Germ Cell Maintenance and Sustained Testosterone and Precursor Hormone Production in Human Prepubertal Testis Organ Culture with Tissues from Boys 7 Years+ under Conditions from Adult Testicular Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients, Testicular Biopsies and Ethical Approval
2.2. Epon Embedding, Semithin Section Technique and TEM
2.3. Organ Culture
2.4. Histological and Immunofluorescence Staining
2.5. Quantification of Cells and Testicular Tubules with Respect to Cell-Type-Specific Markers
2.6. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick-End Labeling (TUNEL)
2.7. Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. Determination of Steroid Hormones by LC-MS/MS
2.9. Measurement of Mitochondrial Sizes in Undifferentiated SPG
2.10. Statistical Testing, Linear Regression and Spearman Correlation Analysis
3. Results
3.1. Status and Viability of the Tissues Prior and during Organ Culture
3.2. Organ Culture Conditions Promote Maturation of PTCs
3.3. LAMA1 Expression of PTCs Is Maintained until the End of Culture; Hormones and Growth Factors Promote a Better Maintenance of LAMA1 Expression
3.4. Maintenance of Germ Cells (DDX4+) and SPG (PIWIL4+) over the Cultivation Period; 9-Year-Old SCD Patient as an Exception
3.5. Evaluation of Further Uncultured Prepubertal Tissues with Regard to the Proportion of DDX4+ and PIWIL4+ Germ Cells Displays the Great Heterogeneity of the Prepubertal Tissues Despite Same Age Groups and Partly Similar Diseases
3.6. Presence of the SPC Marker BOULE in the Cultured versus the Native Tissue
3.7. Characterization of SCs by Immunofluorescence Staining and TEM: TEM Shows SC Maturation Trends as SC Nuclei Become More Lobulated after 3 Weeks of Cultivation
3.8. LC Functionality Evidenced by Testosterone and Precursor Hormone Secretion
3.9. Morphological Evidence of the LCs by Immunofluorescence Staining, Semithin Technique and TEM
3.10. Prepubertal SPG from Boys 7 Years of Age and Older and Adult SPG Exhibit Similar Mitochondrial Sizes
4. Discussion
4.1. Effect of the Organ Culture Conditions on the Germ Cell Populations
4.2. Effect of the Organ Culture Conditions on the Somatic Cell Populations
4.3. Heterogeneity of the Prepubertal Testis Tissues with Regard to the Proportion of DDX4+ Germ Cells and PIWIL4+ SPG
4.4. Comparison of the Mitochondrial Sizes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahnukainen, K.; Mitchell, R.T.; Stukenborg, J.B. Testicular function and fertility preservation after treatment for haematological cancer. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 217–223. [Google Scholar] [CrossRef]
- Sanou, I.; van Maaren, J.; Eliveld, J.; Lei, Q.; Meißner, A.; de Melker, A.A.; Hamer, G.; van Pelt, A.M.M.; Mulder, C.L. Spermatogonial Stem Cell-Based Therapies: Taking Preclinical Research to the Next Level. Front. Endocrinol. (Lausanne) 2022, 13, 850219. [Google Scholar] [CrossRef] [PubMed]
- Rambhatla, A.; Strug, M.R.; De Paredes, J.G.; Cordoba Munoz, M.I.; Thakur, M. Fertility considerations in targeted biologic therapy with tyrosine kinase inhibitors: A review. J. Assist. Reprod. Genet. 2021, 38, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Filippi, F.; Serra, N.; Vigano, P.; Boeri, L.; Cimminiello, C.; Di Guardo, L.; Somigliana, E.; Del Vecchio, M. Fertility preservation for patients with melanoma. Melanoma Res. 2022, 32, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Kaatsch, P.; Grabow, D.; Spix, C. German Childhood Cancer Registry—Annual Report 2018 (1980–2017); Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) at the University Medical Center of the Johannes Gutenberg University Mainz: Mainz, Germany, 2019. [Google Scholar]
- NIH. National Cancer Institute. Available online: https://www.cancer.gov/types/childhood-cancers/ccss (accessed on 26 October 2022).
