Recent Advances in the Treatment of Genetic Forms of Parkinson’s Disease: Hype or Hope?
Abstract
:1. Introduction
2. GBA Gene
2.1. Pathophysiological Mechanisms
2.2. Novel Therapeutic Approaches and Ongoing Clinical Trials
3. LRRK2 Gene
3.1. Pathophysiological Mechanisms
3.2. Novel Therapeutic Approaches and Ongoing Clinical Trials
4. SNCA Gene
4.1. Pathophysiological Mechanisms
4.2. Novel Therapeutic Approaches and Ongoing Clinical Trials
5. PRKN and PINK1 Genes
5.1. Pathophysiological Mechanisms
5.2. Novel Therapeutic Approaches and Ongoing Clinical Trials
6. DJ1 Gene
6.1. Pathophysiological Mechanisms
6.2. Novel Therapeutic Approaches and Ongoing Clinical Trials
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalia, L.V.; Lang, A.E. Parkinson’s Disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. Int. J. Mol. Sci. 2017, 18, E551. [Google Scholar] [CrossRef] [PubMed]
- Hustad, E.; Aasly, J.O. Clinical and Imaging Markers of Prodromal Parkinson’s Disease. Front. Neurol. 2020, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Horsager, J.; Andersen, K.B.; Knudsen, K.; Skjærbæk, C.; Fedorova, T.D.; Okkels, N.; Schaeffer, E.; Bonkat, S.K.; Geday, J.; Otto, M.; et al. Brain-First versus Body-First Parkinson’s Disease: A Multimodal Imaging Case-Control Study. Brain 2020, 143, 3077–3088. [Google Scholar] [CrossRef]
- Kim, C.Y.; Alcalay, R.N. Genetic Forms of Parkinson’s Disease. Semin. Neurol. 2017, 37, 135–146. [Google Scholar] [CrossRef]
- Angelopoulou, E.; Paudel, Y.N.; Papageorgiou, S.G.; Piperi, C. Environmental Impact on the Epigenetic Mechanisms Underlying Parkinson’s Disease Pathogenesis: A Narrative Review. Brain Sci. 2022, 12, 175. [Google Scholar] [CrossRef]
- Kochmanski, J.; Kuhn, N.C.; Bernstein, A.I. Parkinson’s Disease-Associated, Sex-Specific Changes in DNA Methylation at PARK7 (DJ-1), SLC17A6 (VGLUT2), PTPRN2 (IA-2β), and NR4A2 (NURR1) in Cortical Neurons. NPJ Parkinsons. Dis. 2022, 8, 120. [Google Scholar] [CrossRef]
- Miranda-Morales, E.; Meier, K.; Sandoval-Carrillo, A.; Salas-Pacheco, J.; Vázquez-Cárdenas, P.; Arias-Carrión, O. Implications of DNA Methylation in Parkinson’s Disease. Front. Mol. Neurosci. 2017, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Le Heron, C.; MacAskill, M.; Mason, D.; Dalrymple-Alford, J.; Anderson, T.; Pitcher, T.; Myall, D. A Multi-Step Model of Parkinson’s Disease Pathogenesis. Mov. Disord. 2021, 36, 2530–2538. [Google Scholar] [CrossRef]
- Gouda, N.A.; Elkamhawy, A.; Cho, J. Emerging Therapeutic Strategies for Parkinson’s Disease and Future Prospects: A 2021 Update. Biomedicines 2022, 10, 371. [Google Scholar] [CrossRef]
- Wong, Y.C.; Krainc, D. α-Synuclein Toxicity in Neurodegeneration: Mechanism and Therapeutic Strategies. Nat. Med. 2017, 23, 1–13. [Google Scholar] [CrossRef]
- Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the Alpha-Synuclein Gene Identified in Families with Parkinson’s Disease. Science 1997, 276, 2045–2047. [Google Scholar] [CrossRef] [Green Version]
- Sulzer, D.; Edwards, R.H. The Physiological Role of A-synuclein and Its Relationship to Parkinson’s Disease. J. Neurochem. 2019, 150, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Cannon, J.R.; Greenamyre, J.T. Gene–Environment Interactions in Parkinson’s Disease: Specific Evidence in Humans and Mammalian Models. Neurobiol. Dis. 2013, 57, 38–46. [Google Scholar] [CrossRef]
- Schirinzi, T.; Martella, G.; Pisani, A. Double Hit Mouse Model of Parkinson’s Disease. Oncotarget 2016, 7, 80109–80110. [Google Scholar] [CrossRef] [Green Version]
- Cavallieri, F.; Fioravanti, V.; Toschi, G.; Grisanti, S.; Napoli, M.; Moratti, C.; Pascarella, R.; Versari, A.; Fraternali, A.; Casali, M.; et al. COVID-19 and Parkinson’s Disease: A Casual Association or a Possible Second Hit in Neurodegeneration? J. Neurol. 2022, 269, 59–61. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Suh, J.H.; Yang, S.N.; Han, K.; Kim, Y.W. Association of Physical Activity, Including Amount and Maintenance, With All-Cause Mortality in Parkinson Disease. JAMA Neurol. 2021, 78, 1446. [Google Scholar] [CrossRef]
