Expression of Interferon Regulatory Factor 8 (IRF8) and Its Association with Infections in Dialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Flow Cytometry Analysis
2.3. Statistical Analysis
3. Results
3.1. Disturbed Numbers of Immune Cells in Patients with KFRT in Comparison to Healthy Individuals
3.2. Alterations in IRF8 Expression in Cells of Innate Immune System in Patients with KFRT
3.3. Patients Characteristics of Dialysis Patients and Healthy Controls
3.4. Decrease of IRF8 Expression in pDC Was Associated with Higher Rates of Infections Requiring Hospitalization upon One-Year Follow-Up
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant. 2018, 33 (Suppl. S3), iii28–iii34. [Google Scholar] [CrossRef] [PubMed]
- Powe, N.R.; Jaar, B.; Furth, S.L.; Hermann, J.; Briggs, W. Septicemia in dialysis patients: Incidence, risk factors, and prognosis. Kidney Int. 1999, 55, 1081–1090. [Google Scholar] [CrossRef] [Green Version]
- Cohen, G. Immune Dysfunction in Uremia 2020. Toxins 2020, 12, 439. [Google Scholar] [CrossRef]
- Kato, S.; Chmielewski, M.; Honda, H.; Pecoits-Filho, R.; Matsuo, S.; Yuzawa, Y.; Tranaeus, A.; Stenvinkel, P.; Lindholm, B. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1526–1533. [Google Scholar] [CrossRef] [Green Version]
- Borisov, B.K.; Todorieva, D.K. Changes in innate immunity in patients with chronic kidney disease. Curr. Trends Immunol. 2021, 22, 35–41. [Google Scholar]
- Espi, M.; Koppe, L.; Fouque, D.; Thaunat, O. Chronic Kidney Disease-Associated Immune Dysfunctions: Impact of Protein-Bound Uremic Retention Solutes on Immune Cells. Toxins 2020, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Angeletti, A.; Zappulo, F.; Donadei, C.; Cappuccilli, M.; Di Certo, G.; Conte, D.; Comai, G.; Donati, G.; La Manna, G. Immunological Effects of a Single Hemodialysis Treatment. Medicina 2020, 56, 71. [Google Scholar] [CrossRef] [Green Version]
- Hof, A.; Geißen, S.; Singgih, K.; Mollenhauer, M.; Winkels, H.; Benzing, T.; Baldus, S.; Hoyer, F.F. Myeloid leukocytes’ diverse effects on cardiovascular and systemic inflammation in chronic kidney disease. Basic Res. Cardiol. 2022, 117, 38. [Google Scholar]
- Kim, J.U.; Kim, M.; Kim, S.; Nguyen, T.T.; Kim, E.; Lee, S.; Kim, S.; Kim, H. Dendritic Cell Dysfunction in Patients with End-stage Renal Disease. Immune Netw. 2017, 17, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Hauser, A.B.; Stinghen, A.E.M.; Kato, S.; Bucharles, S.; Aita, C.; Yuzawa, Y.; Pecoits-Filho, R. Characteristics and causes of immune dysfunction related to uremia and dialysis. Perit. Dial. Int. 2008, 28 (Suppl. S3), S183–S187. [Google Scholar] [CrossRef]
- Cohen, G.; Hörl, W.H. Immune dysfunction in uremia—An update. Toxins 2012, 4, 962–990. [Google Scholar] [CrossRef] [Green Version]
- Salem, S.; Salem, D.; Gros, P. Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases. Hum. Genet. 2020, 139, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Bovolenta, C.; Driggers, P.H.; Marks, M.S.; Medin, J.A.; Politis, A.D.; Vogel, S.N.; Levy, D.E.; Sakaguchi, K.; Appella, E.; Coligan, J.E. Molecular interactions between interferon consensus sequence binding protein and members of the interferon regulatory factor family. Proc. Natl. Acad. Sci. USA 1994, 91, 5046–5050. [Google Scholar] [CrossRef]
