Single-Cell Analysis with Silver-Coated Pipette by Combined SERS and SICM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Pipettes
2.2. Formation of Ag Nanoparticle Array
2.3. Characterization of the Surface Morphology of the Samples
2.4. Cell Culture
2.5. Scanning Ion-Conductance Microscopy (SICM)
2.6. Raman and SERS Measurements
2.7. Calculation of the Enhancement Factor (EF)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shevchuk, A.; Tokar, S.; Gopal, S.; Sanchez-Alonso, J.L.; Tarasov, A.I.; Vélez-Ortega, A.C.; Chiappini, C.; Rorsman, P.; Stevens, M.M.; Gorelik, J.; et al. Angular Approach Scanning ion conductance microscopy. Biophys. J. 2016, 110, 2252–2265. [Google Scholar] [CrossRef]
- Wojcikiewicz, E.P.; Zhang, X.H.; Moy, V.T. Force and compliance measurements on living cells using atomic force microscopy (AFM). Biol. Proced. Online 2004, 6, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Chon, H.; Yoon, S.-Y.; Lee, E.K.; Chang, S.-I.; Lim, D.W.; Choo, J. Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging. Nanoscale 2012, 4, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Parchur, A.K.; Gilbertson, T.A.; Zhou, A. SERS-fluorescence bimodal nanoprobes for in vitro imaging of the fatty acid responsive receptor GPR120. Anal. Methods 2018, 10, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Sheng, B.; Tian, H.; Chen, Q.; Yang, Y.; Bui, B.; Pi, J.; Cai, H.; Chen, S.; Zhang, J.; et al. Real-time SERS monitoring anticancer drug release along with SERS/MR imaging for pH-sensitive chemo-phototherapy. Acta Pharm. Sin. B 2023, 13, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Huang, K.; Siepser, N.P.; Baker, L.A. Scanning ion conductance microscopy. Chem. Rev. 2020, 121, 11726–11768. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, V.; Erofeev, A.; Woodcock, E.; Efremov, Y.M.; Iakovlev, A.; Savin, N.; Alova, A.; Lavrushkina, S.; Kireev, I.I.; Prelovskaya, A.; et al. Mapping mechanical properties of living cells at nanoscale using intrinsic nanopipette–sample force interactions. Nanoscale 2021, 13, 6558–6568. [Google Scholar] [CrossRef]
- Rheinlaender, J.; Geisse, N.A.; Proksch, R.; Schäffer, T.E. Comparison of Scanning Ion Conductance Microscopy with Atomic Force Microscopy for Cell Imaging. Langmuir 2010, 27, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Zhou, Y.; Miyamoto, T.; Higashi, H.; Nakamichi, N.; Takeda, Y.; Kato, Y.; Korchev, Y.; Fukuma, T. High-Speed SICM for the visualization of nanoscale dynamic structural changes in hippocampal neurons. Anal. Chem. 2019, 92, 2159–2167. [Google Scholar] [CrossRef]
- Novak, P.; Li, C.; Shevchuk, A.; Stepanyan, R.; Caldwell, M.; Hughes, S.; Smart, T.G.; Gorelik, J.; Ostanin, V.P.; Lab, M.J.; et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 2009, 6, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Ushiki, T.; Nakajima, M.; Choi, M.; Cho, S.; Iwata, F. Scanning ion conductance microscopy for imaging biological samples in liquid: A comparative study with atomic force microscopy and scanning electron microscopy. Micron 2012, 43, 1390–1398. [Google Scholar] [CrossRef]
- Wu, P.H.; Aroush, D.R.B.; Asnacios, A.; Chen, W.C.; Dokukin, M.; Doss, B.L.; Durand-Smet, P.; Ekpenyong, A.; Guck, J.; Guz, N.; et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 2018, 15, 491–498. [Google Scholar] [CrossRef]
