Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Media
2.2. Nomenclature
2.3. Animals
2.4. Production of Conditional Knockouts
2.5. Genotyping
2.6. GV Oocytes and 1-Cell Stage Embryos
2.7. Glycine Transport Measurements
2.8. Data Analysis
3. Results
3.1. Oocyte-Specific Glyt1 Deletion
3.2. Fertility of Gdf9-iCre:Glyt1fl/fl Females
3.3. Attempts to Delete GLYT1 Activity from Cumulus Cells
3.4. Transport of Glycine from Cumulus Cells into Oocytes
3.5. Effect of Increased Osmolarity on Embryos from Oocytes of Gdf9-iCre:Glyt1fl/fl Females
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tscherner, A.K.; Macaulay, A.D.; Ortman, C.S.; Baltz, J.M. Initiation of cell volume regulation and unique cell volume regulatory mechanisms in mammalian oocytes and embryos. J. Cell. Physiol. 2021, 236, 7117–7133. [Google Scholar] [CrossRef]
- Hadi, T.; Hammer, M.A.; Algire, C.; Richards, T.; Baltz, J.M. Similar effects of osmolarity, glucose, and phosphate on cleavage past the 2-cell stage in mouse embryos from outbred and F1 hybrid females. Biol. Reprod. 2005, 72, 179–187. [Google Scholar] [CrossRef]
- Van Winkle, L.J. Perspective: One-Cell and Cleavage-Stage Mouse Embryos Thrive in Hyperosmotic Oviductal Fluid Through Expression of a Glycine Neurotransmitter Transporter and a Glycine-Gated Chloride Channel: Clinical and Transgenerational Implications. Front. Physiol. 2020, 11, 613840. [Google Scholar] [CrossRef]
- Wang, F.; Kooistra, M.; Lee, M.; Liu, L.; Baltz, J.M. Mouse embryos stressed by physiological levels of osmolarity become arrested in the late 2-cell stage before entry into M phase. Biol. Reprod. 2011, 85, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.K.; Lambert, I.H.; Pedersen, S.F. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 2009, 89, 193–277. [Google Scholar] [CrossRef] [PubMed]
- Lawitts, J.A.; Biggers, J.D. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol. Reprod. Dev. 1992, 31, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Van Winkle, L.J.; Haghighat, N.; Campione, A.L. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 1990, 253, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Baltz, J.M. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am. J. Physiol. 1996, 271, C1512–C1520. [Google Scholar] [CrossRef]
- Zhao, Y.; Chauvet, P.J.; Alper, S.L.; Baltz, J.M. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J. Biol. Chem. 1995, 270, 24428–24434. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, C.; Meredith, M.; Baltz, J.M. Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos. Biol. Reprod. 2017, 96, 542–550. [Google Scholar] [CrossRef]
- Zhou, C.; Baltz, J.M. JAK2 mediates the acute response to decreased cell volume in mouse preimplantation embryos by activating NHE1. J. Cell. Physiol. 2013, 228, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: Evolution of osmolyte systems. Science 1982, 217, 1214–1222. [Google Scholar] [CrossRef]
- Kwon, H.M.; Handler, J.S. Cell volume regulated transporters of compatible osmolytes. Curr. Opin. Cell Biol. 1995, 7, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Dawson, K.M.; Baltz, J.M. Organic osmolytes and embryos: Substrates of the Gly and beta transport systems protect mouse zygotes against the effects of raised osmolarity. Biol. Reprod. 1997, 56, 1550–1558. [Google Scholar] [CrossRef]
- Dawson, K.M.; Collins, J.L.; Baltz, J.M. Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol. Reprod. 1998, 59, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Van Winkle, L.J.; Haghighat, N.; Campione, A.L.; Gorman, J.M. Glycine transport in mouse eggs and preimplantation conceptuses. Biochim. Biophys. Acta 1988, 941, 241–256. [Google Scholar] [CrossRef]