- Pampanini, V.; Hassan, J.; Oliver, E.; Stukenborg, J.B.; Damdimopoulou, P.; Jahnukainen, K. Fertility Preservation for Prepubertal Patients at Risk of Infertility: Present Status and Future Perspectives. Horm. Res. Paediatr. 2020, 93, 599–608. [Google Scholar] [CrossRef]
- Jensen, C.F.S.; Dong, L.; Gul, M.; Fode, M.; Hildorf, S.; Thorup, J.; Hoffmann, E.; Cortes, D.; Fedder, J.; Andersen, C.Y.; et al. Fertility preservation in boys facing gonadotoxic cancer therapy. Nat. Rev. Urol. 2022, 19, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Meier, E.R.; Dioguardi, J.V.; Kamani, N. Current attitudes of parents and patients toward hematopoietic stem cell transplantation for sickle cell anemia. Pediatr. Blood Cancer 2015, 62, 1277–1284. [Google Scholar] [CrossRef]
- Voigt, A.L.; Thiageswaran, S.; de Lima, E.; Martins Lara, N.; Dobrinski, I. Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance in Vivo and in Vitro. Int. J. Mol. Sci. 2021, 22, 1998. [Google Scholar] [CrossRef]
- de Rooij, D.G. The nature and dynamics of spermatogonial stem cells. Development 2017, 144, 3022–3030. [Google Scholar] [CrossRef] [Green Version]
- Fayomi, A.P.; Orwig, K.E. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 2018, 29, 207–214. [Google Scholar] [CrossRef]
- Gat, I.; Maghen, L.; Filice, M.; Wyse, B.; Zohni, K.; Jarvi, K.; Lo, K.C.; Gauthier Fisher, A.; Librach, C. Optimal culture conditions are critical for efficient expansion of human testicular somatic and germ cells in vitro. Fertil. Steril. 2017, 107, 595–605.e7. [Google Scholar] [CrossRef] [Green Version]
- Doungkamchan, C.; Orwig, K.E. Recent advances: Fertility preservation and fertility restoration options for males and females. Fac. Rev. 2021, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, T.K.; Ataman-Millhouse, L.; Acharya, K.S.; Almeida-Santos, T.; Anazodo, A.; Anderson, R.A.; Appiah, L.; Bader, J.; Becktell, K.; Brannigan, R.E.; et al. A View from the past into our collective future: The oncofertility consortium vision statement. J. Assist. Reprod. Genet. 2021, 38, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Goossens, E.; Jahnukainen, K.; Mitchell, R.T.; van Pelt, A.; Pennings, G.; Rives, N.; Poels, J.; Wyns, C.; Lane, S.; Rodriguez-Wallberg, K.A.; et al. Fertility preservation in boys: Recent developments and new insights. Hum. Reprod. Open. 2020, 2020, hoaa016. [Google Scholar] [CrossRef] [PubMed]
- Stukenborg, J.B.; Wyns, C. Fertility sparing strategies for pre- and peripubertal male cancer patients. Ecancermedicalscience 2020, 14, 1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valli-Pulaski, H.; Peters, K.A.; Gassei, K.; Steimer, S.R.; Sukhwani, M.; Hermann, B.P.; Dwomor, L.; David, S.; Fayomi, A.P.; Munyoki, S.K.; et al. Testicular tissue cryopreservation: 8 years of experience from a coordinated network of academic centers. Hum. Reprod. 2019, 34, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Fayomi, A.P.; Peters, K.; Sukhwani, M.; Valli-Pulaski, H.; Shetty, G.; Meistrich, M.L.; Houser, L.; Robertson, N.; Roberts, V.; Ramsey, C.; et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science 2019, 363, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- de Michele, F.; Poels, J.; Weerens, L.; Petit, C.; Evrard, Z.; Ambroise, J.; Gruson, D.; Wyns, C. Preserved seminiferous tubule integrity with spermatogonial survival and induction of Sertoli and Leydig cell maturation after long-term organotypic culture of prepubertal human testicular tissue. Hum. Reprod. 2017, 32, 32–45. [Google Scholar] [CrossRef] [Green Version]
- de Michele, F.; Poels, J.; Vermeulen, M.; Ambroise, J.; Gruson, D.; Guiot, Y.; Wyns, C. Haploid Germ Cells Generated in Organotypic Culture of Testicular Tissue from Prepubertal Boys. Front. Physiol. 2018, 9, 1413. [Google Scholar] [CrossRef]