- Machulkin, A.E.; Uspenskaya, A.A.; Zyk, N.Y.; Nimenko, E.A.; Ber, A.P.; Petrov, S.A.; Shafikov, R.R.; Skvortsov, D.A.; Smirnova, G.P.; Borisova, Y.A.; et al. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation. Eur. J. Med. Chem. 2022, 227, 113936. [Google Scholar] [CrossRef] [PubMed]
- Machulkin, A.E.; Uspenskaya, A.A.; Zyk, N.U.; Nimenko, E.A.; Ber, A.P.; Petrov, S.A.; Polshakov, V.I.; Shafikov, R.R.; Skvortsov, D.A.; Plotnikova, E.A.; et al. Synthesis, characterization, and preclinical evaluation of a Small-Molecule Prostate-Specific membrane Antigen-Targeted monomethyl auristatin E conjugate. J. Med. Chem. 2021, 64, 17123–17145. [Google Scholar] [CrossRef]
- Liashkovich, I.; Stefanello, S.T.; Vidyadharan, R.; Haufe, G.; Erofeev, A.; Gorelkin, P.; Kolmogorov, V.; Mizdal, C.R.; Dulebo, A.; Bulk, E.; et al. Pitstop-2 and its novel derivative RVD-127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases. Bioeng. Transl. Med. 2022, 8, e10425. [Google Scholar] [CrossRef] [PubMed]
- Segura-Valdez, M.L.; Agredano-Moreno, L.T.; Zamora-Cura, A.L.; Lara-Martínez, R.; Jiménez-García, L.F. Visualization of internal in situ cell structure by atomic force microscopy. Histochem. Cell Biol. 2018, 150, 521–527. [Google Scholar] [CrossRef]
- Bandarenka, H.V.; Khinevich, N.V.; Burko, A.A.; Redko, S.V.; Zavatski, S.A.; Shapel, U.A.; Mamatkulov, K.Z.; Vorobyeva, M.Y.; Arzumanyan, G.M. 3D silver dendrites for single-molecule imaging by surface-enhanced RaMan spectroscopy. ChemNanoMat 2020, 7, 141–149. [Google Scholar] [CrossRef]
- Karooby, E.; Sahbafar, H.; Heris, M.H.; Hadi, A.; Eskandari, V. Identification of Low Concentrations of Flucytosine Drug Using a Surface-Enhanced Raman Scattering (SERS)-Active Filter Paper Substrate. Plasmonics 2023, 1–9. [Google Scholar] [CrossRef]
- Vitol, E.A.; Orynbayeva, Z.; Bouchard, M.J.; Azizkhan-Clifford, J.; Friedman, G.D.; Gogotsi, Y. In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes. ACS Nano 2009, 3, 3529–3536. [Google Scholar] [CrossRef] [PubMed]
- Scaffidi, J.; Gregas, M.K.; Seewaldt, V.L.; Vo-Dinh, T. SERS-based plasmonic nanobiosensing in single living cells. Anal. Bioanal. Chem. 2008, 393, 1135–1141. [Google Scholar] [CrossRef]
- Guo, J.; Rubfiaro, A.S.; Lai, Y.; Moscoso, J.; Chen, F.; Liu, Y.; Wang, X.; He, J. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Analyst 2020, 145, 4852–4859. [Google Scholar] [CrossRef] [PubMed]
- Kadam, U.S.; Schulz, B.; Irudayaraj, J.M.K. Multiplex single-cell quantification of rare RNA transcripts from protoplasts in a model plant system. Plant J. 2017, 90, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, S.P.; Kadam, U.S.; Thompson, D.K.; Irudayaraj, J. Intracellularly grown gold nanoislands as SERS substrates for monitoring chromate, sulfate and nitrate localization sites in remediating bacteria biofilms by Raman chemical imaging. Anal. Chim. Acta 2012, 745, 1–9. [Google Scholar] [CrossRef]
- Koya, A.N.; Zhu, X.; Ohannesian, N.; Yanik, A.A.; Alabastri, A.; Zaccaria, R.P.; Krahne, R.; Shih, W.; Garoli, D. Nanoporous metals: From plasmonic properties to applications in enhanced spectroscopy and photocatalysis. ACS Nano 2021, 15, 6038–6060. [Google Scholar] [CrossRef] [PubMed]
- Tognoni, E.; Baschieri, P.; Ascoli, C.; Pellegrini, M.; Pellegrino, M. Characterization of tip size and geometry of the pipettes used in scanning ion conductance microscopy. Micron 2016, 83, 11–18. [Google Scholar] [CrossRef]