- Oliveira de Carvalho, A.; Filho, A.S.S.; Murillo-Rodriguez, E.; Rocha, N.B.; Carta, M.G.; Machado, S. Physical Exercise For Parkinson’s Disease: Clinical And Experimental Evidence. Clin. Pract. Epidemiol. Ment. Health 2018, 14, 89–98. [Google Scholar] [CrossRef]
- Day, J.O.; Mullin, S. The Genetics of Parkinson’s Disease and Implications for Clinical Practice. Genes 2021, 12, 1006. [Google Scholar] [CrossRef]
- Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The Genetic Architecture of Parkinson’s Disease. Lancet Neurol. 2020, 19, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Cherian, A.; Divya, K.P. Genetics of Parkinson’s Disease. Acta Neurol. Belg. 2020, 120, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Billingsley, K.J.; Ding, J.; Alvarez Jerez, P.; Illarionova, A.; Levine, K.; Grenn, F.P.; Makarious, M.B.; Moore, A.; Vitale, D.; Reed, X.; et al. Genome-wide Analysis of Structural Variants in Parkinson’s Disease. Ann. Neurol. 2023, ana.26608. [Google Scholar] [CrossRef] [PubMed]
- Vollstedt, E.-J.; Schaake, S.; Lohmann, K.; Padmanabhan, S.; Brice, A.; Lesage, S.; Tesson, C.; Vidailhet, M.; Wurster, I.; Hentati, F.; et al. Embracing Monogenic Parkinson’s Disease: The MJFF Global Genetic PD Cohort. Mov. Disord. 2023, 38, 286–303. [Google Scholar] [CrossRef] [PubMed]
- Riboldi, G.M.; Di Fonzo, A.B. GBA, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 2019, 8, E364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neudorfer, O.; Giladi, N.; Elstein, D.; Abrahamov, A.; Turezkite, T.; Aghai, E.; Reches, A.; Bembi, B.; Zimran, A. Occurrence of Parkinson’s Syndrome in Type I Gaucher Disease. QJM Int. J. Med. 1996, 89, 691–694. [Google Scholar] [CrossRef]
- Gegg, M.E.; Menozzi, E.; Schapira, A.H.V. Glucocerebrosidase-Associated Parkinson Disease: Pathogenic Mechanisms and Potential Drug Treatments. Neurobiol. Dis. 2022, 166, 105663. [Google Scholar] [CrossRef]
- Menozzi, E.; Schapira, A.H.V. Exploring the Genotype-Phenotype Correlation in GBA-Parkinson Disease: Clinical Aspects, Biomarkers, and Potential Modifiers. Front. Neurol. 2021, 12, 694764. [Google Scholar] [CrossRef]
- Cilia, R.; Tunesi, S.; Marotta, G.; Cereda, E.; Siri, C.; Tesei, S.; Zecchinelli, A.L.; Canesi, M.; Mariani, C.B.; Meucci, N.; et al. Survival and Dementia in GBA-Associated Parkinson’s Disease: The Mutation Matters. Ann. Neurol. 2016, 80, 662–673. [Google Scholar] [CrossRef]
- Senkevich, K.; Gan-Or, Z. Autophagy Lysosomal Pathway Dysfunction in Parkinson’s Disease; Evidence from Human Genetics. Park. Relat. Disord. 2020, 73, 60–71. [Google Scholar] [CrossRef]
- Petrucci, S.; Ginevrino, M.; Trezzi, I.; Monfrini, E.; Ricciardi, L.; Albanese, A.; Avenali, M.; Barone, P.; Bentivoglio, A.R.; Bonifati, V.; et al. GBA-Related Parkinson’s Disease: Dissection of Genotype-Phenotype Correlates in a Large Italian Cohort. Mov. Disord. 2020, 35, 2106–2111. [Google Scholar] [CrossRef]
- McNeill, A.; Magalhaes, J.; Shen, C.; Chau, K.-Y.; Hughes, D.; Mehta, A.; Foltynie, T.; Cooper, J.M.; Abramov, A.Y.; Gegg, M.; et al. Ambroxol Improves Lysosomal Biochemistry in Glucocerebrosidase Mutation-Linked Parkinson Disease Cells. Brain 2014, 137, 1481–1495. [Google Scholar] [CrossRef] [Green Version]
- Peterschmitt, M.J.; Saiki, H.; Hatano, T.; Gasser, T.; Isaacson, S.H.; Gaemers, S.J.M.; Minini, P.; Saubadu, S.; Sharma, J.; Walbillic, S.; et al. Safety, Pharmacokinetics, and Pharmacodynamics of Oral Venglustat in Patients with Parkinson’s Disease and a GBA Mutation: Results from Part 1 of the Randomized, Double-Blinded, Placebo-Controlled MOVES-PD Trial. J. Park. Dis. 2022, 12, 557–570. [Google Scholar] [CrossRef]
- Gegg, M.E.; Burke, D.; Heales, S.J.R.; Cooper, J.M.; Hardy, J.; Wood, N.W.; Schapira, A.H.V. Glucocerebrosidase Deficiency in Substantia Nigra of Parkinson Disease Brains. Ann. Neurol. 2012, 72, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Martinez, A.; Beavan, M.; Gegg, M.E.; Chau, K.-Y.; Whitworth, A.J.; Schapira, A.H.V. Parkinson Disease-Linked GBA Mutation Effects Reversed by Molecular Chaperones in Human Cell and Fly Models. Sci. Rep. 2016, 6, 31380. [Google Scholar] [CrossRef] [Green Version]
