The Impact of Different Types of Physical Effort on the Expression of Selected Chemokine and Interleukin Receptor Genes in Peripheral Blood Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Demographics
2.2. The Physical Effort Test
2.3. Blood Analysis
2.3.1. Determination of Lactate Level
2.3.2. Hematological Analysis
2.3.3. Total RNA Isolation
2.3.4. Gene Expression Determination
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. The Impact of Aerobic and Anaerobic Effort on the Expression of Genes Encoding Selected Chemokines Receptors
4.2. The Impact of Aerobic and Anaerobic Effort on the Expression of Genes Encoding Selected Interleukins Receptors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamada, K.; Vannier, E.; Sacheck, J.M.; Witsell, A.L.; Roubenoff, R. Senescence of Human Skeletal Muscle Impairs the Local Inflammatory Cytokine Response to Acute Eccentric Exercise. FASEB J. 2005, 19, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cury-Boaventura, M.F.; Gorjão, R.; De Moura, N.R.; Santos, V.C.; Bortolon, J.R.; Murata, G.M.; Borges, L.D.S.; Momesso, C.M.; Dermargos, A.; Pithon-Curi, T.C.; et al. The Effect of a Competitive Futsal Match on T Lymphocyte Surface Receptor Signaling and Functions. Front. Physiol. 2018, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.; Nosaka, K.; Suzuki, K. Characterization of Inflammatory Responses to Eccentric Exercise in Humans. Exerc. Immunol. Rev. 2005, 11, 64–85. [Google Scholar] [PubMed]
- Proske, U.; Allen, T.J. Damage to Skeletal Muscle from Eccentric Exercise. Exerc. Sport Sci. Rev. 2005, 33, 98–104. [Google Scholar] [CrossRef]
- Windsor, M.T.; Bailey, T.G.; Perissiou, M.; Meital, L.; Golledge, J.; Russell, F.D.; Askew, C.D. Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness. Front. Physiol. 2018, 9, 203. [Google Scholar] [CrossRef]
- Chazaud, B. Inflammation during Skeletal Muscle Regeneration and Tissue Remodeling: Application to Exercise-Induced Muscle Damage Management. Immunol. Cell Biol. 2016, 94, 140–145. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle Damage and Inflammation during Recovery from Exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Tidball, J.G.; Villalta, S.A. Regulatory Interactions between Muscle and the Immune System during Muscle Regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, 1173–1187. [Google Scholar] [CrossRef] [Green Version]
- Edison, B.R.; Christino, M.A.; Rizzone, K.H. Athletic Identity in Youth Athletes: A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2021, 18, 7331. [Google Scholar] [CrossRef]
- Humpel, N.; Owen, N.; Leslie, E. Environmental Factors Associated with Adults’ Participation in Physical Activity. A Review. Am. J. Prev. Med. 2002, 22, 188–199. [Google Scholar] [CrossRef]
- Husk, K.; Lovell, R.; Cooper, C.; Stahl-Timmins, W.; Garside, R. Participation in Environmental Enhancement and Conservation Activities for Health and Well-Being in Adults: A Review of Quantitative and Qualitative Evidence. Cochrane Database Syst. Rev. 2016, 2016, CD010351. [Google Scholar] [CrossRef] [Green Version]