- Medrano, J.V.; Vilanova-Pérez, T.; Fornés-Ferrer, V.; Navarro-Gomezlechon, A.; Martínez-Triguero, M.L.; García, S.; Gómez-Chacón, J.; Povo, I.; Pellicer, A.; Andrés, M.M.; et al. Influence of temperature, serum, and gonadotropin supplementation in short- and long-term organotypic culture of human immature testicular tissue. Fertil. Steril. 2018, 110, 1045–1057.e3. [Google Scholar] [CrossRef] [Green Version]
- Portela, J.M.D.; de Winter-Korver, C.M.; van Daalen, S.K.M.; Meißner, A.; de Melker, A.A.; Repping, S.; van Pelt, A.M.M. Assessment of fresh and cryopreserved testicular tissues from (pre)pubertal boys during organ culture as a strategy for in vitro spermatogenesis. Hum. Reprod. 2019, 34, 2443–2455. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Åkesson, E.; Yoshihara, M.; Oliver, E.; Cui, Y.; Becker, M.; Alves-Lopes, J.P.; Bjarnason, R.; Romerius, P.; Sundin, M.; et al. Spermatogonia Loss Correlates with LAMA 1 Expression in Human Prepubertal Testes Stored for Fertility Preservation. Cells 2021, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hildorf, S.; Ntemou, E.; Mamsen, L.S.; Dong, L.; Pors, S.E.; Fedder, J.; Clasen-Linde, E.; Cortes, D.; Thorup, J.; et al. Organotypic Culture of Testicular Tissue from Infant Boys with Cryptorchidism. Int. J. Mol. Sci. 2022, 23, 7975. [Google Scholar] [CrossRef] [PubMed]
- Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, Ł.; Lamperska, K. 2D and 3D cell cultures—A comparison of different types of cancer cell cultures. Arch. Med. Sci. 2018, 14, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Sakib, S.; Goldsmith, T.; Voigt, A.; Dobrinski, I. Testicular organoids to study cell-cell interactions in the mammalian testis. Andrology 2020, 8, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Katagiri, K.; Gohbara, A.; Inoue, K.; Ogonuki, N.; Ogura, A.; Kubota, Y.; Ogawa, T. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 2011, 471, 504–507. [Google Scholar] [CrossRef]
- Jezek, D.; Knuth, U.A.; Schulze, W. Successful testicular sperm extraction (TESE) in spite of high serum follicle stimulating hormone and azoospermia: Correlation between testicular morphology, TESE results, semen analysis and serum hormone values in 103 infertile men. Hum. Reprod. 1998, 13, 1230–1234. [Google Scholar] [CrossRef] [Green Version]
- Schulze, W.; Thoms, F.; Knuth, U.A. Testicular sperm extraction: Comprehensive analysis with simultaneously performed histology in 1418 biopsies from 766 subfertile men. Hum. Reprod. 1999, 14 (Suppl. 1), 82–96. [Google Scholar] [CrossRef] [Green Version]
- Latendresse, J.R.; Warbrittion, A.R.; Jonassen, H.; Creasy, D.M. Fixation of testes and eyes using a modified Davidson’s fluid: Comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol. Pathol. 2002, 30, 524–533. [Google Scholar] [CrossRef]
- Salian, S.R.; Pandya, R.K.; Laxminarayana, S.L.K.; Krishnamurthy, H.; Cheredath, A.; Tholeti, P.; Uppangala, S.; Kalthur, G.; Majumdar, S.; Schlatt, S.; et al. Impact of Temperature and Time Interval Prior to Immature Testicular-Tissue Organotypic Culture on Cellular Niche. Reprod. Sci. 2021, 28, 2161–2173. [Google Scholar] [CrossRef]
- Gaudl, A.; Kratzsch, J.; Bae, Y.J.; Kiess, W.; Thiery, J.; Ceglarek, U. Liquid chromatography quadrupole linear ion trap mass spectrometry for quantitative steroid hormone analysis in plasma, urine, saliva and hair. J. Chromatogr. A 2016, 1464, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Social Science Statistics – The Kolmogorov-Smirnov Test of Normality. Available online: https://www.socscistatistics.com/tests/kolmogorov/default.aspx (accessed on 8 December 2022).