- Gegg, M.E.; Schapira, A.H.V. The Role of Glucocerebrosidase in Parkinson Disease Pathogenesis. FEBS J. 2018, 285, 3591–3603. [Google Scholar] [CrossRef] [Green Version]
- Mullin, S.; Smith, L.; Lee, K.; D’Souza, G.; Woodgate, P.; Elflein, J.; Hällqvist, J.; Toffoli, M.; Streeter, A.; Hosking, J.; et al. Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial. JAMA Neurol. 2020, 77, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Mullin, S.; Stokholm, M.G.; Hughes, D.; Mehta, A.; Parbo, P.; Hinz, R.; Pavese, N.; Brooks, D.J.; Schapira, A.H.V. Brain Microglial Activation Increased in Glucocerebrosidase (GBA) Mutation Carriers without Parkinson’s Disease. Mov. Disord. 2021, 36, 774–779. [Google Scholar] [CrossRef]
- Abeliovich, A.; Hefti, F.; Sevigny, J. Gene Therapy for Parkinson’s Disease Associated with GBA1 Mutations. J. Park. Dis. 2021, 11, S183–S188. [Google Scholar] [CrossRef]
- Jackson, K.L.; Viel, C.; Clarke, J.; Bu, J.; Chan, M.; Wang, B.; Shihabuddin, L.S.; Sardi, S.P. Viral Delivery of a MicroRNA to Gba to the Mouse Central Nervous System Models Neuronopathic Gaucher Disease. Neurobiol. Dis. 2019, 130, 104513. [Google Scholar] [CrossRef]
- Rockenstein, E.; Clarke, J.; Viel, C.; Panarello, N.; Treleaven, C.M.; Kim, C.; Spencer, B.; Adame, A.; Park, H.; Dodge, J.C.; et al. Glucocerebrosidase Modulates Cognitive and Motor Activities in Murine Models of Parkinson’s Disease. Hum. Mol. Genet. 2016, 25, 2645–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, E.M.; Smith, G.A.; Park, E.; Cao, H.; Brown, E.; Hayes, M.A.; Beagan, J.; McLean, J.R.; Izen, S.C.; Perez-Torres, E.; et al. Glucocerebrosidase Gene Therapy Prevents α-Synucleinopathy of Midbrain Dopamine Neurons. Neurobiol. Dis. 2015, 82, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, G.R.; Lee, B.D. Pathological Functions of LRRK2 in Parkinson’s Disease. Cells 2020, 9, 2565. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Menozzi, E.; Chau, K.-Y.; Schapira, A.H.V. Glucocerebrosidase 1 and Leucine-Rich Repeat Kinase 2 in Parkinson Disease and Interplay between the Two Genes. J. Neurochem. 2021, 159, 826–839. [Google Scholar] [CrossRef]
- Rui, Q.; Ni, H.; Li, D.; Gao, R.; Chen, G. The Role of LRRK2 in Neurodegeneration of Parkinson Disease. Curr. Neuropharmacol. 2018, 16, 1348–1357. [Google Scholar] [CrossRef]
- Connor-Robson, N.; Booth, H.; Martin, J.G.; Gao, B.; Li, K.; Doig, N.; Vowles, J.; Browne, C.; Klinger, L.; Juhasz, P.; et al. An Integrated Transcriptomics and Proteomics Analysis Reveals Functional Endocytic Dysregulation Caused by Mutations in LRRK2. Neurobiol. Dis. 2019, 127, 512–526. [Google Scholar] [CrossRef]
- Ravinther, A.I.; Dewadas, H.D.; Tong, S.R.; Foo, C.N.; Lin, Y.-E.; Chien, C.-T.; Lim, Y.M. Molecular Pathways Involved in LRRK2-Linked Parkinson’s Disease: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 11744. [Google Scholar] [CrossRef]
- Erb, M.L.; Moore, D.J. LRRK2 and the Endolysosomal System in Parkinson’s Disease. J. Park. Dis. 2020, 10, 1271–1291. [Google Scholar] [CrossRef]
- Jennings, D.; Huntwork-Rodriguez, S.; Henry, A.G.; Sasaki, J.C.; Meisner, R.; Diaz, D.; Solanoy, H.; Wang, X.; Negrou, E.; Bondar, V.V.; et al. Preclinical and Clinical Evaluation of the LRRK2 Inhibitor DNL201 for Parkinson’s Disease. Sci. Transl. Med. 2022, 14, eabj2658. [Google Scholar] [CrossRef]
- Zhao, H.T.; John, N.; Delic, V.; Ikeda-Lee, K.; Kim, A.; Weihofen, A.; Swayze, E.E.; Kordasiewicz, H.B.; West, A.B.; Volpicelli-Daley, L.A. LRRK2 Antisense Oligonucleotides Ameliorate α-Synuclein Inclusion Formation in a Parkinson’s Disease Mouse Model. Mol. Ther. Nucleic Acids 2017, 8, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Magistrelli, L.; Contaldi, E.; Comi, C. The Impact of SNCA Variations and Its Product Alpha-Synuclein on Non-Motor Features of Parkinson’s Disease. Life 2021, 11, 804. [Google Scholar] [CrossRef]