- Zindel, J.; Kubes, P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu. Rev. Pathol. 2020, 15, 493–518. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Shao, Q.; Sun, J.; Ma, C.; Gao, W.; Wang, Q.; Zhao, L.; Qu, X. Interactions between Colon Cancer Cells and Tumor-Infiltrated Macrophages Depending on Cancer Cell-Derived Colony Stimulating Factor 1. Oncoimmunology 2016, 5, e1122157. [Google Scholar] [CrossRef] [Green Version]
- Enayati, M.; Solati, J.; Hosseini, M.H.; Shahi, H.R.; Saki, G.; Salari, A.A. Maternal Infection during Late Pregnancy Increases Anxiety- and Depression-like Behaviors with Increasing Age in Male Offspring. Brain Res. Bull. 2012, 87, 295–302. [Google Scholar] [CrossRef]
- Maslanik, T.; Mahaffey, L.; Tannura, K.; Beninson, L.; Greenwood, B.N.; Fleshner, M. The Inflammasome and Danger Associated Molecular Patterns (DAMPs) Are Implicated in Cytokine and Chemokine Responses Following Stressor Exposure. Brain Behav. Immun. 2013, 28, 54–62. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O.; Nomiyama, H. The Chemokine and Chemokine Receptor Superfamilies and Their Molecular Evolution. Genome Biol. 2006, 7, 243. [Google Scholar] [CrossRef]
- Stone, M.J.; Hayward, J.A.; Huang, C.; Huma, Z.E.; Sanchez, J. Mechanisms of Regulation of the Chemokine-Receptor Network. Int. J. Mol. Sci. 2017, 18, 342. [Google Scholar] [CrossRef] [Green Version]
- Bennett, L.D.; Fox, J.M.; Signoret, N. Mechanisms Regulating Chemokine Receptor Activity. Immunology 2011, 134, 246–256. [Google Scholar] [CrossRef]
- Nansen, A.; Marker, O.; Bartholdy, C.; Thomsen, A.R. CCR2+ and CCR5+ CD8+ T Cells Increase during Viral Infection and Migrate to Sites of Infection. Eur. J. Immunol. 2000, 30, 1797–1806. [Google Scholar] [CrossRef]
- Kostrzewa-Nowak, D.; Ciechanowicz, A.; Clark, J.S.C.; Nowak, R. Damage-Associated Molecular Patterns and Th-Cell-Related Cytokines Released after Progressive Effort. J. Clin. Med. 2020, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Kostrzewa-Nowak, D.; Nowak, R. Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort. J. Clin. Med. 2020, 9, 1795. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewa-Nowak, D.; Nowak, R. T Helper Cell-Related Changes in Peripheral Blood Induced by Progressive Effort among Soccer Players. PLoS ONE 2020, 15, e0227993. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewa-Nowak, D.; Nowak, R. Analysis of Selected T Cell Subsets in Peripheral Blood after Exhaustive Efforamong Elite Soccer Players. Biochem. Med. 2018, 28, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Suzuki, K.; Hordern, M.; Wilson, G.; Nosaka, K.; Coombes, J.S. Plasma Cytokine Changes in Relation to Exercise Intensity and Muscle Damage. Eur. J. Appl. Physiol. 2005, 95, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O.; et al. Interleukins, from 1 to 37, and Interferon-γ: Receptors, Functions, and Roles in Diseases. J. Allergy Clin. Immunol. 2011, 127, 701–721.e70. [Google Scholar] [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A Guide to Chemokines and Their Receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Dyer, D.P. Understanding the Mechanisms That Facilitate Specificity, Not Redundancy, of Chemokine-Mediated Leukocyte Recruitment. Immunology 2020, 160, 336–344. [Google Scholar] [CrossRef]