- Social Science Statistics—Kruskal-Wallis Test Calculator. Available online: https://www.socscistatistics.com/tests/kruskal/default.aspx (accessed on 8 December 2022).
- The R Project for Statistical Computing. Available online: www.r-project.org (accessed on 8 December 2022).
- Social Science Statistics—Spearman’s Rho Calculator. Available online: https://www.socscistatistics.com/tests/spearman/default2.aspx (accessed on 8 December 2022).
- Tröndle, I.; Westernströer, B.; Wistuba, J.; Terwort, N.; Schlatt, S.; Neuhaus, N. Irradiation affects germ and somatic cells in prepubertal monkey testis xenografts. Mol. Hum. Reprod. 2017, 23, 141–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Klaverkamp, R.S.; Wistuba, J.; Schlatt, S. Limited spermatogenic differentiation of testicular tissue from prepubertal marmosets (Callithrix jacchus) in an in vitro organ culture system. Mol. Cell. Endocrinol. 2022, 539, 111488. [Google Scholar] [CrossRef] [PubMed]
- Gassei, K.; Sheng, Y.; Fayomi, A.; Mital, P.; Sukhwani, M.; Lin, C.C.; Peters, K.A.; Althouse, A.; Valli, H.; Orwig, K.E. DDX4-EGFP transgenic rat model for the study of germline development and spermatogenesis. Biol. Reprod. 2017, 96, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, D.M.; Nielsen, J.E.; Skakkebaek, N.E.; Graem, N.; Jacobsen, G.K.; Rajpert-De Meyts, E.; Leffers, H. Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms. Hum. Reprod. 2008, 23, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Grow, E.J.; Mlcochova, H.; Maher, G.J.; Lindskog, C.; Nie, X.; Guo, Y.; Takei, Y.; Yun, J.; Cai, L.; et al. The adult human testis transcriptional cell atlas. Cell Res. 2018, 28, 1141–1157. [Google Scholar] [CrossRef]
- Kostova, E.; Yeung, C.H.; Luetjens, C.M.; Brune, M.; Nieschlag, E.; Gromoll, J. Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. Mol. Hum. Reprod. 2007, 13, 85–93. [Google Scholar] [CrossRef] [Green Version]
- von Kopylow, K.; Kirchhoff, C.; Jezek, D.; Schulze, W.; Feig, C.; Primig, M.; Steinkraus, V.; Spiess, A.N. Screening for biomarkers of spermatogonia within the human testis: A whole genome approach. Hum. Reprod. 2010, 25, 1104–1112. [Google Scholar] [CrossRef] [Green Version]
- von Kopylow, K.; Staege, H.; Schulze, W.; Will, H.; Kirchhoff, C. Fibroblast growth factor receptor 3 is highly expressed in rarely dividing human type A spermatogonia. Histochem. Cell Biol. 2012, 138, 759–772. [Google Scholar] [CrossRef]
- von Kopylow, K.; Staege, H.; Spiess, A.N.; Schulze, W.; Will, H.; Primig, M.; Kirchhoff, C. Differential marker protein expression specifies rarefaction zone-containing human Adark spermatogonia. Reproduction 2012, 143, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Sosa, E.; Chitiashvili, T.; Nie, X.; Rojas, E.J.; Oliver, E.; DonorConnect, P.K.; Hotaling, J.M.; Stukenborg, J.B.; Clark, A.T.; et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 2021, 28, 764–778.e4. [Google Scholar] [CrossRef] [PubMed]
- Sohni, A.; Tan, K.; Song, H.W.; Burow, D.; de Rooij, D.G.; Laurent, L.; Hsieh, T.C.; Rabah, R.; Hammoud, S.S.; Vicini, E.; et al. The Neonatal and Adult Human Testis Defined at the Single-Cell Level. Cell Rep. 2019, 26, 1501–1517. [Google Scholar] [CrossRef] [Green Version]
- Shami, A.N.; Zheng, X.; Munyoki, S.K.; Ma, Q.; Manske, G.L.; Green, C.D.; Sukhwani, M.; Orwig, K.E.; Li, J.Z.; Hammoud, S.S. Single-Cell RNA Sequencing of Human, Macaque, and Mouse Testes Uncovers Conserved and Divergent Features of Mammalian Spermatogenesis. Dev. Cell 2020, 54, 529–547.e12. [Google Scholar] [CrossRef] [PubMed]
- von Kopylow, K. Molekulare Charakterisierung humaner Spermatogonien (Molecular characterization of human spermatogonia). Ph.D. Thesis, University Hamburg, Hamburg, Germany, 2011. [Google Scholar]