- Tamura, T.; Nagamura-Inoue, T.; Shmeltzer, Z.; Kuwata, T.; Ozato, K. ICSBP directs bipotential myeloid progenitor cells to diferentiate into mature macrophages. Immunity 2000, 13, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, S.; Gros, P. Genetic determinants of susceptibility to mycobacterial infections: IRF8, a new kid on the block. Adv. Exp. Med. Biol. 2013, 783, 45–80. [Google Scholar] [PubMed]
- Tamura, T.; Kurotaki, D.; Koizumi, S.-I. Regulation of myelopoiesis by the transcription factor IRF8. Int. J. Hematol. 2015, 101, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, K.; Gauthier, S.; Mitsos, L.-M.; Shustik, C.; Copeland, N.G.; Jenkins, N.A.; Fournet, J.-C.; Jolicoeur, P.; Gros, P. Genetic control of myeloproliferation in BXH-2 mice. Blood 2004, 103, 2343–2350. [Google Scholar] [CrossRef]
- Campo, S.; Lacquaniti, A.; Trombetta, D.; Smeriglio, A.; Monardo, P. Immune System Dysfunction and Inflammation in Hemodialysis Patients: Two Sides of the Same Coin. J. Clin. Med. 2022, 11, 3759. [Google Scholar] [CrossRef]
- Verkade, M.A.; Van De Wetering, J.; Klepper, M.; Vaessen, L.M.; Weimar, W.; Betjes, M.G. Peripheral blood dendritic cells and GM-CSF as an adjuvant for hepatitis B vaccination in hemodialysis patients. Kidney Int. 2004, 66, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.H.; Kireta, S.; Leedham, E.; Russ, G.R.; Coates, P.T. Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients. Kidney Int. 2007, 72, 1138–1148. [Google Scholar] [CrossRef]
- Agrawal, S.; Gollapudi, P.; Elahimehr, R.; Pahl, M.V.; Vaziri, N.D. Effects of end-stage renal disease and haemodialysis on dendritic cell subsets and basal and LPS-stimulated cytokine production. Nephrol. Dial. Transplant. 2010, 25, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Merad, M.; Manz, M.G. Dendritic cell homeostasis. Blood 2009, 113, 3418–3427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.; Wen, Y.; Zhiliang, L.; Lingling, C.; Longxing, C.; Ming, W.; Qiang, F. A decrease in the percentage of circulating mDC precursors in patients with coronary heart disease: A relation to the severity and extent of coronary artery lesions? Heart Vessel. 2013, 28, 135–142. [Google Scholar] [CrossRef]
- Carmona, A.; Agüera, M.L.; Luna-Ruiz, C.; Buendía, P.; Calleros, L.; García-Jerez, A.; Rodríguez-Puyol, M.; Arias, M.; Arias-Guillen, M.; de Arriba, G.; et al. Markers of endothelial damage in patients with chronic kidney disease on hemodialysis. Am. J. Physiol. Ren. Physiol. 2017, 312, F673–F681. [Google Scholar] [CrossRef] [Green Version]
- Bonan, N.B.; Schepers, E.; Pecoits-Filho, R.; Dhondt, A.; Pletinck, A.; De Somer, F.; Vanholder, R.; Van Biesen, W.; Moreno-Amaral, A.; Glorieux, G. Contribution of the uremic milieu to an increased pro-inflammatory monocytic phenotype in chronic kidney disease. Sci. Rep. 2019, 9, 10236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naicker, S.D.; Cormican, S.; Griffin, T.P.; Maretto, S.; Martin, W.P.; Ferguson, J.P.; Cotter, D.; Connaughton, E.P.; Dennedy, M.C.; Griffin, M.D. Chronic kidney disease severity is associated with selective expansion of a distinctive intermediate monocyte subpopulation. Front. Immunol. 2018, 9, 2845. [Google Scholar] [CrossRef] [Green Version]
- Grabulosa, C.C.; Manfredi, S.R.; Canziani, M.E.; Quinto, B.M.; Barbosa, R.B.; Rebello, J.F.; Batista, M.C.; Cendoroglo, M.; Dalboni, M.A. Chronic kidney disease induces inflammation by increasing toll-like receptor-4, cytokine and cathelicidin expression in neutrophils and monocytes. Exp. Cell Res. 2018, 365, 157–162. [Google Scholar] [CrossRef]