- David, B.A.; Kubes, P. Exploring the Complex Role of Chemokines and Chemoattractants in vivo on Leukocyte Dynamics. Immunol. Rev. 2019, 289, 9–30. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A New Method for Detecting Anaerobic Threshold by Gas Exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Kostrzewa-Nowak, D.; Buryta, R.; Nowak, R. Comparison of Selected CD45+ Cell Subsets’ Response and Cytokine Levels on Exhaustive Effort among Soccer Players. J. Med. Biochem. 2019, 38, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Léger, L.A.; Lambert, J. A Maximal Multistage 20-m Shuttle Run Test to Predict VO2 Max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef]
- Metsios, G.S.; Flouris, A.D.; Koutedakis, Y.; Nevill, A. Criterion-Related Validity and Test-Retest Reliability of the 20 m Square Shuttle Test. J. Sci. Med. Sport 2008, 11, 214–217. [Google Scholar] [CrossRef]
- Chaouachi, A.; Manzi, V.; Wong, D.P.; Chaalali, A.; Laurencelle, L.; Chamari, K.; Castagna, C. Intermittent Endurance and Repeated Sprint Ability in Soccer Players. J. Strength Cond. Res. 2010, 24, 2663–2669. [Google Scholar] [CrossRef]
- Ramos-Campo, D.J.; Martínez-Guardado, I.; Olcina, G.; Marín-Pagán, C.; Martínez-Noguera, F.J.; Carlos-Vivas, J.; Alcaraz, P.E.; Rubio, J. Effect of High-Intensity Resistance Circuit-Based Training in Hypoxia on Aerobic Performance and Repeat Sprint Ability. Scand. J. Med. Sci. Sport. 2018, 28, 2135–2143. [Google Scholar] [CrossRef]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate Threshold Concepts: How Valid Are They? Sport. Med. 2009, 39, 469–490. [Google Scholar] [CrossRef]
- Beneke, R.; Leithäuser, R.M.; Ochentel, O. Blood Lactate Diagnostics in Exercise Testing and Training. Int. J. Sport. Physiol. Perform. 2011, 6, 8–24. [Google Scholar] [CrossRef] [Green Version]
- Smekal, G.; Duvillard, S.P.V.; Pokan, R.; Hofmann, P.; Braun, W.A.; Arciero, P.J.; Tschan, H.; Wonisch, M.; Baron, R.; Bachl, N. Blood Lactate Concentration at the Maximal Lactate Steady State Is Not Dependent on Endurance Capacity in Healthy Recreationally Trained Individuals. Eur. J. Appl. Physiol. 2012, 112, 3079–3086. [Google Scholar] [CrossRef]
- Alis, R.; Sanchis-Gomar, F.; Lippi, G.; Roamgnoli, M. Microcentrifuge or Automated Hematological Analyzer to Assess Hematocrit in Exercise? Effect on Plasma Volume Loss Calculations. J. Lab. Autom. 2016, 21, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Neves, P.R.D.S.; Tenório, T.R.D.S.; Lins, T.A.; Muniz, M.T.C.; Pithon-Curi, T.C.; Botero, J.P.; do Prado, W.L. Acute Effects of High- and Low-Intensity Exercise Bouts on Leukocyte Counts. J. Exerc. Sci. Fit. 2015, 13, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Wasinski, F.; Gregnani, M.F.; Ornellas, F.H.; Bacurau, A.V.N.; Câmara, N.O.; Araujo, R.C.; Bacurau, R.F. Lymphocyte Glucose and Glutamine Metabolism as Targets of the Anti-Inflammatory and Immunomodulatory Effects of Exercise. Mediat. Inflamm. 