- Oettel, M.; Mukhopadhyay, A.K. Progesterone: The forgotten hormone in men? Aging Male 2004, 7, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.; Scordo, M.; Yoon, R.S.; Liporace, F.A.; Greene, L.W. Revisiting the role of testosterone: Are we missing something? Rev. Urol. 2017, 19, 16–24. [Google Scholar] [CrossRef] [PubMed]
- von Kopylow, K.; Schulze, W.; Salzbrunn, A.; Schaks, M.; Schäfer, E.; Roth, B.; Schlatt, S.; Spiess, A.N. Dynamics, ultrastructure and gene expression of human in vitro organized testis cells from testicular sperm extraction biopsies. Mol. Hum. Reprod. 2018, 24, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Schulze, C. Leydig Cells. In Sertoli Cells and Leydig Cells in Man; Beck, F., Hild, W., Ortmann, R., Schiebler, T.H., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1984; pp. 71–77. [Google Scholar]
- Clermont, Y. The cycle of the seminiferous epithelium in man. Am. J. Anat. 1963, 112, 35–51. [Google Scholar] [CrossRef]
- Clermont, Y. Renewal of spermatogonia in man. Am. J. Anat. 1966, 118, 509–524. [Google Scholar] [CrossRef]
- Clermont, Y. Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 1972, 52, 198–236. [Google Scholar] [CrossRef]
- Rowley, M.J.; Berlin, J.D.; Heller, C.G. The ultrastructure of four types of human spermatogonia. Z. Für Zellforsch. Und Mikrosk. Anat. 1971, 112, 139–157. [Google Scholar] [CrossRef]
- Schulze, W. Normal and abnormal spermatogonia in the human testis. In Fortschritte der Andrologie; Holstein, A.F., Schirren, C., Eds.; Grosse Verlag: Berlin, Germany, 1981; Volume 7, pp. 33–45. [Google Scholar]
- Holstein, A.F.; Schütte, B.; Becker, H.; Hartmann, M. Morphology of normal and malignant germ cells. Int. J. Androl. 1987, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Spiller, C.M.; Feng, C.W.; Jackson, A.; Gillis, A.J.; Rolland, A.D.; Looijenga, L.H.; Koopman, P.; Bowles, J. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development 2012, 139, 4123–4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauklin, S.; Vallier, L. Activin/Nodal signalling in stem cells. Development 2015, 142, 607–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, L.Y.S.; Gracie, N.P.; Gowripalan, A.; Howell, L.M.; Newsome, T.P. SMAD proteins: Mediators of diverse outcomes during infection. Eur. J. Cell Biol. 2022, 101, 151204. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Nie, X.; Giebler, M.; Mlcochova, H.; Wang, Y.; Grow, E.J.; DonorConnect, K.R.; Tharmalingam, M.; Matilionyte, G.; Lindskog, C.; et al. The Dynamic Transcriptional Cell Atlas of Testis Development during Human Puberty. Cell Stem Cell 2020, 26, 262–276.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiley, P.A.F.; O’Donnell, L.; Moody, S.C.; Handelsman, D.J.; Young, J.C.; Richards, E.A.; Almstrup, K.; Western, P.S.; Loveland, K.L. Activin A Determines Steroid Levels and Composition in the Fetal Testis. Endocrinology 2020, 161, bqaa058. [Google Scholar] [CrossRef]
- O’Donnell, L.; Whiley, P.A.F.; Loveland, K.L. Activin A and Sertoli Cells: Key to Fetal Testis Steroidogenesis. Front. Endocrinol. (Lausanne) 2022, 13, 898876. [Google Scholar] [CrossRef]
- Moody, S.C.; Whiley, P.A.F.; Western, P.S.; Loveland, K.L. The Impact of Activin A On Fetal Gonocytes: Chronic Versus Acute Exposure Outcomes. Front. Endocrinol. (Lausanne) 2022, 13, 896747. [Google Scholar] [CrossRef]
- Hedger, M.P.; Winnall, W.R. Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol. Cell. Endocrinol. 2012, 359, 30–42. [Google Scholar] [CrossRef]
- Jørgensen, A.; Macdonald, J.; Nielsen, J.E.; Kilcoyne, K.R.; Perlman, S.; Lundvall, L.; Langhoff Thuesen, L.; Juul Hare, K.; Frederiksen, H.; Andersson, A.M.; et al. Nodal Signaling Regulates Germ Cell Development and Establishment of Seminiferous Cords in the Human Fetal Testis. Cell Rep. 2018, 25, 1924–1937.e4. [Google Scholar] [CrossRef] [Green Version]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000156574-NODAL/tissue/testis#img (accessed on 8 December 2022).