- Guastella, J.; Brecha, N.; Weigmann, C.; Lester, H.A.; Davidson, N. Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc. Natl. Acad. Sci. USA 1992, 89, 7189–7193. [Google Scholar] [CrossRef]
- Tartia, A.P.; Rudraraju, N.; Richards, T.; Hammer, M.A.; Talbot, P.; Baltz, J.M. Cell volume regulation is initiated in mouse oocytes after ovulation. Development 2009, 136, 2247–2254. [Google Scholar] [CrossRef]
- Richard, S.; Baltz, J.M. Preovulatory suppression of mouse oocyte cell volume-regulatory mechanisms is via signalling that is distinct from meiotic arrest. Sci. Rep. 2017, 7, 702. [Google Scholar] [CrossRef]
- Richard, S.; Tartia, A.P.; Boison, D.; Baltz, J.M. Mouse oocytes acquire mechanisms that permit independent cell volume regulation at the end of oogenesis. J. Cell. Physiol. 2017, 232, 2436–2446. [Google Scholar] [CrossRef]
- Li, L.; Zhu, S.; Shu, W.; Guo, Y.; Guan, Y.; Zeng, J.; Wang, H.; Han, L.; Zhang, J.; Liu, X.; et al. Characterization of Metabolic Patterns in Mouse Oocytes during Meiotic Maturation. Mol. Cell 2020, 80, 525–540.e529. [Google Scholar] [CrossRef]
- Hammer, M.A.; Kolajova, M.; Leveille, M.; Claman, P.; Baltz, J.M. Glycine transport by single human and mouse embryos. Hum. Reprod. 2000, 15, 419–426. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Steeves, C.L.; Hammer, M.A.; Walker, G.B.; Rae, D.; Stewart, N.A.; Baltz, J.M. The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos. Proc. Natl. Acad. Sci. USA 2003, 100, 13982–13987. [Google Scholar] [CrossRef] [PubMed]
- Lawitts, J.A.; Biggers, J.D. Culture of preimplantation embryos. Methods Enzym. 1993, 225, 153–164. [Google Scholar]
- Yee, B.K.; Balic, E.; Singer, P.; Schwerdel, C.; Grampp, T.; Gabernet, L.; Knuesel, I.; Benke, D.; Feldon, J.; Mohler, H.; et al. Disruption of Glycine Transporter 1 Restricted to Forebrain Neurons Is Associated with a Procognitive and Antipsychotic Phenotypic Profile. J. Neurosci. 2006, 26, 3169–3181. [Google Scholar] [CrossRef] [PubMed]
- Gabernet, L.; Pauly-Evers, M.; Schwerdel, C.; Lentz, M.; Bluethmann, H.; Vogt, K.; Alberati, D.; Mohler, H.; Boison, D. Enhancement of the NMDA receptor function by reduction of glycine transporter-1 expression. Neurosci. Lett. 2005, 373, 79–84. [Google Scholar] [CrossRef]
- Lan, Z.-J.; Xu, X.; Cooney, A.J. Differential Oocyte-Specific Expression of Cre Recombinase Activity in GDF-9-iCre, Zp3cre, and Msx2Cre Transgenic Mice1. Biol. Reprod. 2004, 71, 1469–1474. [Google Scholar] [CrossRef]
- St-Jean, G.; Tsoi, M.; Abedini, A.; Levasseur, A.; Rico, C.; Morin, M.; Djordjevic, B.; Miinalainen, I.; Kaarteenaho, R.; Paquet, M.; et al. Lats1 and Lats2 are required for the maintenance of multipotency in the Müllerian duct mesenchyme. Development 2019, 146, dev180430. [Google Scholar] [CrossRef]
- Jorgez, C.J.; Klysik, M.; Jamin, S.P.; Behringer, R.R.; Matzuk, M.M. Granulosa cell-specific inactivation of follistatin causes female fertility defects. Mol. Endocrinol. 2004, 18, 953–967. [Google Scholar] [CrossRef]
- Arango, N.A.; Kobayashi, A.; Wang, Y.; Jamin, S.P.; Lee, H.-H.; Orvis, G.D.; Behringer, R.R. A mesenchymal perspective of müllerian duct differentiation and regression in Amhr2-lacZ mice. Mol. Reprod. Dev. 2008, 75, 1154–1162. [Google Scholar] [CrossRef]
- Lapointe, E.; Boyer, A.; Rico, C.; Paquet, M.; Franco, H.L.; Gossen, J.; DeMayo, F.J.; Richards, J.S.; Boerboom, D. FZD1 regulates cumulus expansion genes and is required for normal female fertility in mice. Biol. Reprod. 2012, 87, 104. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.Y.; Shimada, M.; Liu, Z.; Cahill, N.; Noma, N.; Wu, Y.; Gossen, J.; Richards, J.S. Selective expression of KrasG12D in granulosa cells of the mouse ovary causes defects in follicle development and ovulation. Development 2008, 135, 2127–2137. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Liu, K.; Kikuchi, K. Oocyte-Specific Knockout: A Novel In Vivo Approach for Studying Gene Functions During Folliculogenesis, Oocyte Maturation, Fertilization, and Embryogenesis. Biol. Reprod. 2008, 79, 1014–1020. [Google Scholar] [CrossRef]