2014, 2014, 326803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostrzewa-Nowak, D.; Buryta, R.; Nowak, R. T Cell Subsets’ Distribution in Elite Karate Athletes as a Response to Physical Effort. J. Med. Biochem. 2019, 38, 342–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostrzewa-Nowak, D.; Nowak, R. Beep Test Does Not Induce Phosphorylation of Ras/MAPK- or JAK/STAT-Related Proteins in Peripheral Blood T Lymphocytes. Front. Physiol. 2022, 13, 457. [Google Scholar] [CrossRef]
- Rossi, D.; Zlotnik, A. The Biology of Chemokines and Their Receptors. Annu. Rev. Immunol. 2000, 18, 217–243. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q. Dual Targeting of CCR2 and CCR5: Therapeutic Potential for Immunologic and Cardiovascular Diseases. J. Leukoc. Biol. 2010, 88, 41–55. [Google Scholar] [CrossRef]
- Le, Y.; Zhou, Y.; Iribarren, P.; Wang, J. Chemokines and Chemokine Receptors: Their Manifold Roles in Homeostasis and Disease. Cell. Mol. Immunol. 2004, 1, 95–104. [Google Scholar]
- Moser, B.; Loetscher, P. Lymphocyte Traffic Control by Chemokines. Nat. Immunol. 2001, 2, 123–128. [Google Scholar] [CrossRef]
- Moser, B.; Wolf, M.; Walz, A.; Loetscher, P. Chemokines: Multiple Levels of Leukocyte Migration Control. Trends Immunol. 2004, 25, 75–84. [Google Scholar] [CrossRef]
- Schober, A.; Zernecke, A. Chemokines in Vascular Remodeling. Thromb. Haemost. 2007, 97, 730–737. [Google Scholar] [PubMed]
- Fantuzzi, L.; Borghi, P.; Ciolli, V.; Pavlakis, G.; Belardelli, F.; Gessani, S. Loss of CCR2 Expression and Functional Response to Monocyte Chemotactic Protein (MCP-1) During the Differentiation of Human Monocytes: Role of Secreted MCP-1 in the Regulation of the Chemotactic Response. Blood 1999, 94, 875–883. [Google Scholar] [CrossRef]
- Kuziel, W.A.; Morgan, S.J.; Dawson, T.C.; Griffin, S.; Smithies, O.; Ley, K.; Maeda, N. Severe Reduction in Leukocyte Adhesion and Monocyte Extravasation in Mice Deficient in CC Chemokine Receptor 2. Proc. Natl. Acad. Sci. USA 1997, 94, 12053–12058. [Google Scholar] [CrossRef] [Green Version]
- Boring, L.; Gosling, J.; Chensue, S.W.; Kunkel, S.L.; Farese, R.V.; Broxmeyer, H.E.; Charo, I.F. Impaired Monocyte Migration and Reduced Type 1 (Th1) Cytokine Responses in C-C Chemokine Receptor 2 Knockout Mice. J. Clin. Investig. 1997, 100, 2552–2561. [Google Scholar] [CrossRef]
- Kurihara, T.; Warr, G.; Loy, J.; Bravo, R. Defects in Macrophage Recruitment and Host Defense in Mice Lacking the CCR2 Chemokine Receptor. J. Exp. Med. 1997, 186, 1757–1762. [Google Scholar] [CrossRef] [Green Version]
- Rollins, B.J. Monocyte Chemoattractant Protein 1: A Potential Regulator of Monocyte Recruitment in Inflammatory Disease. Mol. Med. Today 1996, 2, 198–204. [Google Scholar] [CrossRef]