- Zhou, R.; Wu, J.; Liu, B.; Jiang, Y.; Chen, W.; Li, J.; He, Q.; He, Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell. Mol. Life Sci. 2019, 76, 2681–2695. [Google Scholar] [CrossRef] [PubMed]
- Oliver, E.; Stukenborg, J.B. Rebuilding the human testis in vitro. Andrology 2020, 8, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Schmidt, J.A.; Avarbock, M.R.; Tobias, J.W.; Carlson, C.A.; Kolon, T.F.; Ginsberg, J.P.; Brinster, R.L. Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules. Proc. Natl. Acad. Sci. USA 2009, 106, 21672–21677. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Katagiri, K.; Kojima, K.; Komeya, M.; Yao, M.; Ogawa, T. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues. PLoS ONE 2015, 10, e0130171. [Google Scholar] [CrossRef]
- Oatley, J.M.; Oatley, M.J.; Avarbock, M.R.; Tobias, J.W.; Brinster, R.L. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 2009, 136, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- DeFalco, T.; Potter, S.J.; Williams, A.V.; Waller, B.; Kan, M.J.; Capel, B. Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. Cell Rep. 2015, 12, 1107–1119. [Google Scholar] [CrossRef] [Green Version]
- Kokkinaki, M.; Lee, T.L.; He, Z.; Jiang, J.; Golestaneh, N.; Hofmann, M.C.; Chan, W.Y.; Dym, M. The molecular signature of spermatogonial stem/progenitor cells in the 6-day-old mouse testis. Biol. Reprod. 2009, 80, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Sawaied, A.; Arazi, E.; AbuElhija, A.; Lunenfeld, E.; Huleihel, M. The Presence of Colony-Stimulating Factor-1 and Its Receptor in Different Cells of the Testis; It Involved in the Development of Spermatogenesis In Vitro. Int. J. Mol. Sci. 2021, 22, 02325. [Google Scholar] [CrossRef]
- Jan, S.Z.; Vormer, T.L.; Jongejan, A.; Röling, M.D.; Silber, S.J.; de Rooij, D.G.; Hamer, G.; Repping, S.; van Pelt, A.M.M. Unraveling transcriptome dynamics in human spermatogenesis. Development 2017, 144, 3659–3673. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Grow, E.J.; Yi, C.; Mlcochova, H.; Maher, G.J.; Lindskog, C.; Murphy, P.J.; Wike, C.L.; Carrell, D.T.; Goriely, A.; et al. Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development. Cell Stem Cell 2017, 21, 533–546.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falk, M.; Ferletta, M.; Forsberg, E.; Ekblom, P. Restricted distribution of laminin alpha1 chain in normal adult mouse tissues. Matrix Biol. 1999, 18, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Ekblom, P.; Lonai, P.; Talts, J.F. Expression and biological role of laminin-1. Matrix Biol. 2003, 22, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Flenkenthaler, F.; Windschüttl, S.; Fröhlich, T.; Schwarzer, J.U.; Mayerhofer, A.; Arnold, G.J. Secretome analysis of testicular peritubular cells: A window into the human testicular microenvironment and the spermatogonial stem cell niche in man. J. Proteome Res. 2014, 13, 1259–1269. [Google Scholar] [CrossRef]