- Reddan, D.N.; Klassen, P.S.; Szczech, L.A.; Coladonato, J.A.; O’Shea, S.; Owen, W.F.; Lowrie, E.G. White blood cells as a novel mortality predictor in haemodialysis patients. Nephrol. Dial. Transplant. 2003, 18, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Pahl, M.V.; Gollapudi, S.; Sepassi, L.; Gollapudi, P.; Elahimehr, R.; Vaziri, N.D. Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression. Nephrol. Dial. Transplant. 2010, 25, 205–212. [Google Scholar] [CrossRef]
- Nagai, K. Dysfunction of natural killer cells in end-stage kidney disease on hemodialysis. Ren. Replace Ther. 2021, 7, 8. [Google Scholar] [CrossRef]
- Verkade, M.A.; van Druningen, C.J.; de Hoek, C.T.O.; Weimar, W.; Betjes, M.G.H. Decreased antigen-specific T-cell proliferation by moDC among hepatitis B vaccine non-responders on haemodialysis. Clin. Exp. Med. 2007, 7, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gascón, A.; Orfao, A.; Lerma, J.; Ciudad, J.; López, A.; Hernández, M.D.; Tabernero, J. Antigen phenotype and cytotoxic activity of natural killer cells in hemodialysis patients. Am. J. Kidney Dis. 1996, 27, 373–379. [Google Scholar] [CrossRef]
- Griveas, I.; Visvardis, G.; Fleva, A.; Papadopoulou, D.; Mitsopoulos, E.; Kyriklidou, P.; Manou, E.; Ginikopoulou, E.; Meimaridou, D.; Paulitou, A.; et al. Comparative analysis of immunophenotypic abnormalities in cellular immunity of uremic patients undergoing either hemodialysis or continuous ambulatory peritoneal dialysis. Ren. Fail. 2005, 27, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Vacher-Coponat, H.; Brunet, C.; Lyonnet, L.; Bonnet, E.; Loundou, A.; Sampol, J.; Moal, V.; Dussol, B.; Brunet, P.; Berland, Y.; et al. Natural killer cell alterations correlate with loss of renal function and dialysis duration in uraemic patients. Nephrol. Dial. Transplant. 2008, 23, 1406–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peraldi, M.-N.; Berrou, J.; Dulphy, N.; Seidowsky, A.; Haas, P.; Boissel, N.; Metivier, F.; Randoux, C.; Kossari, N.; Guérin, A.; et al. Oxidative stress mediates a reduced expression of the activating receptor NKG2D in NK cells from end-stage renal disease patients. J. Immunol. 2009, 182, 1696–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisowska, K.A.; Pindel, M.; Pietruczuk, K.; Kuźmiuk-Glembin, I.; Storoniak, H.; Dębska-Ślizień, A.; Witkowski, J.M. The influence of a single hemodialysis procedure on human T lymphocytes. Sci. Rep. 2019, 9, 5041. [Google Scholar] [CrossRef] [Green Version]
- Litjens, N.H.; de Wit, E.A.; Betjes, M.G. Differential effects of age, cytomegalovirus-seropositivity and end-stage renal disease (ESRD) on circulating T lymphocyte subsets. Immun. Ageing 2011, 8, 2. [Google Scholar] [CrossRef]
- Ando, M.; Shibuya, A.; Yasuda, M.; Azuma, N.; Tsuchiya, K.; Akiba, T.; Nitta, K. Impairment of innate cellular response to in vitro stimuli in patients on continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant. 2005, 20, 2497–2503. [Google Scholar] [CrossRef] [Green Version]
- Anding, K.; Gross, P.; Rost, J.M.; Allgaier, D.; Jacobs, E. The influence of uraemia and haemodialysis on neutrophil phagocytosis and antimicrobial killing. Nephrol. Dial. Transplant. 2003, 18, 2067–2073. [Google Scholar] [CrossRef] [Green Version]
- Langlais, D.; Barreiro, L.B.; Gros, P. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. J. Exp. Med. 2016, 213, 585–603. [Google Scholar] [CrossRef]