- Naif, H.M.; Li, S.; Alali, M.; Sloane, A.; Wu, L.; Kelly, M.; Lynch, G.; Lloyd, A.; Cunningham, A.L. CCR5 Expression Correlates with Susceptibility of Maturing Monocytes to Human Immunodeficiency Virus Type 1 Infection. J. Virol. 1998, 72, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Radom-Aizik, S.; Zaldivar, F.; Leu, S.Y.; Galassetti, P.; Cooper, D.M. Effects of 30 Min of Aerobic Exercise on Gene Expression in Human Neutrophils. J. Appl. Physiol. 2008, 104, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Wiacek, M.; Andrzejewski, M.; Chmura, J.; Zubrzycki, I.Z. The Changes of the Specific Physiological Parameters in Response to 12-Week Individualized Training of Young Soccer Players. J. Strength Cond. Res. 2011, 25, 1514–1521. [Google Scholar] [CrossRef]
- Meyer, T.; Meister, S. Routine Blood Parameters in Elite Soccer Players. Int. J. Sport. Med. 2011, 32, 875–881. [Google Scholar] [CrossRef]
- Phadnis-Moghe, A.S.; Kaminski, N.E. Immunotoxicity Testing Using Human Primary Leukocytes: An Adjunct Approach for the Evaluation of Human Risk. Curr. Opin. Toxicol. 2017, 3, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Spielmann, G.; McFarlin, B.K.; O’Connor, D.P.; Smith, P.J.W.; Pircher, H.; Simpson, R.J. Aerobic Fitness Is Associated with Lower Proportions of Senescent Blood T-Cells in Man. Brain Behav. Immun. 2011, 25, 1521–1529. [Google Scholar] [CrossRef]
- Naseem, S.; Manzoor, S.; Javed, A.; Abbas, S. Interleukin-6 Rescues Lymphocyte from Apoptosis and Exhaustion Induced by Chronic Hepatitis C Virus Infection. Viral Immunol. 2018, 31, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, D.; da Silva Simão de Sousa, F.J.; Andraus, R.A.C.; Pardo, P.E.; Nai, G.A.; Neto, H.B.; Messora, M.R.; Maia, L.P. Probiotic Therapy Reduces Inflammation and Improves Intestinal Morphology in Rats with Induced Oral Mucositis. Braz. Oral Res. 2017, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine Expression and Secretion by Skeletal Muscle Cells: Regulatory Mechanisms and Exercise Effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar] [PubMed]
Gene | White Blood Cells Expressing Given Gene |
---|---|
CCR1 | GRA: neutrophils, eosinophils, basophils; MON: monocytes |
CCR2 | GRA: basophils; LYM: T cells, NK cells |
CCR3 | GRA: eosinophils, basophils; LYM: T cells |
CCR5 | LYM: Th cells; MON: monocytes |
CXCR1 | GRA: neutrophils, eosinophils, basophils; LYM: T cells, NK cells; MON: monocytes |
CXCR2 | GRA: neutrophils; LYM: NK cells; MON: monocytes |
CXCR3 | LYM: T cells, NKT cells |
CXCR4 | GRA: neutrophils, eosinophils, basophils; LYM: all subsets; MON: all subsets |
IL2RA | LYM: T cells, NK cells |
IL4R | GRA: basophils; LYM: T cells |
IL6R | GRA: neutrophils, eosinophils, basophils; LYM: all subsets; MON: all subsets |
IL10RA | GRA: neutrophils, eosinophils, basophils; LYM: all subsets; MON: all subsets; DC |
IL17RA | LYM: T cells, B cells; MON: monocytes, macrophages |
IFNGR1 | GRA: neutrophils; LYM: T cells, NK cells; MON: monocytes |
TNFRSF1A | GRA: neutrophils |