- Brasiliense, V.; Park, J.; Zhu, C.; Van Duyne, R.P.; Schatz, G.C. Nanopipette-based electrochemical SERS platforms: Using electrodeposition to produce versatile and adaptable plasmonic substrates. J. Raman Spectrosc. 2020, 52, 339–347. [Google Scholar] [CrossRef]
- Ho, V.T.T.X.; Park, H.; An, S.; Kim, G.; Ly, N.H.; Lee, S.Y.; Choo, J.; Jung, H.S.; Joo, S. Coumarin–lipoic acid conjugates on silver nanoparticle-supported nanopipettes for in situ dual-mode monitoring of intracellular Cu(II) and potential chemodynamic therapy applications. Sens. Actuators B-Chem. 2021, 344, 130271. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, D.; Liu, G.; Li, S.; Feng, W.; Yang, G.; He, J.; Shan, Y. Highly sensitive detection of DNA damage in living cells by SERS and electrochemical measurements using a flexible gold nanoelectrode. Analyst 2021, 146, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhang, X.W.; Chen, Y.; Wan, L.; Huang, W.; Shen, A.; Hu, J. Portable SERS-enabled micropipettes for microarea sampling and reliably quantitative detection of surface organic residues. Anal. Chem. 2015, 87, 9217–9224. [Google Scholar] [CrossRef]
- Masson, J.; Breault-Turcot, J.; Faid, R.; Poirier-Richard, H.; Yockell-Lelièvre, H.; Lussier, F.; Spatz, J.P. Plasmonic nanopipette biosensor. Anal. Chem. 2014, 86, 8998–9005. [Google Scholar] [CrossRef]
- Eskandari, V.; Sahbafar, H.; Karooby, E.; Heris, M.H.; Mehmandoust, S.; Razmjoue, D.; Hadi, A. Surface-Enhanced Raman scattering (SERS) filter paper substrates decorated with silver nanoparticles for the detection of molecular vibrations of Acyclovir drug. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 298, 122762. [Google Scholar] [CrossRef] [PubMed]
- Bandarenka, H.; Artsemyeva, K.; Redko, S.; Panarin, A.Y.; Terekhov, S.N.; Bondarenko, V. Effect of swirl-like resistivity striations in n + -type Sb doped Si wafers on the properties of Ag/porous silicon SERS substrates. Phys. Status Solidi 2013, 10, 624–627. [Google Scholar] [CrossRef]
- Gromov, D.G.; Dubkov, S.V.; Savitskiy, A.; Shaman, Y.P.; Polokhin, A.A.; Belogorokhov, I.A.; Trifonov, A.Y. Optimization of nanostructures based on Au, Ag, Au Ag nanoparticles formed by thermal evaporation in vacuum for SERS applications. Appl. Surf. Sci. 2019, 489, 701–707. [Google Scholar] [CrossRef]
- Dubkov, S.V.; Savitskiy, A.; Trifonov, A.Y.; Yeritsyan, G.; Shaman, Y.P.; Kitsyuk, E.P.; Tarasov, A.; Shtyka, O.; Ciesielski, R.; Gromov, D.G. SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation. Opt. Mater. X 2020, 7, 100055. [Google Scholar] [CrossRef]
- Bulbul, G.; Chaves, G.; Joseph, O.; Özel, R.E.; Pourmand, N. Nanopipettes as monitoring probes for the single living cell: State of the art and future directions in molecular biology. Cells 2018, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Karooby, E.; Granpayeh, N. Potential applications of nanoshell bow-tie antennas for biological imaging and hyperthermia therapy. Opt. Eng. 2019, 58, 065102. [Google Scholar] [CrossRef]
- Clarke, R.; Novak, P.; Zhukov, A.A.; Tyler, E.; Cano-Jaimez, M.; Drews, A.; Richards, O.W.; Volynski, K.E.; Bishop, C.L.; Klenerman, D. Low stress ion conductance microscopy of Sub-Cellular stiffness. Soft Matter 2016, 12, 7953–7958. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, T.K. Fabrication of extremely fine glass micropipette electrodes. J. Phys. E Sci. Instrum. 1969, 2, 1087–1090. [Google Scholar] [CrossRef]