- Hu, X.; Ivashkiv, L.B. Cross-regulation of signaling pathways by interferon-γ: Implications for immune responses and autoimmune diseases. Immunity 2009, 31, 539–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molony, R.D.; Nguyen, J.T.; Kong, Y.; Montgomery, R.R.; Shaw, A.C.; Iwasaki, A. Aging impairs both primary and secondary RIG-I signaling for interferon induction in human monocytes. Sci. Signal. 2017, 10, eaan2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blais, A.; Dynlacht, B.D. Constructing transcriptional regulatory networks. Genes Dev. 2005, 19, 1499–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, Y.; Huang, Y.; Yang, K.; Xiao, T.; Xiong, J.; Wang, K.; Liu, C.; He, T.; Yu, Y.; et al. IRF-1 promotes fibrosis by downregulation of Klotho. FASEB J. 2020, 34, 4415–4429. [Google Scholar] [CrossRef]
- Lorenz, G.; Moschovaki-Filippidou, F.; Würf, V.; Metzger, P.; Steiger, S.; Batz, F.; Carbajo-Lozoya, J.; Koziel, J.; Schnurr, M.; Cohen, C.D.; et al. INF regulatory factor 4 controls post-ischemic inflammation and prevents chronic kidney disease. Front. Immunol. 2019, 10, 2162. [Google Scholar] [CrossRef] [Green Version]
Demographic characteristics | |
Age, median (range) | 56 (26–86) |
Number of women, n (%) | 35 (44) |
Previous renal transplant, n (%) | 15 (19) |
Dialysis vintage (days), median (range) | 642 (5–5476) |
Peritoneal dialysis patients, n (%) | 11 (14) |
Laboratory parameters | |
Creatinine (mg/dL, 65/79), mean (range) | 7.4 (2.3–15.2) |
Urea nitrogen (mg/dL, 62/79), mean (range) | 52.4 (8.3–106.7) |
Parathyroid hormone (pg/mL, 42/79), mean (range) | 372 (2.8–1100) |
Vitamin D3 (ng/L, 28/79), mean (range) | 29.1 (10.6–58.6) |
Serum albumin (g/dL,50/79), mean (range) | 3.6 (1.1–5.2) |
Total serum protein (g/dL, 56/79), mean (range) | 6.1 (4.4–7.8) |
Hemoglobin (g/dL, 50/79), mean (range) | 10.2 (6.3–14.1) |
C-reactive protein (mg/dL, 47/79), mean (range) | 3.2 (0.4–13.7) |
Leukocytes (/nL, 60/79), mean (range) | 7.2 (1.9–25.8) |
Causes of renal failure | |
Diabetic glomerulosclerosis, n (%) | 16 (20) |
Chronic glomerulonephritis, n (%) | 14 (18) |
Nephrosclerosis, n (%) | 8 (10) |
Polycystic kidney disease, n (%) | 5 (6) |
Tubulointerstitial nephritis, n (%) | 4 (5) |
Congenital anomalies, n (%) | 6 (8) |
Autoimmune disease, n (%) | 3 (4) |
Reflux nephropathy/recurrent pyelonephritis, n (%) | 2 (3) |
Other, n (%) | 21 (27) |
Previous infections | |
Infections requiring hospitalization, n (%) | 29 (37) |
Sepsis, n (%) | 19 (24) |
Pneumonia, n (%) | 19 (24) |
Pyelonephritis, n (%) | 5 (6) |
Infections within one year after analysis (75 patients) | |
Infections requiring hospitalization, n (%) | 20 (27) |
Sepsis, n (%) | 15 (20) |
Pneumonia, n (%) | 8 (11) |
Pyelonephritis, n (%) | 4 (5) |
Variable | Infection Requiring Hospitalization Median (IQR) or n (%) | No Infection or Infection Not Requiring Hospitalization Median (IQR) or n (%) | χ2 Square | OR | p Value | Multivariate Relative Risk (95% CI) | p Value |
---|---|---|---|---|---|---|---|
Patients | 20 | 55 | NA | ||||
mDC1 | 30.0 (14–53) | 26.2 (13.9–46.2) | 0.95 | ||||
mDC2 | 21.4 (15.5–60.4) | 38.9 (18.1–57.5) | 0.60 | ||||
pDC | 0.7 (0.5–1.8) | 0.6 (0.3–0.8) | 0.02 | 1.05 (0.88–1.26) | 0.58 | ||
NK cells | 0.5 (0.3–0.7) | 0.5 (0.3–0.9) | 0.48 | ||||
Classical monocytes | 4.1 (2.9–27.1) | 12.5 (3.5–32.3) | 0.39 | ||||
Intermediate monocytes | 1.1 (0.6–1.6) | 1.0 (0.6–1.5) | 0.86 | ||||
Non-classical monocytes | 9.0 (5.4–14) | 8.8 (6.5–11.8) | 0.78 | ||||
CD4+ cells | 47.8 (32–64.6) | 49.1 (36.6–61.0) | 0.93 | ||||
CD8+ cells | 21.2 (13.9–40.6) | 20.4 (14–31.0) | 0.83 | ||||