TNFSR1B | MON: monocytes |
Gene | Forward Primer | Reverse Primer | Amplicon Length (bp) | TM of the Amplification Products (°C) 1 |
---|---|---|---|---|
CCR1 | CCCTTGGAACCAGAGAGAAGCC | CAAAGGCCCTCTCGTTCACC | 122 | 82.5 |
CCR2 | AGCCACAAGCTGAACAGAGA | TGGTGACTTCTTCACCGCTC | 127 | 80.5 |
CCR3 | GGAGAAGTGAAATGACAACCT | TTTTCACAGAGCAGGCCCAC | 89 | 78 |
CCR5 | AACTCTCCCCGGGTGGAAC | ACCAGTGAGTAGAGCGGAGG | 141 | 81 |
CXCR1 | TGGCCGGTGCTTCAGTTAGA | AGGGGCTGTAATCTTCATCTGC | 136 | 79.5 |
CXCR2 | GCTCTTCTGGAGGTGTCCTAC | TAGTAGAAAAGGGGGCAGGGTA | 170 | 80.5 |
CXCR3 | TGCTAAATGACGCCGAGGTT | GGAGGTACAGCACGAGTCAC | 92 | 81 |
CXCR4 | TGGTCTATGTTGGCGTCTGG | GTCATTGGGGTAGAAGCGGT | 116 | 81.5 |
IL2RA | GCAGAGAAAGACCTCCGCTT | TGATGAACGTGAGCAGTCCC | 95 | 82.5 |
IL4R | AGCGTTTCCTGCATTGTCATC | AATTCTTCCAGTGTGGGCACTT | 202 | 85.5 |
IL6R | TCAGTGTCACCTGGCAAGAC | GGAGGTCCTTGACCATCCAT | 120 | 81.5 |
IL10RA | CTCCTCAGCCTCCGTCTTGG | GGGTCTGGCTACAGTTGGAGA | 202 | 84 |
IL17RA | ACGTTTGTGCGTCAGGTTTG | TTGGACTGGTGGTTTGGGTC | 165 | 84.5 |
IFNGR1 | TGCTGTATGCCGAGATGGAAA | ATCGACTTCCTGCTCGTCTC | 124 | 77.5 |
TNFRSF1A | TCCAAATGCCGAAAGGAAATG | ACACGGTGTTCTGTTTCTCCT | 190 | 84 |
TNFRSF1B | GCATTTACACCCTACGCCCC | GAGTTTCCACCTGGTCAGAGC | 241 | 86.5 |
ACTB | CATGTACGTTGCTATCCAGGC | CTCCTTAATGTCACGCACGAT | 250 | 88 |
B2M | GAGGCTATCCAGCGTACTCCA | CGGCAGGCATACTCATCTTTT | 248 | 80 |
RACK1 | GAGTGTGGCCTTCTCCTCTG | GCTTGCAGTTAGCCAGGTTC | 224 | 84.5 |
Younger Group (n = 17) | Older Group (n = 25) | pMW 1 | |
---|---|---|---|
Age (years) | 17 (16–17) | 20 (19–21) | 0.0000 |
Height (cm) | 182 (178–187) | 181 (179–186) | 0.9177 |
Weight (kg) | 73.9 (71.0–79.3) | 76.1 (70.2–83.2) | 0.3155 |
BMI (kg/m2) | 22.3 (21.0–23.8) | 23.3 (21.6–24.4) | 0.1116 |
BMR (kJ) | 8632 (7966–9037) | 8447 (7914–8855) | 0.2348 |
Fat (%) | 11.5 (7.9–12.3) | 11.2 (8.2–13.2) | 0.8494 |
Fat mass (kg) | 8.2 (5.6–9.9) | 8.6 (5.4–10.9) | 0.6920 |
FFM (kg) | 66.6 (62.3–68.5) | 68.3 (64.5–70.9) | 0.2101 |
TBW (kg) | 48.8 (45.6–50.1) | 50.0 (47.2–51.9) | 0.2023 |
VO2max (mL/kg/min) | 60.9 (58.4–65.0) | 60.7 (57.8–65.9) | 0.7819 |
VE (L/min) | 151 (143–157) | 143 (125–157) | 0.3534 |
RQ | 1.07 (1.04–1.08) | 1.07 (1.05–1.09) | 0.0771 |
AT (beats/min) | 165 (154–176) | 166 (159–182) | 0.1501 |
RC | 178 (170–189) | 184 (176–193) | 0.0579 |
MVV (L/min) | 190 (182–200) | 185 (175–194) | 0.1194 |
MET (mL/kg/min) | 17.4 (16.7–18.1) | 18.2 (17.0–18.9) | 0.0566 |
Rf | 64.6 (56.8–68.3) | 60.3 (56.8–65.5) | 0.1568 |
HRmax (beats/min) | 201 (191–208) | 198 (194–202) | 0.8319 |
Training experience (years) | 9 (9–11) | 12 (10–14) | 0.0000 |
Weekly training volume (h) | 10.0 (10.0–10.5) | 11.0 (10.0–12.5) | 0.0463 |
Younger Group (n = 17) | Older Group (n = 25) | pMW 1 | |
---|---|---|---|
Beep decimal score | 13.2 (11.3–14.5) | 13.7 (11.5–15.2) | 0.3417 |
RSA mean score (s) | 2.68 (2.15–2.92) | 2.82 (2.13–3.26) | 0.3766 |
Younger Group | Older Group | |||
---|---|---|---|---|
Beep Test | RSA Test | Beep Test | RSA Test | |
pF 1 | 0.0000 | 0.0000 | 0.0000 | 0.0006 |