- Keast, V.J. Atmospheric corrosion of silver and silver nanoparticles. Corros. Mater. Degrad. 2022, 3, 221–234. [Google Scholar] [CrossRef]
- Rheinlaender, J.; Schäffer, T.E. Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope. Soft Matter 2013, 9, 3230. [Google Scholar] [CrossRef]
- Rheinlaender, J.; Schäffer, T.E. Mapping the creep compliance of living cells with scanning ion conductance microscopy reveals a subcellular correlation between stiffness and fluidity. Nanoscale 2019, 11, 6982–6989. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Stuart, C.M.; Mathies, R.A. Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy. ChemPhysChem 2008, 9, 697–699. [Google Scholar] [CrossRef] [PubMed]
- Rusciano, G.; Sasso, E.; Capaccio, A.; Zambrano, N.; Sasso, A. Revealing membrane alteration in cells overexpressing CA IX and EGFR by Surface-Enhanced Raman Scattering. Sci. Rep. 2019, 9, 1832. [Google Scholar] [CrossRef]
- Ben-Aryeh, Y. Analytical results for enhancement factor (EF) of surface enhanced Raman spectroscopy (SERS) for two metallic spheres and nano-shells. AIP Adv. 2023, 13, 035236. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the Noble Metals. Phys. Rev. 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials and the environment. Phys. Status Solidi 1992, 131, 625–638. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-Enhanced raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [PubMed]
- Overchenko, A.D.; Dubkov, S.V.; Novikov, D.V.; Kolmogorov, V.S.; Volkova, L.S.; Grishin, T.S.; Edelbekova, P.A. Fabrication of SERS-sensitive nanopipette with silver nanoparticles obtained by vacuum thermal evaporation. St. Petersburg Polytech. Univ. J.-Phys. Math. 2022, 15, 119–124. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, W.; Fu, Q.; Wu, M.; Shayan, K.; Wong, K.M.; Singh, S.; Schober, A.; Schaaf, P.; Lei, Y. Surface-Enhanced Raman Scattering (SERS) Substrate Based on Large-Area Well-Defined Gold Nanoparticle Arrays with High SERS Uniformity and Stability. ChemPlusChem 2014, 79, 1622–1630. [Google Scholar] [CrossRef]
- Babapour, A.; Akhavan, O.; Azimirad, R.; Moshfegh, A.Z. Physical characteristics of heat-treated nano-silvers dispersed in sol–gel silica matrix. Nanotechnology 2006, 17, 763–771. [Google Scholar] [CrossRef]
- Israelsen, N.D.; Hanson, C.; Vargis, E. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced RAMAN Scattering Enhancement Factor: An Introduction. Sci. World J. 2015, 2015, 124582. [Google Scholar] [CrossRef] [PubMed]
- Redko, S.; Dolgiy, A.L.; Zhigulin, D.; Kholyavo, V.; Khinevich, N.; Zavatski, S.; Bandarenka, H. Fabrication and simulation of silver nanostructures on different types of porous silicon for surface enhanced Raman spectroscopy. SPIE Proc. 2019, 10912, 271–280. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Ringe, E.; Ma, L.; Zhai, X.; Wang, L.; Zhang, Z. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Nanoscale 2018, 10, 4267–4275. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Cui, J.; Chen, X. A morpholinium surfactant crystallization induced formation of Au nanoparticle sheet-like assemblies with uniform SERS activity. Colloids Surf. A Physicochem. Eng. Asp. 2014, 456, 100–107. [Google Scholar] [CrossRef]
- Zavatski, S.; Popov, A.I.; Chemenev, A.; Dauletbekova, A.; Bandarenka, H. Wet chemical synthesis and characterization of AU coatings on meso- and macroporous SI for molecular analysis by SERS Spectroscopy. Crystals 2022, 12, 1656. [Google Scholar] [CrossRef]