- Baltz, J.M.; Corbett, H.E.; Richard, S. Measuring transport and accumulation of radiolabeled substrates in oocytes and embryos. Methods Mol. Biol. 2013, 957, 163–178. [Google Scholar] [PubMed]
- Haghighat, N.; Van Winkle, L.J. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J. Exp. Zool. 1990, 253, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Steeves, C.L.; Baltz, J.M. Regulation of intracellular glycine as an organic osmolyte in early preimplantation mouse embryos. J. Cell. Physiol. 2005, 204, 273–279. [Google Scholar] [CrossRef]
- McClatchie, T.; Meredith, M.; Ouédraogo, M.O.; Slow, S.; Lever, M.; Mann, M.R.W.; Zeisel, S.H.; Trasler, J.M.; Baltz, J.M. Betaine is accumulated via transient choline dehydrogenase activation during mouse oocyte meiotic maturation. J. Biol. Chem. 2017, 292, 13784–13794. [Google Scholar] [CrossRef]
- Anas, M.K.; Hammer, M.A.; Lever, M.; Stanton, J.A.; Baltz, J.M. The organic osmolytes betaine and proline are transported by a shared system in early preimplantation mouse embryos. J. Cell. Physiol. 2007, 210, 266–277. [Google Scholar] [CrossRef]
- Anas, M.K.; Lee, M.B.; Zhou, C.; Hammer, M.A.; Slow, S.; Karmouch, J.; Liu, X.J.; Broer, S.; Lever, M.; Baltz, J.M. SIT1 is a betaine/proline transporter that is activated in mouse eggs after fertilization and functions until the 2-cell stage. Development 2008, 135, 4123–4130. [Google Scholar] [CrossRef]
- Suzuki, O.; Asano, T.; Yamamoto, Y.; Takano, K.; Koura, M. Development in vitro of preimplantation embryos from 55 mouse strains. Reprod. Fertil. Dev. 1996, 8, 975–980. [Google Scholar] [CrossRef]
- Biggers, J.D. Reflections on the culture of the preimplantation embryo. Int. J. Dev. Biol. 1998, 42, 879–884. [Google Scholar] [PubMed]
- Collins, J.L.; Baltz, J.M. Estimates of mouse oviductal fluid tonicity based on osmotic responses of embryos. Biol. Reprod. 1999, 60, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Fiorenza, M.T.; Bevilacqua, A.; Canterini, S.; Torcia, S.; Pontecorvi, M.; Mangia, F. Early transcriptional activation of the hsp70.1 gene by osmotic stress in one-cell embryos of the mouse. Biol. Reprod. 2004, 70, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Pogorelova, M.A.; Golichenkov, V.A.; Pogorelova, V.N.; Kornienko, E.V.; Panait, A.I.; Pogorelov, A.G. Estimation of isotonic point of incubation medium for two-cell mouse embryo. Bull. Exp. Biol. Med. 2011, 152, 142–145. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tscherner, A.K.; McClatchie, T.; Kaboba, G.; Boison, D.; Baltz, J.M. Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress. Cells 2023, 12, 2500. https://doi.org/10.3390/cells12202500
Tscherner AK, McClatchie T, Kaboba G, Boison D, Baltz JM. Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress. Cells. 2023; 12(20):2500. https://doi.org/10.3390/cells12202500
Chicago/Turabian StyleTscherner, Allison K., Taylor McClatchie, Gracia Kaboba, Detlev Boison, and Jay M. Baltz. 2023. "Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress" Cells 12, no. 20: 2500. https://doi.org/10.3390/cells12202500
APA StyleTscherner, A. K., McClatchie, T., Kaboba, G., Boison, D., & Baltz, J. M. (2023). Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress. Cells, 12(20), 2500. https://doi.org/10.3390/cells12202500