- Guadagnolo, D.; Piane, M.; Torrisi, M.R.; Pizzuti, A.; Petrucci, S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front. Neurol. 2021, 12, 648588. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson Disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Bridi, J.C.; Hirth, F. Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson’s Disease. Front. Neurosci. 2018, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Wilkaniec, A.; Lenkiewicz, A.M.; Babiec, L.; Murawska, E.; Jęśko, H.M.; Cieślik, M.; Culmsee, C.; Adamczyk, A. Exogenous Alpha-Synuclein Evoked Parkin Downregulation Promotes Mitochondrial Dysfunction in Neuronal Cells. Implications for Parkinson’s Disease Pathology. Front. Aging Neurosci. 2021, 13, 591475. [Google Scholar] [CrossRef]
- Chinta, S.J.; Mallajosyula, J.K.; Rane, A.; Andersen, J.K. Mitochondrial Alpha-Synuclein Accumulation Impairs Complex I Function in Dopaminergic Neurons and Results in Increased Mitophagy in Vivo. Neurosci. Lett. 2010, 486, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Choubey, V.; Safiulina, D.; Vaarmann, A.; Cagalinec, M.; Wareski, P.; Kuum, M.; Zharkovsky, A.; Kaasik, A. Mutant A53T α-Synuclein Induces Neuronal Death by Increasing Mitochondrial Autophagy. J. Biol. Chem. 2011, 286, 10814–10824. [Google Scholar] [CrossRef] [Green Version]
- Uehara, T.; Choong, C.-J.; Nakamori, M.; Hayakawa, H.; Nishiyama, K.; Kasahara, Y.; Baba, K.; Nagata, T.; Yokota, T.; Tsuda, H.; et al. Amido-Bridged Nucleic Acid (AmNA)-Modified Antisense Oligonucleotides Targeting α-Synuclein as a Novel Therapy for Parkinson’s Disease. Sci. Rep. 2019, 9, 7567. [Google Scholar] [CrossRef] [Green Version]
- Uehara, T.; Choong, C.J.; Hayakawa, H.; Kasahara, Y.; Nagata, T.; Yokota, T.; Baba, K.; Nakamori, M.; Obika, S.; Mochizuki, H. Antisense Oligonucleotides Containing Amido-Bridged Nucleic Acid Reduce SNCA Expression and Improve Motor Function in Parkinson’s Disease Animal Models. J. Neurol. Sci. 2017, 381, 1044–1045. [Google Scholar] [CrossRef]
- Arotcarena, M.-L.; Bourdenx, M.; Dutheil, N.; Thiolat, M.-L.; Doudnikoff, E.; Dovero, S.; Ballabio, A.; Fernagut, P.-O.; Meissner, W.G.; Bezard, E.; et al. Transcription Factor EB Overexpression Prevents Neurodegeneration in Experimental Synucleinopathies. JCI Insight 2019, 4, e129719. [Google Scholar] [CrossRef] [Green Version]
- Lindholm, D.; Pham, D.D.; Cascone, A.; Eriksson, O.; Wennerberg, K.; Saarma, M. C-Abl Inhibitors Enable Insights into the Pathophysiology and Neuroprotection in Parkinson’s Disease. Front. Aging Neurosci. 2016, 8, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagan, F.L.; Hebron, M.L.; Wilmarth, B.; Torres-Yaghi, Y.; Lawler, A.; Mundel, E.E.; Yusuf, N.; Starr, N.J.; Anjum, M.; Arellano, J.; et al. Nilotinib Effects on Safety, Tolerability, and Potential Biomarkers in Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol. 2020, 77, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simuni, T.; Fiske, B.; Merchant, K.; Coffey, C.S.; Klingner, E.; Caspell-Garcia, C.; Lafontant, D.-E.; Matthews, H.; Wyse, R.K.; Brundin, P.; et al. Efficacy of Nilotinib in Patients With Moderately Advanced Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2021, 78, 312. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, V.E.; Nikolopoulou, G.; Antoniadou, I.; Karachaliou, A.; Arianoglou, G.; Emmanouilidou, E.; Sardi, S.P.; Stefanis, L.; Vekrellis, K. Modulation of β-Glucocerebrosidase Increases α-Synuclein Secretion and Exosome Release in Mouse Models of Parkinson’s Disease. Hum. Mol. Genet. 2018, 27, 1696–1710. [Google Scholar] [CrossRef] [Green Version]
- Lang, A.E.; Siderowf, A.D.; Macklin, E.A.; Poewe, W.; Brooks, D.J.; Fernandez, H.H.; Rascol, O.; Giladi, N.; Stocchi, F.; Tanner, C.M.; et al. Trial of Cinpanemab in Early Parkinson’s Disease. N. Engl. J. Med. 2022, 387, 408–420. [Google Scholar] [CrossRef]
- Pagano, G.; Taylor, K.I.; Anzures-Cabrera, J.; Marchesi, M.; Simuni, T.; Marek, K.; Postuma, R.B.; Pavese, N.; Stocchi, F.; Azulay, J.-P.; et al. Trial of Prasinezumab in Early-Stage Parkinson’s Disease. N. Engl. J. Med. 2022, 387, 421–432. [Google Scholar] [CrossRef]