pre-test | 2.2 (1.9–2.3) aaaa | 3.2 (3.1–3.6) aa | 2.0 (1.8–2.4) aaaa | 3.2 (3.0–3.4) a |
post-test | 7.7 (7.0–8.8) bbbb | 14.9 (12.5–16.0) bbbb | 8.1 (7.3–8.7) bbbb | 14.12 (10.5–16.1) bbb |
LA-rec | 2.1 (1.8–2.3) | 3.0 (2.8–3.1) | 2.3 (2.1–2.8) | 2.9 (2.8–3.2) |
Variable | Younger Group | Older Group | |||
---|---|---|---|---|---|
Beep Test | RSA Test | BEEP TEST | RSA Test | ||
Corrected WBC (109/L) | pF 1 | 0.0015 | 0.0000 | 0.0000 | 0.0006 |
pre-test | 5.9 (5.0–7.2) aaa | 5.8 (5.5–6.9) aaaa | 5.4 (4.6–6.2) aaaa | 6.1 (5.5–7.2) aaa | |
post-test | 7.8 (6.9–9.9) | 10.1 (8.0–11.2) b | 8.7 (7.2–9.7) | 8.9 (7.9–10.3) | |
LA-rec | 7.9 (6.5–8.7) | 7.4 (6.3–9.2) | 8.6 (7.1–9.5) cccc | 8.8 (6.7–9.7) | |
Corrected LYM (109/L) | pF | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
pre-test | 2.0 (1.9–2.2) aa | 2.0 (1.6–2.2) aaa | 1.9 (1.7–2.3) aa | 2.2 (2.1–2.9) | |
post-test | 3.3 (2.6–3.9) bbbb | 3.8 (2.8–4.5) bbbb | 3.5 (2.8–4.0) bbbb | 3.4 (2.8–4.8) bbbb | |
LA-rec | 1.6 (1.4–1.9)c | 1.3 (1.2–1.8) | 1.5 (1.3–1.7) cc | 1.5 (1.3–1.9) c | |
Corrected MON (109/L) | pF | 0.0004 | 0.0000 | 0.0001 | 0.0000 |
pre-test | 0.2 (0.2–0.2) a | 0.2 (0.2–0.3) aa | 0.2 (0.1–0.2) aaa | 0.2 (0.2–0.2) aa | |
post-test | 0.4 (0.3–0.4) bbb | 0.4 (0.3–0.6) bbbb | 0.4 (0.3–0.4) bb | 0.4 (0.4–0.5) bbbb | |
LA-rec | 0.2 (0.1–0.2) | 0.2 (0.2–0.2) | 0.2 (0.2–0.2) | 0.2 (0.1–0.2) | |
Corrected GRA (109/L) | pF | 0.0001 | 0.0002 | 0.0000 | 0.0001 |
pre-test | 3.6 (2.6–4.0) aa | 3.6 (3.0–4.4) aaa | 3.2 (2.8–4.0) aa | 3.9 (2.9–4.4) aa | |
post-test | 4.2 (3.1–4.9) | 5.6 (4.8–6.6) | 4.4 (3.5–5.1) | 4.9 (4.1–5.8) | |
LA-rec | 6.4 (4.2–7.1) ccc | 5.5 (3.9–7.8) cc | 6.1 (5.1–7.4) cccc | 7.0 (5.1–7.9) ccc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, R.; Trzeciak-Ryczek, A.; Ciechanowicz, A.; Brodkiewicz, A.; Urasińska, E.; Kostrzewa-Nowak, D. The Impact of Different Types of Physical Effort on the Expression of Selected Chemokine and Interleukin Receptor Genes in Peripheral Blood Cells. Cells 2023, 12, 1119. https://doi.org/10.3390/cells12081119
Nowak R, Trzeciak-Ryczek A, Ciechanowicz A, Brodkiewicz A, Urasińska E, Kostrzewa-Nowak D. The Impact of Different Types of Physical Effort on the Expression of Selected Chemokine and Interleukin Receptor Genes in Peripheral Blood Cells. Cells. 2023; 12(8):1119. https://doi.org/10.3390/cells12081119
Chicago/Turabian StyleNowak, Robert, Alicja Trzeciak-Ryczek, Andrzej Ciechanowicz, Andrzej Brodkiewicz, Elżbieta Urasińska, and Dorota Kostrzewa-Nowak. 2023. "The Impact of Different Types of Physical Effort on the Expression of Selected Chemokine and Interleukin Receptor Genes in Peripheral Blood Cells" Cells 12, no. 8: 1119. https://doi.org/10.3390/cells12081119
APA StyleNowak, R., Trzeciak-Ryczek, A., Ciechanowicz, A., Brodkiewicz, A., Urasińska, E., & Kostrzewa-Nowak, D. (2023). The Impact of Different Types of Physical Effort on the Expression of Selected Chemokine and Interleukin Receptor Genes in Peripheral Blood Cells. Cells, 12(8), 1119. https://doi.org/10.3390/cells12081119