- Mazaud-Guittot, S.; Meugnier, E.; Pesenti, S.; Wu, X.; Vidal, H.; Gow, A.; Le Magueresse-Battistoni, B. Claudin 11 deficiency in mice results in loss of the Sertoli cell epithelial phenotype in the testis. Biol. Reprod. 2010, 82, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Pollard, J.W.; Dominguez, M.G.; Mocci, S.; Cohen, P.E.; Stanley, E.R. Effect of the colony-stimulating factor-1 null mutation, osteopetrotic (csfm(op)), on the distribution of macrophages in the male mouse reproductive tract. Biol. Reprod. 1997, 56, 1290–1300. [Google Scholar] [CrossRef]
- Benninghoven-Frey, K.M.; Neuhaus, N.; Lahtinen, A.K.; Krallmann, C.; Portela, J.M.D.; Jarisch, A.; Nordhoff, V.; Soave, A.; Ba Omar, H.A.M.; Sundin, M.; et al. Early testicular maturation is sensitive to depletion of spermatogonial pool in sickle cell disease. Haematologica 2022, 107, 975–979. [Google Scholar] [CrossRef]
- DeBaun, M.R. Hydroxyurea therapy contributes to infertility in adult men with sickle cell disease: A review. Expert Rev. Hematol. 2014, 7, 767–773. [Google Scholar] [CrossRef]
- Stukenborg, J.B.; Alves-Lopes, J.P.; Kurek, M.; Albalushi, H.; Reda, A.; Keros, V.; Töhönen, V.; Bjarnason, R.; Romerius, P.; Sundin, M.; et al. Spermatogonial quantity in human prepubertal testicular tissue collected for fertility preservation prior to potentially sterilizing therapy. Hum. Reprod. 2018, 33, 1677–1683. [Google Scholar] [CrossRef]
- Voigt, A.L.; Kondro, D.A.; Powell, D.; Valli-Pulaski, H.; Ungrin, M.; Stukenborg, J.B.; Klein, C.; Lewis, I.A.; Orwig, K.E.; Dobrinski, I. Unique metabolic phenotype and its transition during maturation of juvenile male germ cells. FASEB J. 2021, 35, e21513. [Google Scholar] [CrossRef]
- Akram, M. Mini-review on glycolysis and cancer. J. Cancer Educ. 2013, 28, 454–457. [Google Scholar] [CrossRef] [PubMed]
Patient Age | Diagnosis | Serum Testosterone | Most Advanced Germ Cells Type | Tissue Used for | ||
---|---|---|---|---|---|---|
[Years] | [µg/L] | Epon Embedded Tissue | Paraffin Embedded Tissue | (a) Organ Culture, | ||
Semithin Section | TEM | Immunostaining | (b) Quantification | |||
7 | ß-Thalassemia major | <0.07 | SPG | SPG | SPG, rare cases of SPCs | a, b |
12 | XIAP deficiency | <0.07 | SPG | SPG | SPG | a, b |
9 | Sickle cell disease | <0.07 | rare cases of SPG | n.d. | rare cases of SPG | a, b |
7 | ß-Thalassemia major | 0.08 | SPG | n.d. | SPG | b |
9 | Myelodysplastic syndrome | 0.08 | SPG | n.d. | SPG | b |
12 | Hyper IgE syndrome | 0.13 | SPG, rare cases of SPCs | SPG, rare cases of SPCs | SPG | b |
Patient Age | Diagnosis | Serum Testosterone | Most Advanced Germ Cells Type |
---|---|---|---|
[Years] | [µg/L] | Semithin Section | |
1.5 | CD40L deficiency, Hyper IgM syndrome | <0.07 | SPG |
5 | Myelodysplastic syndrome | <0.07 | SPG |
7 a, b | ß-Thalassemia major | <0.07 | SPG |
10 | ß-Thalassemia major | <0.07 | SPG |
12 a, b | XIAP deficiency | <0.07 | SPG |
12 b | Hyper IgE syndrome | 0.13 | SPG, rare cases of SPCs |
13 | Glioblastoma | 0.5 | SPG, SPCs |
13 | Leukocyte adhesion defect | <0.07 | SPG, SPCs |
adult, 39 | Status post vasectomy | n.d. | SPTs |
adult, 47 | Obstructive azoospermia | 5.77 | SPTs |
Cell Type | Method/Marker | Interpretation | Differences between Conditions |
---|---|---|---|
SPG/SSCs, | IFL/PIWIL4, | Maintenance, cell count reduced | slightly better in C after 3 wks |
germ cells (GCs), | DDX4, | ||
proliferating GCs | DDX4 + Ki-67 | ||
SPCs | IFL/BOULE | 7-year-old patient: | 7-year-old patient: |