- Mandler, M.; Valera, E.; Rockenstein, E.; Mante, M.; Weninger, H.; Patrick, C.; Adame, A.; Schmidhuber, S.; Santic, R.; Schneeberger, A.; et al. Active Immunization against Alpha-Synuclein Ameliorates the Degenerative Pathology and Prevents Demyelination in a Model of Multiple System Atrophy. Mol. Neurodegener. 2015, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Meissner, W.G.; Traon, A.P.-L.; Foubert-Samier, A.; Galabova, G.; Galitzky, M.; Kutzelnigg, A.; Laurens, B.; Lührs, P.; Medori, R.; Péran, P.; et al. A Phase 1 Randomized Trial of Specific Active α-Synuclein Immunotherapies PD01A and PD03A in Multiple System Atrophy. Mov. Disord. 2020, 35, 1957–1965. [Google Scholar] [CrossRef]
- Yu, H.J.; Thijssen, E.; van Brummelen, E.; van der Plas, J.L.; Radanovic, I.; Moerland, M.; Hsieh, E.; Groeneveld, G.J.; Dodart, J. A Randomized First-in-Human Study With UB-312, a UBITh® A-Synuclein Peptide Vaccine. Mov. Disord. 2022, 37, 1416–1424. [Google Scholar] [CrossRef]
- Collier, T.J.; Redmond, D.E.; Steece-Collier, K.; Lipton, J.W.; Manfredsson, F.P. Is Alpha-Synuclein Loss-of-Function a Contributor to Parkinsonian Pathology? Evidence from Non-Human Primates. Front. Neurosci. 2016, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Kanaan, N.M.; Manfredsson, F.P. Loss of Functional Alpha-Synuclein: A Toxic Event in Parkinson’s Disease? J. Park. Dis. 2012, 2, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Gorbatyuk, O.S.; Li, S.; Nash, K.; Gorbatyuk, M.; Lewin, A.S.; Sullivan, L.F.; Mandel, R.J.; Chen, W.; Meyers, C.; Manfredsson, F.P.; et al. In Vivo RNAi-Mediated α-Synuclein Silencing Induces Nigrostriatal Degeneration. Mol. Ther. 2010, 18, 1450–1457. [Google Scholar] [CrossRef]
- Deng, H.; Wang, P.; Jankovic, J. The Genetics of Parkinson Disease. Ageing Res. Rev. 2018, 42, 72–85. [Google Scholar] [CrossRef]
- Wasner, K.; Grünewald, A.; Klein, C. Parkin-Linked Parkinson’s Disease: From Clinical Insights to Pathogenic Mechanisms and Novel Therapeutic Approaches. Neurosci. Res. 2020, 159, 34–39. [Google Scholar] [CrossRef]
- Klein, C.; Lohmann-Hedrich, K.; Rogaeva, E.; Schlossmacher, M.G.; Lang, A.E. Deciphering the Role of Heterozygous Mutations in Genes Associated with Parkinsonism. Lancet Neurol. 2007, 6, 652–662. [Google Scholar] [CrossRef]
- Lubbe, S.J.; Bustos, B.I.; Hu, J.; Krainc, D.; Joseph, T.; Hehir, J.; Tan, M.; Zhang, W.; Escott-Price, V.; Williams, N.M.; et al. Assessing the Relationship between Monoallelic PRKN Mutations and Parkinson’s Risk. Hum. Mol. Genet. 2021, 30, 78–86. [Google Scholar] [CrossRef]
- Yu, E.; Rudakou, U.; Krohn, L.; Mufti, K.; Ruskey, J.A.; Asayesh, F.; Estiar, M.A.; Spiegelman, D.; Surface, M.; Fahn, S.; et al. Analysis of Heterozygous PRKN Variants and Copy-Number Variations in Parkinson’s Disease. Mov. Disord. 2021, 36, 178–187. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, X.; Yoon, E.; Bandres-Ciga, S.; Blauwendraat, C.; Billingsley, K.J.; Cade, J.H.; Wu, B.P.; Williams, V.H.; Schindler, A.B.; et al. Heterozygous PRKN Mutations Are Common but Do Not Increase the Risk of Parkinson’s Disease. Brain 2022, 145, 2077–2091. [Google Scholar] [CrossRef]
- Seirafi, M.; Kozlov, G.; Gehring, K. Parkin Structure and Function. FEBS J. 2015, 282, 2076–2088. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.; Vera, J.; Wolkenhauer, O. The Systems Biology of Mitochondrial Fission and Fusion and Implications for Disease and Aging. Biogerontology 2014, 15, 1–12. [Google Scholar] [CrossRef]
- Büeler, H. Impaired Mitochondrial Dynamics and Function in the Pathogenesis of Parkinson’s Disease. Exp. Neurol. 2009, 218, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Poole, A.C.; Thomas, R.E.; Yu, S.; Vincow, E.S.; Pallanck, L. The Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway. PLoS ONE 2010, 5, e10054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, E.; Qi, J.; Ronai, Z. Emerging Roles of E3 Ubiquitin Ligases in Autophagy. Trends Biochem Sci 2013, 38, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sha, D.; Chin, L.-S.; Li, L. Phosphorylation of Parkin by Parkinson Disease-Linked Kinase PINK1 Activates Parkin E3 Ligase Function and NF-KappaB Signaling. Hum. Mol. Genet. 2010, 19, 352–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, H.; Wang, D.; Chen, L.; Choo, Y.S.; Ma, H.; Tang, C.; Xia, K.; Jiang, W.; Ronai, Z.; Zhuang, X.; et al. Parkin, PINK1, and DJ-1 Form a Ubiquitin E3 Ligase Complex Promoting Unfolded Protein Degradation. J. Clin. Investig. 2009, 119, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Pimenta de Castro, I.; Costa, A.C.; Lam, D.; Tufi, R.; Fedele, V.; Moisoi, N.; Dinsdale, D.; Deas, E.; Loh, S.H.Y.; Martins, L.M. Genetic Analysis of Mitochondrial Protein Misfolding in Drosophila Melanogaster. Cell Death Differ. 2012, 19, 1308–1316. [Google Scholar] [CrossRef] [Green Version]
