 1490. [Google Scholar] [CrossRef] [PubMed]
- Pranke, I.M.; Hatton, A.; Simonin, J.; Jais, J.P.; Le Pimpec-Barthes, F.; Carsin, A.; Bonnette, P.; Fayon, M.; Stremler-Le Bel, N.; Grenet, D.; et al. Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Sci. Rep. 2017, 7, 7375. [Google Scholar] [CrossRef] [PubMed]
- Naren, A.P.; Cobb, B.; Li, C.; Roy, K.; Nelson, D.; Heda, G.D.; Liao, J.; Kirk, K.L.; Sorscher, E.J.; Hanrahan, J.; et al. A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc. Natl. Acad. Sci. USA 2003, 100, 342–346. [Google Scholar] [CrossRef] [PubMed]
HNEC | Chronic Treatment Condition |
---|---|
F508del/F508del | Condition 1—0.1% DMSO Condition 2—3 µM VX-809 (Lumacaftor—L) Condition 3—3 µM VX-661 (Tezacaftor—T) Condition 4—3 µM VX-661 + 3 µM VX 445 (Tezacaftor + Elexacaftor—ET) |
Class III | None |
W1282X/W1282X | Condition 1 and 2—0.1% DMSO Condition 3—3 µM VX-661 + 3 µM VX-445 + 0.5 µM SMG1i Condition 4—3 µM VX-661 + 3 µM VX-445 + 0.5 µM SMG1i + 200 µg/mL G418 |
Donor Number | Mutation |
---|---|
1–4 | G551D/F508del |
5 | G178R/F508del |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunawardena, T.N.A.; Bozóky, Z.; Bartlett, C.; Ouyang, H.; Eckford, P.D.W.; Moraes, T.J.; Ratjen, F.; Gonska, T.; Bear, C.E. Correlation of Electrophysiological and Fluorescence-Based Measurements of Modulator Efficacy in Nasal Epithelial Cultures Derived from People with Cystic Fibrosis. Cells 2023, 12, 1174. https://doi.org/10.3390/cells12081174
Gunawardena TNA, Bozóky Z, Bartlett C, Ouyang H, Eckford PDW, Moraes TJ, Ratjen F, Gonska T, Bear CE. Correlation of Electrophysiological and Fluorescence-Based Measurements of Modulator Efficacy in Nasal Epithelial Cultures Derived from People with Cystic Fibrosis. Cells. 2023; 12(8):1174. https://doi.org/10.3390/cells12081174
Chicago/Turabian StyleGunawardena, Tarini N. A., Zoltán Bozóky, Claire Bartlett, Hong Ouyang, Paul D. W. Eckford, Theo J. Moraes, Felix Ratjen, Tanja Gonska, and Christine E. Bear. 2023. "Correlation of Electrophysiological and Fluorescence-Based Measurements of Modulator Efficacy in Nasal Epithelial Cultures Derived from People with Cystic Fibrosis" Cells 12, no. 8: 1174. https://doi.org/10.3390/cells12081174
APA StyleGunawardena, T. N. A., Bozóky, Z., Bartlett, C., Ouyang, H., Eckford, P. D. W., Moraes, T. J., Ratjen, F., Gonska, T., & Bear, C. E. (2023). Correlation of Electrophysiological and Fluorescence-Based Measurements of Modulator Efficacy in Nasal Epithelial Cultures Derived from People with Cystic Fibrosis. Cells, 12(8), 1174. https://doi.org/10.3390/cells12081174