rare cases of cells, | native tissue: 1-2 cells | ||
cells present before culture | 1 week: few cells in A + C | ||
12-year-old patient: | 12-year-old patient: | ||
rare cases of cells, | native tissue: no cells | ||
cells most likely present | 1 week: few cells in A + B | ||
before culture | 2 weeks: few cells in B | ||
PTCs | IFL/SMA, | Cellular maturation | no |
LAMA1 | Preservation of expression | 50% reduced in A after 3 wks | |
SCs | IFL/SOX9 | Maintenance | no |
CLDN11 | BTB maintenance | no | |
TEM/ultrastructure | Maturation | only B + C tested | |
LCs | LC-MS/MS/ | Functionality of cells proven with | 7-year-old patient: |
progesterone, | steroid hormone production | best condition: C | |
17-OHP, | in the tissues of the 7-year-old | ||
androstenedione, | and the 12-year-old patient, | 12-year-old patient: | |
testosterone, | higher levels in the | best condition: A | |
estradiol | case of the 12-year-old patient | ||
ELISA/testosterone | 9-year-old SCD-patient, | no secretion | |
no testosterone | |||
IFL/STAR, | Expression present | no | |
CYP17A1, | Increasing expression (7-year-old boy: lesser extent) | 7-year-old patient, best condition: C | |
INSL3 | Expression present in the tissue of 12-year-old boy | no | |
Semithin/morphology | Presence of LCs at the morphological level confirmed | no; condition A n.d. | |
TEM/ultrastructure | Presence of LCs at the ultrastructural level confirmed | no; condition A n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aden, N.L.; Bleeke, M.; Kordes, U.R.; Brunne, B.; Holstermann, B.; Biemann, R.; Ceglarek, U.; Soave, A.; Salzbrunn, A.; Schneider, S.W.; et al. Germ Cell Maintenance and Sustained Testosterone and Precursor Hormone Production in Human Prepubertal Testis Organ Culture with Tissues from Boys 7 Years+ under Conditions from Adult Testicular Tissue. Cells 2023, 12, 415. https://doi.org/10.3390/cells12030415
Aden NL, Bleeke M, Kordes UR, Brunne B, Holstermann B, Biemann R, Ceglarek U, Soave A, Salzbrunn A, Schneider SW, et al. Germ Cell Maintenance and Sustained Testosterone and Precursor Hormone Production in Human Prepubertal Testis Organ Culture with Tissues from Boys 7 Years+ under Conditions from Adult Testicular Tissue. Cells. 2023; 12(3):415. https://doi.org/10.3390/cells12030415
Chicago/Turabian StyleAden, Neels Lennart, Matthias Bleeke, Uwe R. Kordes, Bianka Brunne, Barbara Holstermann, Ronald Biemann, Uta Ceglarek, Armin Soave, Andrea Salzbrunn, Stefan W. Schneider, and et al. 2023. "Germ Cell Maintenance and Sustained Testosterone and Precursor Hormone Production in Human Prepubertal Testis Organ Culture with Tissues from Boys 7 Years+ under Conditions from Adult Testicular Tissue" Cells 12, no. 3: 415. https://doi.org/10.3390/cells12030415
APA StyleAden, N. L., Bleeke, M., Kordes, U. R., Brunne, B., Holstermann, B., Biemann, R., Ceglarek, U., Soave, A., Salzbrunn, A., Schneider, S. W., & von Kopylow, K. (2023). Germ Cell Maintenance and Sustained Testosterone and Precursor Hormone Production in Human Prepubertal Testis Organ Culture with Tissues from Boys 7 Years+ under Conditions from Adult Testicular Tissue. Cells, 12(3), 415. https://doi.org/10.3390/cells12030415