- Vizziello, M.; Borellini, L.; Franco, G.; Ardolino, G. Disruption of Mitochondrial Homeostasis: The Role of PINK1 in Parkinson’s Disease. Cells 2021, 10, 3022. [Google Scholar] [CrossRef]
- Zhi, L.; Qin, Q.; Muqeem, T.; Seifert, E.L.; Liu, W.; Zheng, S.; Li, C.; Zhang, H. Loss of PINK1 Causes Age-Dependent Decrease of Dopamine Release and Mitochondrial Dysfunction. Neurobiol. Aging 2019, 75, 1–10. [Google Scholar] [CrossRef]
- Key, J.; Sen, N.E.; Arsović, A.; Krämer, S.; Hülse, R.; Khan, N.N.; Meierhofer, D.; Gispert, S.; Koepf, G.; Auburger, G. Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to Be Modified by PINK1 Absence. Cells 2020, 9, 2229. [Google Scholar] [CrossRef]
- Narendra, D.P.; Youle, R.J. Targeting Mitochondrial Dysfunction: Role for PINK1 and Parkin in Mitochondrial Quality Control. Antioxid. Redox Signal. 2011, 14, 1929–1938. [Google Scholar] [CrossRef]
- McLelland, G.-L.; Soubannier, V.; Chen, C.X.; McBride, H.M.; Fon, E.A. Parkin and PINK1 Function in a Vesicular Trafficking Pathway Regulating Mitochondrial Quality Control. EMBO J. 2014, 33, 282–295. [Google Scholar] [CrossRef]
- Abudu, Y.P.; Pankiv, S.; Mathai, B.J.; Lamark, T.; Johansen, T.; Simonsen, A. NIPSNAP1 and NIPSNAP2 Act as “Eat Me” Signals to Allow Sustained Recruitment of Autophagy Receptors during Mitophagy. Autophagy 2019, 15, 1845–1847. [Google Scholar] [CrossRef]
- Repici, M.; Giorgini, F. DJ-1 in Parkinson’s Disease: Clinical Insights and Therapeutic Perspectives. J. Clin. Med. 2019, 8, 1377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, J.; Wang, J.; Yang, B.; He, Q.; Weng, Q. Role of DJ-1 in Immune and Inflammatory Diseases. Front. Immunol. 2020, 11, 994. [Google Scholar] [CrossRef]
- Mullett, S.J.; Di Maio, R.; Greenamyre, J.T.; Hinkle, D.A. DJ-1 Expression Modulates Astrocyte-Mediated Protection Against Neuronal Oxidative Stress. J. Mol. Neurosci. 2013, 49, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Mullett, S.J.; Hinkle, D.A. DJ-1 Deficiency in Astrocytes Selectively Enhances Mitochondrial Complex I Inhibitor-Induced Neurotoxicity. J. Neurochem. 2011, 117, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Mencke, P.; Boussaad, I.; Romano, C.D.; Kitami, T.; Linster, C.L.; Krüger, R. The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson’s Disease. Cells 2021, 10, 347. [Google Scholar] [CrossRef]
- Burbulla, L.F.; Song, P.; Mazzulli, J.R.; Zampese, E.; Wong, Y.C.; Jeon, S.; Santos, D.P.; Blanz, J.; Obermaier, C.D.; Strojny, C.; et al. Dopamine Oxidation Mediates Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease. Science 2017, 357, 1255–1261. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yang, T.; Liang, M.; Xie, J.; Song, N. Astrocyte Dysfunction in Parkinson’s Disease: From the Perspectives of Transmitted α-Synuclein and Genetic Modulation. Transl. Neurodegener. 2021, 10, 39. [Google Scholar] [CrossRef]
- Trudler, D.; Weinreb, O.; Mandel, S.A.; Youdim, M.B.H.; Frenkel, D. DJ-1 Deficiency Triggers Microglia Sensitivity to Dopamine toward a pro-Inflammatory Phenotype That Is Attenuated by Rasagiline. J. Neurochem. 2014, 129, 434–447. [Google Scholar] [CrossRef]
- MacMahon Copas, A.N.; McComish, S.F.; Fletcher, J.M.; Caldwell, M.A. The Pathogenesis of Parkinson’s Disease: A Complex Interplay Between Astrocytes, Microglia, and T Lymphocytes? Front. Neurol. 2021, 12, 666737. [Google Scholar] [CrossRef] [PubMed]