- Zhong, F.; Wu, Z.; Guo, J.; Jia, D. Porous Silicon Photonic Crystals Coated with Ag Nanoparticles as Efficient Substrates for Detecting Trace Explosives Using SERS. Nanomaterials 2018, 8, 872. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G. Raman spectroscopy in cell biology and microbiology. J. Raman Spectrosc. 2021, 52, 2348–2443. [Google Scholar] [CrossRef]
- Bulat, K.; Dybas, J.; Kaczmarska, M.; Rygula, A.; Jasztal, A.; Szczesny-Malysiak, E.; Baranska, M.; Wood, B.R.; Marzec, K.M. Multimodal detection and analysis of a new type of advanced Heinz body-like aggregate (AHBA) and cytoskeleton deformation in human RBCs. Analyst 2020, 145, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Tang, M.; Li, Q.; Zhou, A. Non-invasive detection of biomechanical and biochemical responses of human lung cells to short time chemotherapy exposure using AFM and confocal Raman spectroscopy. Anal. Methods 2013, 5, 874. [Google Scholar] [CrossRef]
- Lin, J.; Xu, H.; Wu, Y.; Tang, M.; McEwen, G.D.; Pin, L.; Hansen, D.R.; Gilbertson, T.A.; Zhou, A. Investigation of free fatty acid associated recombinant membrane receptor protein expression in HEK293 cells using RAMAN spectroscopy, calcium imaging, and atomic force microscopy. Anal. Chem. 2013, 85, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Moor, K.; Terada, Y.; Taketani, A.; Matsuyoshi, H.; Ohtani, K.; Sato, H. Early detection of virus infection in live human cells using Raman spectroscopy. J. Biomed. Opt. 2018, 23, 097001. [Google Scholar] [CrossRef] [PubMed]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Xiao, L.; Liu, Y.; Gilbertson, T.A.; Zhou, A. Use of Surface-Enhanced Raman scattering (SERS) probes to detect fatty acid receptor activity in a microfluidic device. Sensors 2019, 19, 1663. [Google Scholar] [CrossRef]
- Kenđel, A.; Zavidić, V.; Miljanić, S. Hoechst 33258 aggregation and binding to DNA studied by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2022, 53, 880–889. [Google Scholar] [CrossRef]
- Bucevičius, J.; Lukinavičius, G.; Gerasimaitė, R. The Use of Hoechst Dyes for DNA Staining and beyond. Chemosensors 2018, 6, 18. [Google Scholar] [CrossRef]
Weight of Ag, mg | Rotation Speed, rps | Diameter of Particles, nm | D, nm2 | σ, nm | Particles Spacing, nm | D, nm2 | σ, nm |
---|---|---|---|---|---|---|---|
3 | 14 | 8 | 2.4 | 1.5 | 6 | 4.2 | 2 |
15 | 18 | 33.5 | 5.8 | 9 | 4.6 | 2.2 | |
30 | 36 | 47.8 | 6.9 | 12 | 15 | 3.9 | |
30 | 4 | 42 | 123.3 | 11.1 | 24 | 57.7 | 7.6 |
14 | 36 | 47.8 | 6.9 | 12 | 15 | 3.9 | |
28 | 45 | 86.3 | 9.3 | 20 | 78.9 | 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubkov, S.; Overchenko, A.; Novikov, D.; Kolmogorov, V.; Volkova, L.; Gorelkin, P.; Erofeev, A.; Parkhomenko, Y. Single-Cell Analysis with Silver-Coated Pipette by Combined SERS and SICM. Cells 2023, 12, 2521. https://doi.org/10.3390/cells12212521
Dubkov S, Overchenko A, Novikov D, Kolmogorov V, Volkova L, Gorelkin P, Erofeev A, Parkhomenko Y. Single-Cell Analysis with Silver-Coated Pipette by Combined SERS and SICM. Cells. 2023; 12(21):2521. https://doi.org/10.3390/cells12212521
Chicago/Turabian StyleDubkov, Sergey, Aleksei Overchenko, Denis Novikov, Vasilii Kolmogorov, Lidiya Volkova, Petr Gorelkin, Alexander Erofeev, and Yuri Parkhomenko. 2023. "Single-Cell Analysis with Silver-Coated Pipette by Combined SERS and SICM" Cells 12, no. 21: 2521. https://doi.org/10.3390/cells12212521