CD19+ cells | 2.5 (0.8–4.2) | 2.6 (1.3–4.7) | 0.80 | ||||
% IRF8 positive mDC1 | 1.1 (0.5–1.4) | 1.1 (0.5–1.9) | 0.61 | ||||
gMFI of IRF8 in mDC1 | 985 (713–1402) | 1033 (838–1417) | 0.46 | ||||
% IRF8 positive mDC2 | 4.9 (1.3–13.5) | 6.3 (1.6–25.5) | 0.64 | ||||
gMFI of IRF8 in mDC2 | 524 (405–654) | 540 (417–738) | 0.63 | ||||
% IRF8 positive pDC | 71.0 (11.9–81.2) | 75.6 (51.4–88.2) | 0.12 | ||||
gMFI of IRF8 in pDC | 5862 (1216–8942) | 7421 (4055–12,223) | 0.04 | 1 (1.0–1.0) | 0.34 | ||
% IRF8 positive class. monocytes | 15 (3.7–27.3) | 15.8 (6.0–34.8) | 0.35 | ||||
gMFI of IRF8 in class. monocytes | 1070 (768–1230) | 1046 (855–1317) | 0.41 | ||||
% IRF8 positive interm. monocytes | 71.1 (22.5–87.2) | 76.2 (51.4–87.8) | 0.48 | ||||
gMFI of IRF8 in interm. monocytes | 1662 (855–2020) | 1640 (1288–2026) | 0.50 | ||||
% IRF8 positive non-class. monocytes | 79.1 (32.1–94.5) | 90.5 (59.7–95.3) | 0.27 | ||||
gMFI of IRF8 in non-class. monocytes | 1458 (897–1884) | 1618 (1179–1926) | 0.31 | ||||
Age (years) | 59 (46–69) | 54 (44–63) | 0.34 | ||||
Female gender | 10 (50%) | 23 (46%) | 0.40 | 1.39 | 0.53 | ||
Previous renal transplants | 7 (35%) | 8 (22%) | 3.84 | 3.16 | 0.05 | 7.78 (2.02–30.0) | 0.003 |
Dialysis vintage (days) | 553 (46–1541) | 664 (361–1825) | 0.32 | ||||
Peritoneal dialysis patients | 1 (5%) | 10 (18%) | 2.04 | 0.24 | 0.15 | ||
Creatinine (mg/dL) | 6.9 (3.8–9.2) | 6.5 (4.8–9.6) | 0.40 | ||||
Urea nitrogen (mg/dL) | 54 (38–69) | 49 (37–63) | 0.59 | ||||
Parathyroid hormone (pg/mL) | 187 (60–517) | 340 (207–637) | 0.22 | ||||
Vitamin D3 (ng/L) | 22 (12–36) | 31 (22–38) | 0.17 | ||||
Serum albumin (g/dL) | 3.5 (3.0–4.3) | 3.8 (3.1–4.2) | 0.67 | ||||
Total serum protein (g/dL) | 5.9 (5.2–6.8) | 6.3 (5.5–6.8) | 0.55 | ||||
Hemoglobin (g/dL) | 10.5 (8.8–11.5) | 10.4 (8.3–11.9) | 0.93 | ||||
Leukocytes (/nL) | 6.7 (4.7–9.0) | 6.8 (4.9–8.6) | 0.95 | ||||
C-reactive protein (mg/dL) | 3.9 (1.4–7.1) | 1.8 (0.5–4.3) | 0.04 | 1.45 (1.16–1.81) | 0.001 | ||
Previous infections | 10 (50%) | 18 (33%) | 1.90 | 2.10 | 0.17 | ||
Previous sepsis | 5 (25%) | 14 (26%) | 0.00 | 0.98 | 0.97 | ||
Previous pneumonia | 4 (20%) | 14 (26%) | 0.24 | 0.73 | 0.63 | ||
Previous pyelonephritis | 3 (15%) | 2 (4%) | 3.04 | 4.68 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friebus-Kardash, J.; Kuang, F.; Peitz, T.; Hamdan, T.A.; Eisenberger, U.; Boss, K.; Kribben, A.; Lang, K.S.; Jahn, M. Expression of Interferon Regulatory Factor 8 (IRF8) and Its Association with Infections in Dialysis Patients. Cells 2023, 12, 1892. https://doi.org/10.3390/cells12141892
Friebus-Kardash J, Kuang F, Peitz T, Hamdan TA, Eisenberger U, Boss K, Kribben A, Lang KS, Jahn M. Expression of Interferon Regulatory Factor 8 (IRF8) and Its Association with Infections in Dialysis Patients. Cells. 2023; 12(14):1892. https://doi.org/10.3390/cells12141892
Chicago/Turabian StyleFriebus-Kardash, Justa, Fei Kuang, Tobias Peitz, Thamer A. Hamdan, Ute Eisenberger, Kristina Boss, Andreas Kribben, Karl Sebastian Lang, and Michael Jahn. 2023. "Expression of Interferon Regulatory Factor 8 (IRF8) and Its Association with Infections in Dialysis Patients" Cells 12, no. 14: 1892. https://doi.org/10.3390/cells12141892
APA StyleFriebus-Kardash, J., Kuang, F., Peitz, T., Hamdan, T. A., Eisenberger, U., Boss, K., Kribben, A., Lang, K. S., & Jahn, M. (2023). Expression of Interferon Regulatory Factor 8 (IRF8) and Its Association with Infections in Dialysis Patients. Cells, 12(14), 1892. https://doi.org/10.3390/cells12141892