- Inden, M.; Taira, T.; Kitamura, Y.; Yanagida, T.; Tsuchiya, D.; Takata, K.; Yanagisawa, D.; Nishimura, K.; Taniguchi, T.; Kiso, Y.; et al. PARK7 DJ-1 Protects against Degeneration of Nigral Dopaminergic Neurons in Parkinson’s Disease Rat Model. Neurobiol. Dis. 2006, 24, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yang, W.; Qi, Z.; Lu, L.; Duan, C.; Zhao, C.; Yang, H. DJ-1 Protects Dopaminergic Neurons against Rotenone-Induced Apoptosis by Enhancing ERK-Dependent Mitophagy. J. Mol. Biol. 2012, 423, 232–248. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-Y.; An, C.-N.; Pu, X.-P. DJ-1 Protein Protects Dopaminergic Neurons against 6-OHDA/MG-132-Induced Neurotoxicity in Rats. Brain Res. Bull. 2012, 88, 609–616. [Google Scholar] [CrossRef]
- Antoniou, X.; Borsello, T. Cell Permeable Peptides: A Promising Tool to Deliver Neuroprotective Agents in the Brain. Pharmaceuticals 2010, 3, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Lev, N.; Barhum, Y.; Ben-Zur, T.; Aharony, I.; Trifonov, L.; Regev, N.; Melamed, E.; Gruzman, A.; Offen, D. A DJ-1 Based Peptide Attenuates Dopaminergic Degeneration in Mice Models of Parkinson’s Disease via Enhancing Nrf2. PLoS ONE 2015, 10, e0127549. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Prahlad, J.; Wilson, M.A. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1. Biochemistry 2012, 51, 3799–3807. [Google Scholar] [CrossRef] [Green Version]
Gene (HGNC Approved Name) | Alternative Gene Names | Inheritance | Pathogenicity | PD Phenotype | Function | |
---|---|---|---|---|---|---|
High penetrance | SNCA | PARK1, PARK4, NCAP | AD | Pathogenic | Early-onset | Uncertain (encodes α-synuclein) |
VPS35 | PARK17, MEM3 | AD | Pathogenic | Typical | Retromer and endosomal trafficking | |
PINK1 | PARK6 | AR | Pathogenic | Early-onset | Mitochondrial | |
PARK7 | DJ-1 | AR | Pathogenic | Early-onset | ||
PRKN | PARK2, PARKIN | AR | Pathogenic | Early-onset | ||
PLA2G6 | PARK14, IPLA2 | AR | Pathogenic | Early-onset, atypical | Cell membrane | |
ATP13A2 | PARK9 | AR | Pathogenic | Early-onset, atypical | Lysosomal | |
FBX07 | PARK15, FBX7 | AR | Pathogenic | Early-onset, atypical | Mitochondrial | |
POLG | POLG1, POLGA | AD | Pathogenic | Early-onset, atypical | Mitochondrial DNA Maintenance | |
DNAJC6 | PARK19, DJC6 | AR | Likely pathigenic | Early-onset | Synaptic vesicle formation and trafficking | |
DNAJC13 | PARK21, RME8 | AD | Conflicting reports | Typical | ||
TMEM230 | C20ORF30 | AD | Conflicting reports | Typical | ||
SYNJ1 | PARK20 | AD | Conflicting reports | Typical | ||
VPS13C | PARK23 | AR | Pathogenic | Early-onset | Mitochondrial | |
CHCHD2 | - | AD | Pathogenic | Typical | Uncertain | |
DCTN1 | - | AD | Pathogenic | Atypical | Microtubule | |
Variable penetrance | LRRK2 | PARK8, DARDARIN | AD | Pathogenic | Typical | Lysosomal, mitochondrial, microtubule |
GBA | GBA1 | AD | Pathogenic | Typical | Lysosomal | |
Associated with PD but unlikely to be pathogenic | HTRA2 | - | AD | Uncertain/likely benign | - | Mitochondrial |
UCHL1 | PARK5 | AD | Uncertain/likely benign | - | Ubiquitin-proteasome | |
GIGYF2 | PARK11 | AD | Uncertain/likely benign | - | Uncertain | |
EIF4G1 | - | AD | Benign | - | mRNA translation | |
LRP10 | LRP9 | AD 1 | Uncertain | - | Uncertain |
Therapeutic Agent | Target/Mode of Action | Clinical Trial ID | Stage | Status |
---|---|---|---|---|
Ambroxol Hydrochloride | GCase enhancement: increase GCase activity and reduce α-synuclein levels in vitro and in vivo | AMBITIOUS NCT05287503 | 2 | Recruiting |
Ambroxol Hydrochloride | GCase enhancement: increase GCase activity and reduce α-synuclein levels in vitro and in vivo | NCT02914366 | 2 | Active, not recruiting |
Intracisternal AAV9-GBA1 gene (LY3884961) administration | β-Glucocerebrosidase gene therapy | PROPEL NCT04127578 | 1/2a | Active, not recruiting |
Venglustat GZ/SAR402671 | Glucosylceramide synthase inhibition: allosteric inhibitor of the enzyme glucosylceramide synthase | MOVES-PD NCT02906020 | 2 | Terminated (The topline results of the 52-week double-blind placebo-controlled period were analyzed. The study did not meet the primary or secondary endpoints. Based on these results, the decision was made to halt the long-term follow-up period of the study) |
Therapeutic Agent | Target/Mode of Action | Clinical Trial ID | Stage | Status |
---|---|---|---|---|
BIIB122/DNL151 | Inhibition of LRRK2 kinase | NCT05348785 | 2b | Recruiting |
BIIB122/DNL151 | Inhibition of LRRK2 kinase | NCT05418673 | 3 | Recruiting |
Trehalose | Autophagy enhancement | NCT05355064 | 4 | Not yet recruiting |
BIIB122/DNL151 | Inhibition of LRRK2 kinase; autophagy promoter | NCT04056689 | 1b | Completed |
DNL201 | Inhibition of LRRK2 kinase; autophagy promoter | NCT03710707 | 1b | Completed |
BIIB094 | Antisense oligonucleotide for LRRK2 inhibition | NCT03976349 | 1 | Recruiting |
Therapeutic Agent | Target/Mode of Action | Clinical Trial ID | Stage | Status |
---|---|---|---|---|
Vodobatinib | Inhibition of α-synuclein aggregation (autophagy-ABL1 inhibitors) | NCT03655236 | 2 | Recruiting |
Radotinib | Inhibition of α-synuclein aggregation (autophagy-ABL1 inhibitors) | NCT04691661 | 2 | Recruiting |
Nilotinib | Inhibition of α-synuclein aggregation (autophagy-ABL1 inhibitors) | NCT02954978 | 2 | Met primary outcome |
Nilotinib | Inhibition of α-synuclein aggregation (autophagy-ABL1 inhibitors) | NCT03205488 | 2 | Failed meeting primary endpoint |
IkT-148009 | Inhibition of α-synuclein aggregation (autophagy-ABL1 inhibitors) | NCT04350177 | 1 | Active, not recruiting |
Lithium | Enhancement autophagy and reduced intracellular levels of a-synuclein | NCT04273932 | 1 | Active, not recruiting |
Memantine | Inhibition of α-synuclein cell–cell Transmission | NCT03858270 | 3 | Recruiting |
BIIB054 (cinpanemab) | Monoclonal antibody that binds to α-synuclein | NCT03318523 | 2 | Failed meeting primary endpoint |
Prasinezumab (RO7046015/PRX002) | Monoclonal antibody that binds to α-synuclein | NCT03100149 | 2 | Failed meeting primary endpoint |
Prasinezumab (PADOVA TRIAL) | Monoclonal antibody that binds to α-synuclein | NCT04777331 | 2 | Recruiting |
PD01A | Active α-synuclein immunization | NCT01568099 | 1 | Positive antibody response |
PD03A | Active α-synuclein immunization | SYMPATH grant agreement 602999 | 1 | Positive antibody response |
UB-312 | Active α-synuclein immunization | NCT04075318 | 1 | Positive antibody response |
Anle138b | Structure-dependent binding to pathological aggregates and strong inhibition of formation of pathological oligomers in vitro and in vivo for α-synuclein | NCT04208152 | 1 | Completed |
NPT200-11 | α -synuclein misfolding inhibition | NPT200-11 | 1 | Completed |
UCB0599 | α -synuclein misfolding inhibition | NCT04875962 | 1 | Completed |
UCB0599 (ORCHESTRA STUDY) | α -synuclein misfolding inhibition | NCT04658186 | 2 | Recruiting |
K0706 | Inhibition of α-synuclein aggregation (autophagy-ABL1 inhibitors) | NCT03655236 | 2 | Recruiting |
IkT-148009 | Inhibition of α-synuclein aggregation (autophagy-ABL1 inhibitors) | NCT04350177 | 1 | Active, not recruiting |
AFFITOPE® PD01A | New vaccine against α -synuclein | NCT02758730 | 1 | Withdrawn |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallieri, F.; Cury, R.G.; Guimarães, T.; Fioravanti, V.; Grisanti, S.; Rossi, J.; Monfrini, E.; Zedde, M.; Di Fonzo, A.; Valzania, F.; et al. Recent Advances in the Treatment of Genetic Forms of Parkinson’s Disease: Hype or Hope? Cells 2023, 12, 764. https://doi.org/10.3390/cells12050764
Cavallieri F, Cury RG, Guimarães T, Fioravanti V, Grisanti S, Rossi J, Monfrini E, Zedde M, Di Fonzo A, Valzania F, et al. Recent Advances in the Treatment of Genetic Forms of Parkinson’s Disease: Hype or Hope? Cells. 2023; 12(5):764. https://doi.org/10.3390/cells12050764
Chicago/Turabian StyleCavallieri, Francesco, Rubens G. Cury, Thiago Guimarães, Valentina Fioravanti, Sara Grisanti, Jessica Rossi, Edoardo Monfrini, Marialuisa Zedde, Alessio Di Fonzo, Franco Valzania, and et al. 2023. "Recent Advances in the Treatment of Genetic Forms of Parkinson’s Disease: Hype or Hope?" Cells 12, no. 5: 764. https://doi.org/10.3390/cells12050764
APA StyleCavallieri, F., Cury, R. G., Guimarães, T., Fioravanti, V., Grisanti, S., Rossi, J., Monfrini, E., Zedde, M., Di Fonzo, A., Valzania, F., & Moro, E. (2023). Recent Advances in the Treatment of Genetic Forms of Parkinson’s Disease: Hype or Hope? Cells, 12(5), 764. https://doi.org/10.3390/cells12050764